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We propose a mechanism for the damping of density oscillations in multi-component compact stars.
The mechanism is the periodic conversion between different phases, i.e. the movement of the interface
between them, induced by pressure oscillations in the star. The damping grows nonlinearly with the
amplitude of the oscillation. We study in detail the case of r-modes in a hybrid star with a sharp
interface, and we find that this mechanism is powerful enough to saturate the r-mode at very low
saturation amplitude, of order 10−10, and is therefore likely to be the dominant r-mode saturation
mechanism in hybrid stars with a sharp interface.

PACS numbers: 25.75.Nq, 26.60.-c, 97.60.Jd,

I. INTRODUCTION

The damping of mechanical oscillations of compact
stars is a promising signature of the phases of dense
matter in their interior. The damping of density per-
turbations, described locally by the bulk viscosity, is
particularly important since it has been shown to vary
greatly between different phases [1–14]. In addition to
the damping properties of bulk phases, the boundary be-
tween different phases can also be relevant for dissipa-
tion. A well-known example is Ekman layer damping
due to shear forces at the boundary between a fluid and
a solid phase [15]. Here we propose a dissipation mech-
anism that stems from the fact that pressure oscillations
can cause the interface between two phases to move back
and forth, as the two phases are periodically converted
into each other. If the finite rate of this conversion pro-
duces a phase lag between the pressure oscillation and
the position of the interface, energy will be dissipated in
each cycle. We study the resultant damping for the case
of a hybrid star with a sharp interface between the quark
core and the hadronic mantle, where the dissipation is
due to quark-hadron burning at the interface. However,
the mechanism is generic and could be relevant for any
star with an internal interface between phases of different
energy density.

Unstable global oscillation modes [16] are of partic-
ular interest since they arise spontaneously and grow
until stopped by some saturation (nonlinear damping)
mechanism. For neutron stars, the most important ex-
ample is r-modes [17, 18] since they are unstable in
typical millisecond pulsars unless sufficient damping is
present. Several mechanisms for the saturation of the
growth of unstable r-modes have been proposed [19–24].
Although bulk viscosity has a nonlinear “suprathermal”
regime [3, 25, 26], it has been found that this becomes
relevant only at very high amplitudes, and is probably
pre-empted by some other stronger mechanism [22]. In
this paper we show that dissipation due to hadron-quark
burning could well be the dominant r-mode saturation
mechanism in hybrid stars. The dissipation is vanish-
ingly small at infinitesimal amplitude, but becomes very
strong as the amplitude increases. (For similar behavior

in a different context see [24]). This strong dissipation
saturates unstable r-modes in compact stars with a suffi-
ciently large core at amplitudes that are orders of magni-
tude below those provided by any other known saturation
mechanism. We give a simple analytic prediction for the
saturation amplitude, and find that it can be as low as
αsat . 10−10 for conditions present in observed pulsars.

II. SCHEMATIC MODEL FOR THE
DISSIPATION DUE TO PHASE

TRANSFORMATION

A. Two phases in a cylinder

As a step towards an analysis of the dissipation due to
phase conversion in an inhomogeneous multi-component
star, we now construct a simplified version of the inter-
face between different layers in a gravitationally bound
system. We will calculate the energy dissipated in this
system when it is subjected to periodic compression and
rarefaction.

Our toy system involves two incompressible phases,
characterized by different densities of a conserved par-
ticle species. We assume there is a first-order pressure-
induced phase transition, so the phases are separated by
a sharp interface (“the phase boundary”) which, in long-
term equilibrium, is at the critical pressure pcrit, and that
there are processes that can convert each phase into the
other at some finite rate. We consider a cylinder contain-
ing both phases in a homogeneous (Newtonian) gravita-
tional field, with a piston which can be moved parallel
to the direction of the field (Fig. 1). The high-density
phase is deeper in the gravitational potential than the
low-density phase. The field produces a pressure gradi-
ent in the cylinder, which can be shifted by moving the
piston. This will cause the equilibrium position of the
interface to shift, but, crucially, depending on the speed
of the conversion process, it may take some time for the
interface to move to its new equilibrium position. This
causes the response of the system (its volume or density)
to lag behind the externally applied force, resulting in
dissipation. To calculate the energy dissipated per cycle,
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we simply calculate the net p dV work done by the piston
in one cycle.

We will assume that the equation of state of the two
phases is linear,

p(µ) =

{
µnL − εL (low density phase)
µnH − εH (high density phase) , (1)

where µ is the chemical potential for the conserved par-
ticle number, and the two incompressible phases have
fixed particle number densities nL and nH, and fixed en-
ergy densities εL and εH. Later we will use the fact that
this is a valid approximation for any equation of state,
as long as the pressure oscillations are small enough.

In a Newtonian gravitational field the pressure is a
function of x determined by

dp

dx
= −g ε , (2)

where g is the gravitational acceleration, assumed to be
independent of x. Eq. (2) has a simple solution where
the pressure varies linearly with x, with a fixed gradient
g ε in each phase (see Fig. 2)

p(x) =

{
pb − gεH(x− xb) x < xb

pb − gεL(x− xb) x > xb
, (3)

where xb is the position of the interface between the two
phases (“the boundary”) and pb is the pressure at the
boundary. In long-term equilibrium, the boundary settles
at its “ideal” position, where pb is pcrit (see below).













FIG. 1: Toy model: two incompressible phases in a cylinder
with piston, in a gravitational field. An oscillation of the exter-
nal pressure on the piston leads to interconversion of the two
phases, and hence movement of the piston.

B. External pressure oscillation

Assume that the external pressure on the piston varies
periodically. When the pressure is high, part of the low-
density phase is driven to a pressure above pcrit and starts
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FIG. 2: Pressure gradients in the cylinder of Fig. 1. Solid line
p̄(x) is the pressure profile in long-term equilibrium. Dashed
line is a snapshot of the system at a moment when the piston
has moved inward a distance δxp, the pressure everywhere has
risen, and the phase boundary has moved out a distance δxb as
the low density phase in part of the region with p > pcrit has
converted to the high-density phase.

to convert into the high density phase, and vice versa
during rarefaction. The pressure at any given location
and the position of the phase boundary therefore vary in
time

p(x, t) = p̄(x) + δp(x, t) , (4)
xb(t) = x̄b + δxb(t) , (5)

where x̄b is the equilibrium position of the boundary and
p̄(x) is the pressure profile in long-term equilibrium. The
position of the boundary at a given moment depends on
the previous compression history and the phase conver-
sion rate, and we expect that, because of the finite rate
of conversion between the two phases, the oscillation of
the boundary can be out of phase with the oscillation
of the pressure, and this will lead to dissipation via net
p dV work being done in each cycle.

To calculate the dissipation, we need to relate the
movement of the boundary to the applied pressure os-
cillation. We assume that the pressure in the low density
phase oscillates harmonically with amplitude ∆pL and
frequency ω, so δpL(t) = ∆pL sin(ωt).

In equilibrium, the piston is at x̄p with pressure p̄p. As
part of the pressure oscillation the piston moves

xp(t) = x̄p + δxp(t) , (6)

and the pressure at the piston is

pp(t) = p̄p − gεLδxp(t) + ∆pL sin(ωt) (7)

The movement of the piston and the movement of the
phase boundary are connected by particle number con-
servation inside the cylinder. The total particle number
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is Ntot = (xb(t)nH + (xp(t) − xb(t))nL)S where S is
the cross sectional area. Particle number conservation
δNtot = 0 gives

xp(t) = x̄p +

(
1− nH

nL

)
δxb(t) . (8)

We can now express the p dV work done by the piston
in one cycle in terms of the movement of the bound-
ary δxb induced by the pressure oscillation. In later sec-
tions we will study how the boundary moves, expressing
it as a function of the speed of the phase conversion pro-
cess. First, however, we define a useful concept, the “ideal
boundary”.

C. Ideal position of the phase boundary

In discussing the motion of the boundary it is conve-
nient to define an “ideal position” of the boundary, xib.
Since we are assuming that an external force imposes
a specified time-dependence of the pressure in the low-
density phase, it is natural to define the ideal boundary
at time t to be the position the boundary would reach if
we held δpL fixed at its current value and waited for phase
conversion processes to equilibrate. Thus xib(t) is the so-
lution of pL(xib, t) = pcrit. Unlike the actual boundary,
the ideal boundary is determined simply by the instanta-
neous value of the applied pressure, with no dependence
on previous history or conversion rate. The position of
the ideal boundary therefore oscillates in phase with the
pressure,

δxib(t) = ∆xib sin(ωt) , ∆xib =
∆pL

gεL
(9)

and its velocity is 90◦ out of phase with its position

vib(t) = vmax
ib cos(ωt) , vmax

ib = ω∆xib =
ω∆pL

gεL
. (10)

For a harmonic pressure oscillation in the low-density
phase the ideal boundary moves harmonically. Note how-
ever, that because of the discontinuity in energy density
on the phase boundary, the pressure oscillation cannot be
simultaneously harmonic in both phases. It is also worth
noting that according to our definition xib(t) is not in
general the place in the cylinder where the pressure at
time t is pcrit: these locations only coincide if the real
phase boundary occurs where the pressure is above pcrit.

D. Energy dissipation in one cycle

The net p dV work done by the piston in one cycle
(0 6 t < τ , τ = 2π/ω) is

W = −S
∫ τ

0

pp(t)
dxp(t)

dt
dt (11)

where pp is the pressure at the location of the piston,
which is determined by the applied oscillation of the pis-
ton, and xp is the position of the piston. The piston’s po-
sition depends on the movement of the boundary δxb(t)
(8), so from Eq. (11) the energy dissipation in one cycle
is

W = S

(
nH

nL
− 1

)(∫ τ

0

p̄p
dδxb(t)

dt
dt

+

∫ τ

0

∆pL sin(ωt)
dδxb(t)

dt
dt

) (12)

The movement of the boundary is constrained by the
detailed physics of the conversion process, which de-
termines how fast it can move at any given moment.
For quark/hadron conversion we will see that it obeys
a differential equation which expresses the fact that the
boundary’s maximum velocity depends on how far out
of equilibrium the boundary is, and whether it needs to
move inward or outward to reach equilibrium. In effect,
the real boundary is always chasing the ideal boundary
(which is its long run equilibrium position), while the
ideal boundary is a moving target, its sinusoidal move-
ment linearly related to the applied pressure oscillation,
see Eqs. (7) and (9).

In Eq. (12) we see that the dissipation vanishes if the
two phases have equal densities, since then the movement
of the phase boundary does not change the volume of the
system, so there is no associated p dV work.

To derive the dissipation we assumed that the pres-
sure oscillation in the low density phase is harmonic.
Had we instead assumed that the pressure oscillation
in the high density phase is harmonic, then the energy
dissipation would be slightly bigger, with a difference
∆W/W ' ∆ε/εL, where ∆ε is the energy density dis-
continuity at the interface.

III. R-MODE DAMPING

We can now calculate the damping of a global oscil-
lation mode in a hybrid star resulting from the phase
conversion mechanism. A comprehensive analysis of this
problem requires the detailed density oscillation of the
global mode in a star with multiple components sepa-
rated by density discontinuities due to first order phase
transitions. So far the profiles for global oscillation modes
have not been obtained for such a realistic model of a
compact star. We will therefore estimate the dissipa-
tion from a piecewise model for the mode profile, using
the known form for a homogeneous star on either side of
the phase boundary. We estimate the error due to this
simplified procedure below. Although the amplitude of
the mode’s density and pressure oscillation varies from
place to place in the star, the simple model sketched in
Sec. II then applies locally for sufficiently small volume
elements containing the interface between the two phases
and the entire range over which it moves in response to
the oscillation.
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Here we study the case of r-modes because they are
unstable and a sufficiently powerful damping mechanism
is required to ensure that they saturate at a low enough
amplitude so that they do not spin down the fast rotat-
ing compact stars that we observe. The energy density
fluctuation for an m= 2 r-mode to leading order in the
mode amplitude α is [27]

δε

ε̄
=

√
8

189
αAR2Ω2

( r
R

)3

Re
[
Y 2

3 (θ, φ)eiωt
]

(13)

where δε = ε − ε̄, Y 2
3 (θ, φ) = 1

4

√
105
2π e

2iφ sin2θ cos θ, and
A is the inverse speed of sound squared

A ≡ ∂ε

∂p
(14)

evaluated at equilibrium. R is the radius of the star, Ω
the rotational frequency of the star, and ω is the r-mode
frequency ω = 2

3Ω.
The r-mode involves flows that are dominantly angu-

lar rather than radial. At any moment there is higher
pressure in some regions of solid angle in the star, and
lower pressure in other regions. This means that glob-
ally the fraction of high or low pressure phase does not
change much over time. However, an r-mode will still
lead to conversion between the phases, since the low and
high pressure regions are kilometers apart, so the gradi-
ents of pressure and density in the angular directions are
extremely small, and in an oscillation at kHz frequencies
there is not enough time for any response other than local
movement of the boundary in the radial direction. There-
fore particle transformation is required in far-separated
areas despite the approximate global conservation of the
amount of each of the two forms of matter. The simple
cylinder and piston model of Sec. II is a valid approxi-
mation for a small volume element that straddles the in-
terface between the two phases. To use the results from
Sec. II we simply need to use the appropriate expression
for the local gravitational acceleration g. The general
relativistic generalization of the Newtonian hydrostatic
equation is the Oppenheimer-Volkoff (OV) equation [28]

dp

dr
= −geff(r) ε(r)

geff(r) =
GM

r2

(
1 +

p

ε

)(
1 +

4πpr3

M

)(
1− 2M

r

)−1

(15)
where p, ε and M , given by (dM)/(dr) = 4πr2ε, depend-
ing on the radial position. The effective gravitational
acceleration geff contains general relativistic corrections
to its Newtonian value M/r2.

A. Movement of the ideal boundary

We will now calculate the dissipation of the energy
of an r-mode in a star with a high density core sur-
rounded by a low density mantle. (In the next section we

will look at the case where the phases are quark matter
and hadronic matter.) We are interested in situations
where phase conversion dissipation becomes important
in r-mode oscillations when their amplitude is still fairly
low (we will see in Sec. IVD that this may indeed hap-
pen), so we will assume δp � p̄ in the region near the
boundary. Therefore, we only need the EoS in a narrow
pressure range around the critical pressure. The EoS can
be expanded to linear order analogous to Eq. (1) so the
pressure oscillation is given by

δp =
ε̄

A

δε

ε̄
. (16)

When δε > 0, according to Eq. (13)–(16) the r-mode
pressure oscillation in the low density phase is

δpL(r, θ, φ, t) = ε̄L(r)C(r)α sin2θ cos θ cos(2φ+ωt) (17)

where

C(r) ≡
√

105

756π
Ω2 r

3

R
(18)

The ideal (i.e. long-run equilibrium at given pressure)
position of the boundary Rib, analogous to xib in Sec. II,
is determined by the r-mode pressure oscillation in the
low-density phase, and therefore depends on the angular
co-ordinates. If we write Rib = R̄b + δRib, where R̄b is
the equilibrium position of the phase boundary with no
pressure oscillation, then from (15) and (17)

δRib(t) =
δpL

dp/dr(R̄b)
=
αCb

gb
sin2θ cos θ cos(2φ+ ωt)

(19)
where

gb ≡ geff(R̄b)

Cb ≡ C(R̄b) =

√
105

756π
Ω2 R̄

3
b

R
.

(20)

and geff(R̄b) is the effective gravitational acceleration at
R̄b evaluated in the low-density phase.

The oscillation amplitude of the ideal boundary posi-
tion, as a function of latitude θ in the star, is

|δRib| =
Cbα

gb
| sin2θ cos θ| (21)

and the maximum value of the velocity of the ideal
boundary vmax

ib is

vmax
ib =

Cbαω

gb
| sin2θ cos θ| (22)

B. R-mode energy dissipation

We now calculate dW (θ, φ), the energy dissipated dur-
ing one oscillation cycle in a radially oriented cylinder
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straddling the phase boundary, with an infinitesimal base
area located at a given spherical angle. Integrating this
result over solid angle will give the total dissipation of
the r-mode. Using Eqs. (12) and (19),

dW (θ, φ) = dS

(
nH

nL
− 1

)
∆pL

∫ τ

0

cos(2φ+ωt)
dδRb(t)

dt
dt

(23)
where ∆pL = gbε

L
crit|δRib|, and from Eq. (21)

∆pL = εL
critCbα| sin2θ cos θ| (24)

and dS = R̄2
b sin θdθdφ. As discussed earlier, these esti-

mates are based on an approximate r-mode profile. To
estimate the uncertainty due to this simplification we
compare two idealized cases, where the pressure oscil-
lation is harmonic in the low density phase, and where
it is harmonic in the high-density phase. As discussed
below Eq. (12) the difference for an infinitesimal volume
element is of order ∆W/W ' ∆ε/εL which directly gives
an estimate for the uncertainty of the dissipation in the
case of global r-modes. Typical density steps at first or-
der transitions in a compact star are less than a factor
of two, but due to the simplified model assumptions we
make here our results should anyway be viewed as order
of magnitude estimates.

IV. HADRON/QUARK CONVERSION IN A
HYBRID STAR

The damping mechanism that we have analyzed above
is generic, and will operate in any situation where there
are two phases with a sharp interface. However, the
amount of damping depends crucially on how the inter-
face between the two phases moves via conversion of one
phase into the other. To explore a realistic case, we will
now estimate the boundary velocity for an interface be-
tween strange quark matter and nuclear matter in a hy-
brid star, and obtain an estimate of the resultant r-mode
saturation amplitude in this scenario.

It is worth mentioning that the scenario depicted here
of a smooth and steadily moving phase boundary might
be disturbed by instabilities that lead to a turbulent
burning front. In the conversion of a neutron star to a
quark star, this instability occurs and may lead to a deto-
nation [29] or a deflagration [30–32]. That full conversion
process occurs when quark matter is the preferred state
all the way down to zero pressure (the “strange matter
hypothesis”). In our situation, however, the conversion
is much slower: we study the case where conversion of
hadronic matter to quark matter occurs only at a high
critical pressure. The movement of the phase boundary
in our case is driven by a small deviation from equilib-
rium, induced by oscillations. We defer the study of tur-
bulent instabilities in this context to future work.

We will use the calculational techniques developed by
Olinto [33] to study the movement of the phase bound-
ary in the strange matter hypothesis scenario, but we are

interested in conversion of quark matter to nuclear mat-
ter as well as nuclear matter to quark matter, since both
processes occur as our burning front moves inwards and
outwards periodically in response to an oscillation in the
pressure.

A. Pressure and chemical potential at the interface

In equilibrium, both pressure and baryon chemical po-
tential are continuous across the phase boundary between
nuclear and quark matter, and their values at the bound-
ary are the critical values at which the phase transition
occurs (p = pcrit, µB = µcrit

B ). When the system is driven
out of equilibrium by global pressure oscillations, the
phase boundary may temporarily be at a different pres-
sure because the conversion between nuclear and quark
matter has a limited rate. The boundary is then out of
chemical equilibrium, and the baryon chemical potential
is no longer continuous at the boundary because baryon
number cannot flow freely through the boundary. On
the timescale of chemical equilibration the pressure is
still continuous because it equilibrates at the speed of
sound which is of order c. The burning front will move
as the phase with higher baryon chemical potential con-
verts into the phase with lower baryon chemical potential.
The situation is illustrated in Fig. 3. If the pressure at
the boundary is above the critical value (pb = p1 > pcrit),
the baryon number chemical potential in quark matter is
lower (µQ

1 < µN
1 ). Nuclear matter (NM) is then converted

into quark matter (QM) and the front moves outwards.
If the pressure at the boundary is below the critical value
(pb = p2 < pcrit) the front moves in the opposite direc-
tion converting quark matter back into nuclear matter.

B
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FIG. 3: (Color online) Schematic plot of the pressure as a func-
tion of baryon chemical potential in beta-equilibrated (µK = 0)
nuclear matter and quark matter. At a given pressure, the
phase with lower µB is thermodynamically favored.

As we will see below, when the boundary is out of
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chemical equilibrium, and moving to reestablish that
equilibrium, it has around it a NM � QM conversion
region, where the matter is out of beta equilibrium.

The chemical equilibration of quark matter can pro-
ceed via the nonleptonic channel u + s ↔ d + u and
also the leptonic Urca channel d → u + e− + ν̄ and
u + e− → d + ν. Following Ref. [33], we neglect the
Urca channel here for simplicity, but we discuss its poten-
tial impact in Sec. V. Nonleptonic beta-equilibration pro-
cesses are driven by the chemical potential µK, which cou-
ples to the imbalance between strange and down quarks;
µK is zero in beta equilibrated matter, but not in the
conversion region,

µK ≡ µd − µs ,
nK = 1

2 (nd − ns) .
(25)

In the following sections we discuss how µK and µB vary
in the conversion region when the front is moving, in or-
der to estimate the speed of the boundary in two half
cycles of oscillation, which determines the energy dissi-
pation over the complete period.

B. Conversion of nuclear matter into quark matter

To estimate the front speed in the NM → QM tran-
sition when pb = p1 > pcrit, we use the one-dimensional
steady-state approximation used by Olinto [33] to study
the irreversible conversion of nuclear matter to strange
matter in the scenario where strange quark matter is
stable at zero pressure. In our scenario there is a crit-
ical pressure at which the transition occurs, with con-
version going in either direction depending on the his-
tory of the system, but Olinto’s approach is still appli-
cable. The analysis is conveniently performed in the rest
frame of the boundary, where the boundary is at x = 0,
neutron matter is at x < 0 and strange quark matter
at x > 0. The transformation of neutron matter into
strange quark matter requires considerable strangeness
production, which can only be accomplished by flavor-
changing weak interactions. The slow rate of weak in-
teractions means that at the front nuclear matter is con-
verted in to some form of non-beta-equilibrated quark
matter (with µK 6= 0). In the conversion region be-
hind the front there are flavor-changing non-leptonic in-
teractions and strangeness diffusion. The weak interac-
tions create strangeness and allow µK to return to zero
over a distance scale of order (DQτQ)1/2 where τQ is the
timescale of the flavor-changing non-leptonic interactions
and DQ is the diffusion constant for flavor. The diffu-
sion of strangeness towards the boundary and downness
away from the boundary allows the strange matter at the
boundary to have a strangeness fraction different from
that of the nuclear matter which is undergoing decon-
finement as the front moves.

In general, strangeness gradients could also exist in
front of the boundary, as strangeness could diffuse
through the boundary, creating (or adding to) hyperons

on the nuclear matter side. However, following Ref. [33],
we will assume that the front moves fast enough for this
effect to be negligible, so µK = 0 everywhere ahead of
the moving front, i.e. at x < 0. The conversion region
is then limited to x > 0, and can be characterized by
µK(x), or equivalently by the K-fraction parameter a(x)
which decreases with increasing strangeness fraction

a(x) ≡
nK(x)− nQ

K

nQ
, (26)

where nQ is the baryon number density in equilibrated
strange quark matter, and the K density is nQ?

K at x = 0
and as x → ∞ it grows asymptotically to the constant
value nQ

K for equilibrated strange quark matter. From
now on for simplicity we always assume that there are
equal numbers of up, down and strange quarks in equi-
librated quark matter (nQ

K = 0). In equilibrated nuclear
matter there are only up and down quarks (we assumed
no hyperons in front of the boundary), so nK = nd/2 =
nN for x < 0.

The spatial variation of a (Fig. 4, right panel) is deter-
mined by the steady-state transport equation, written in
the rest frame of the boundary,

DQ a
′′ − vN→Q a

′ −RQ(a) = 0,

RQ(a) = (Γd→s − Γs→d)/nQ, (27)

where DQ is the flavor diffusion coefficient, vN→Q the
front speed and RQ(a) is the net rate of flavor-changing
weak interactions. The boundary conditions are

a(0−) =
nN

nQ
≡ aN, a(x→∞)→ 0,

a(0+) =
nQ?

K

nQ
≡ aQ? , a′(0+) = −vN→Q

(
aN − aQ?

DQ

)
.

(28)
To understand the discontinuity in a(x) across the

boundary, let us consider how the chemical potentials
vary in the conversion region. The left panel of Fig. 4
shows a schematic plot in the (µB, µK) plane. The
parabolic-looking curve is the quark matter isobar for
pressure pb > pcrit. The square marked “N” is beta-
equilibrated (µK = 0) nuclear matter at the same pres-
sure. The spatial variation in the conversion region,
shown in the right panel of Fig. 4, can then be mapped
on the chemical potential space as follows. At x < 0
we have beta-equilibrated nuclear matter (N). At x = 0,
where a(x) drops from aN to aQ? , µK jumps to Q?, which
is out-of-equilibrium quark matter with non-zero µK, but
at the same pressure as the nuclear matter. Then as
we traverse the conversion region (increasing x), µK de-
cays to zero, finally arriving at equilibrated quark matter
(Q). All of these configurations are at the same pressure,
based on the assumption that the thickness of the con-
version region is negligible when compared to the radius
of the star. The arrows along the µK = 0 axis show how
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FIG. 4: (Color online) Conversion of nuclear matter into quark matter. Panel (b): spatial variation of the K-fraction parameter a
(Eq. (26)) in the conversion region where the pressure is above pcrit (see Fig. 3). Panel (a): corresponding path in the (µB, µK)
plane of chemical potentials. The quark matter isobar (red curve) is at the same pressure as the equilibrated nuclear matter (point
N), and the arrows follow increasing pressure except from N to Q∗ to Q where pressure is constant (traversing increasing x in the
right panel).
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FIG. 5: (Color online) Conversion of quark matter into nuclear matter. Panel (b): spatial variation of the K-fraction parameter b
(Eq. (46)) in the conversion region where the pressure is below pcrit (see Fig. 3). Panel (a): corresponding path in the (µB, µK)
plane of chemical potentials. The nuclear matter isobar (blue curve) is at the same pressure as the equilibrated quark matter (point
Q), and the arrows and the arrows follow increasing pressure except from N to N∗ to Q where pressure is constant (traversing
increasing x in the right panel).

µB varies as one moves larger distances through beta-
equilibrated matter on either side of the conversion re-
gion, with the pressure rising monotonically. The arrows
above the µK = 0 axis (blue online) show µB increasing
as we move inwards through nuclear matter until at N
(µB = µN

B) we reach the phase boundary. After traversing
the phase boundary and conversion region as described
above, we are at Q, in beta-equilibrated quark matter at
lower µB, and as we move into the quark core, µB rises

again (arrows below µK = 0 axis, red online).

Olinto [33] argued that when the phase boundary is
in a steady state of motion there is a “pileup” of nuclear
matter in front so that nuclear and quark matter have
the same density there, and the boundary has the same
velocity relative to nuclear matter and quark matter, i.e.
the nuclear matter near the boundary is stationary rela-
tive to the quark matter. However, we argue that this is
not possible in steady state. When the phase boundary
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moves, part of the star is transformed from lower density
nuclear matter to denser quark matter, and hydrostatic
equilibrium requires the star to shrink. This means that
in the outer parts of the star the nuclear matter must fall
inwards under gravity, so it is moving towards the quark
matter. If the inward velocity of the nuclear matter went
to zero near the phase boundary, this would require that
the “pileup” grows with time, which is not a steady state
situation. Instead, we argue that the baryon number con-
servation condition is automatically fulfilled because the
weight of the outer region of the star pushes nuclear mat-
ter in to the front as fast as the front can “consume” it.
The density of nuclear matter at the boundary is there-
fore unchanged by the movement of the boundary, and
the nuclear matter velocity takes the value that is de-
termined by baryon number conservation. As we saw in
Eq. (12) this density step at the phase boundary is crucial
for phase-conversion dissipation to occur (aN < 1).

For a fixed value of aQ? , there is only one vN→Q which
guarantees a solution to Eq. (27) that satisfies the bound-
ary conditions. To find the proper vN→Q, we apply the
method in [33], which analogizes Eq. (27) to a classical
mechanical problem and solves for the correct potential
term, transforming the boundary value problem into an
initial value problem. Taking into account both subther-
mal (µK � T ) and suprathermal (µK � T ) regimes in
the weak rate, the analytical approximation for the front
speed in the NM→ QM half cycle is

vN→Q '

√
DQ

τQ

a4
Q? + 2ηQa2

Q?

2aN(aN − aQ?)
(29)

where DQ is the diffusion constant for flavor, τQ is the
timescale of non-leptonic flavor-changing interactions,
and ηQ gives the ratio of subthermal to suprathermal
rates. Eq. (29) is a generalization of Eq. (12) in Ref. [33],
which is only valid in the suprathermal regime. As we
will see later on, aQ? is much less than aN, therefore
Eq. (29) becomes

vN→Q '
1

aN

√
DQ

2τQ

√
a4

Q? + 2ηQa2
Q? (30)

The full rate for the non-leptonic strangeness-changing
process has been computed in [34], yielding

RQ(a) ' (a3 + ηQa)/τQ, (31)

ηQ =
9π2T 2

µ2
Q

, (32)

τQ =

(
128

27 · 5π3
G2
F cos2θc sin2θcµ

5
Q

)−1

, (33)

where GF is the Fermi constant, θc the Cabibbo angle,
and therefore τQ ' 1.3× 10−9 s (300 MeV/µQ)

5; to lead-
ing order the diffusion coefficient (see Eqs. (28) and (36)
in [35])

DQ '
πq

2/3
D

24 α2
s h T

5/3
(34)

where h = Γ( 8
3 )ζ( 5

3 )(2π)2/3 ' 1.81, αs = g2/4π is
the QCD coupling constant, and the Debye wave num-
ber for cold quark matter of three flavors is qD where
q2
D = 3g2µ2/(2π2). The temperature dependence T−5/3

comes from Landau damping that dominates for T � µ
compared to the Debye screened case D ∝ T−2.

Different values of aQ? give different front profiles cor-
responding to different front velocities. There is an up-
per limit on aQ? which is constrained by the amplitude
of external pressure oscillation, and the argument is as
follows.

In order for the boundary to move, it must be favorable
for neutrons to turn in to quarks at the boundary, so the
total chemical potential per unit baryon number must be
larger in beta-equilibrated nuclear matter (N in Fig. 4)
than in out-of-equilibrium quark matter (Q?) [50]

µN
B > µQ?

B +
nQ?

K

nQ?

· µQ?

K (35)

On the isobar for quark matter, we parameterize the pres-
sure at (µB, µK) as an expansion near equilibrium (Q)

pQM(µB, µK) = pQ + nQ(µB − µQ
B) + nQ

K(µK − µQ
K)

+
1

2
χQ

K(µK − µQ
K)2 + ... (36)

where χQ
K ≡ ∂nK/∂µK is the susceptibility with respect

to K-ness evaluated at equilibrium (Q). In equilibrated
quark matter, µQ

K = 0. Since the whole conversion region
is at the same pressure pQ? = pQ = pb, so solving for
µQ?

B we have

µQ?

B = µQ
B −

(
nQ

K

nQ
−
χQ

Kµ
Q?

K

2nQ

)
· µQ?

K . (37)

Assuming that Q? is close to equilibrium, so that nQ?

K ≈
nQ

K, nQ? ≈ nQ, Eq. (35) becomes

µN
B − µ

Q
B >

χQ
K

(
µQ?

K

)2

2nQ
. (38)

From Eq. (28), aQ? = nQ?

K /nQ ≈ µQ?

K χQ
K/nQ, then

Eq. (38) leads to an upper bound on aQ?

amax
Q? =

√
2∆µBχ

Q
K

nQ
, (39)

with

∆µB ≡ µN
B − µ

Q
B ' (γ − 1)δp/nQ, (40)

where δp = |pb − pcrit| > 0 (Fig. 3) and γ ≡ nQ/nN =
1/aN. Notice that the derivation of Eq. (39) is totally
general and can also be applied to matter with nonzero
nK at equilibrium (see Sec. IVC).
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FIG. 6: (Color online) Diagram showing how the ideal bound-
ary position (dashed line) and the real boundary position (solid
(blue) line) vary in time. The ideal boundary is where the phase
boundary would be if the phase conversion process equilibrated
instantaneously, and it is determined by the instantaneous ex-
ternal pressure (Eq. (9)). The real boundary is always “chasing”
the ideal boundary, with velocity given by Eq. (42) and (59)
where δz(t) is its distance from the ideal boundary. The real
boundary coincides with the ideal boundary twice per cycle, at
t = t1 and t = t2.

The pressure oscillation is related to how far the real
boundary is away from its ideal position via

δp = gbε
N
crit

(
δxib(t)− δxb(t)

)
, (41)

where the ideal position δxib(t) = ∆xib sin(ωt), and the
amplitude ∆xib = ∆pN/gbε

N
crit (see Eq. (9)). If we as-

sume that the boundary is always moving at its maxi-
mum speed (aQ? ≈ amax

Q? ), then according to Eq. (30)
and Eq. (39)–(41) the velocity of the boundary in the
NM → QM half cycle (t < t1 and t > t2 in Fig. 6) is
determined by

dδxb

dt
' 1

aN

√
DQ

2τQ

√[
δz/`Q

]2
+ 2ηQδz/`Q (42)

where δz ≡ |δxib−δxb| is how far the boundary is from its
equilibrium position at the current pressure (see Fig. 6),
and `Q characterizes its typical length

`Q =
(nQ/χ

Q
K)nQ

2(γ − 1)gbεN
crit

. (43)

C. Conversion of quark matter into nuclear matter

The conversion from quark matter to nuclear matter
has not been analyzed previously because it does not

arise if strange matter is stable at zero pressure, which is
the context in which previous analyses were performed.
However, it can analogously be described in terms of con-
version and diffusion behind the boundary, now on the
hadronic side where strangeness is carried by hyperons.
There are various hyperons that could be present in dense
hadronic matter and correspondingly multiple weak reac-
tions involving these hyperons. For an illustrative calcu-
lation we only consider one such process, n+n→ p+Σ−,
which is a reasonable choice because Σ− hyperons are
expected to be among the first to appear when nuclear
matter is compressed, see e.g. [36]. For simplicity, we also
neglect electrons in the system, which is admittedly not
a good approximation, but we are only aiming to provide
an illustrative example. In this case

µK = 2µn − µp − µΣ (44)

nK =
1

6
(2nn − np − nΣ) . (45)

Moving away from the boundary on the hadronic side,
into the conversion region, the K density is nN?

K at x = 0
and as x → −∞ it grows asymptotically to the nonzero
constant value nN

K ' nn/3 ≈ nN/3 for equilibrated nu-
clear matter with Σ− hyperons, where nN is the baryon
number density in equilibrated nuclear matter. As before
we neglect strangeness conversion ahead of the boundary,
which is the quark matter region in this case. In equili-
brated quark matter we assume there are equal numbers
of up, down and strange quarks, so nK = 0 for x > 0.

As in Sec. IVB we define a parameter to characterize
the deviation of the K fraction from its equilibrium value,

b(x) ≡ nK(x)− nN
K

nN
(46)

and the steady-state transport equation for b(x) in the
rest frame of the boundary is

DN b
′′ − vQ→N b

′ −RN(b) = 0, (47)

RN(b) = (Γn+n→p+Σ− − Γp+Σ−→n+n)/nN, (48)

where DN is the flavor diffusion coefficient, vQ→N is the
front speed for the QM→ NM transition and RN(b) the
strangeness-changing reaction rate divided by the baryon
number density in nuclear matter. The boundary condi-
tions are

b(0−) =
nN?

K − nN
K

nN
≡ bN? , b(x→ −∞)→ 0,

b(0+) =
−nN

K

nN
≡ bQ, b′(0−) = vQ→N

(
bQ − bN?

DN

)
.

(49)
The right panel of Fig. 5 shows how b(x) varies through

the phase boundary and transition region. The left panel
of Fig. 5 shows schematically the behavior in the (µB, µK)
plane. The short curve through N and N∗ is the nuclear
matter isobar for pressure pb < pcrit. The dot marked
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“Q” is beta-equilibrated quark matter at the same pres-
sure, which exists (see right panel) at x = 0+. The point
N? is out-of-equilibrium nuclear matter which is found
just behind the boundary at x = 0−. The point N is
beta-equilibrated nuclear matter, which is found at the
tailing end of the conversion region. All these forms of
matter are at the same pressure as long as thickness of the
conversion region is much smaller than the radius of the
star. The arrows represent how the chemical composition
changes as one moves from the hadronic outer part of the
star through the conversion region to the quark core. At
the boundary µN

B < µQ
B and µK in out-of-equilibrium nu-

clear matter is negative because of the presence of mas-
sive hyperons.

Following the same logic as in the previous section, we
find the analytic approximation for the velocity of the
boundary

vQ→N ' −

√
DN

τN

b4N? + 2ηNb2N?

2bQ(bQ − bN?)

|bN? |�|bQ|−−−−−−−→ 1

bQ

√
DN

2τN

√
b4N? + 2ηNb2N? (50)

where −bQ . 1/3. The full rate for the weak interaction
has been computed in [6]

RN(b) ' (b3 + ηNb)/τN, (51)

ηN =
4π2T 2

(
χN

K

)2
n2

N

(52)

and the time scale

τN =

[
−2χG2

F

3 · (2π)5
cos2θc sin2θcm

∗2
n m

∗
pm
∗
Σ k

Σ
F n

2
N

(
χN

K

)−3
]−1

,

(53)
where χ is determined by the reduced symmetric and an-
tisymmetric coupling constants with typical value ∼ 0.1
and χN

K ≡ ∂nK/∂µK is evaluated at nuclear matter in
equilibrium (N). Both kΣ

F and χN
K are functions of nN,

depending on the nuclear matter EoS. The timescale for
relevant weak interactions to happen in nuclear matter
is much longer than that in quark matter (Eq. (33)), be-
cause the baryons are non-relativistic and their densities
are lower. For typical transition densities in hybrid stars
we studied, the ratio τN/τQ is of order 102.

To estimate the diffusion coefficient DN ' 1
3vNλN we

estimate vN by the Fermi velocity of hyperons (vN '
vΣ

F = kΣ
F/m

∗
Σ), and the mean free path by λN ' vΣ

F/νnΣ,
where νnΣ is the hadron/hyperon collision frequency sim-
ilar to the hadron/hadron collision frequency νnp (see
Eq. (55) of [37]). As a result,

DN '
m2

n k
Σ
F

2

32m∗nm
∗4
Σ T 2 SnΣ(knF, k

Σ
F )
, (54)

where SnΣ is the effective hadron/hyperon scattering
cross section which we for simplicity approximate by

the proton/neutron cross section given in Eq. (58) of
[37]. Given the nuclear matter EoS, kΣ

F and SnΣ can
be expressed in terms of the baryon density nN. The
strangeness diffusion coefficient in nuclear matter is typ-
ically much smaller than in quark matter (Eq. (34)),
because hadrons and hyperons are non-relativistic while
quarks are moving nearly at the speed of light, and also
because the long-range interactions between the quark
interactions give the different temperature dependence
DN/DQ ∝ (T/µ)1/3. At temperatures relevant to neu-
tron stars, this ratio is of order 10−2.

The K-fraction in nuclear matter at the boundary with
quark matter, bN? , is constrained by how far out of equi-
librium the boundary is. For the boundary to move
towards its “ideal” position the total chemical poten-
tial per baryon number in beta-equilibrated quark mat-
ter (Q in Fig. 4) must be larger than that in the non-
beta-equilibrated nuclear matter on the other side of the
boundary (N?). Following the same logic as in Sec. IVB
we obtain a condition similar to Eq.(38)

µQ
B − µ

N
B >

(
−µN?

K

)2
χN

K

2nN
. (55)

From Eq. (49), bN? = −nN?

K /nN ≈ −µN?

K χN
K/nN, so

Eq. (55) gives an upper bound on −bN? and hence on
the front speed vQ→N

(−bN?)max =

√
2∆µBχN

K

nN
, (56)

∆µB = µQ
B − µ

N
B ' (γ − 1)δp/nQ, (57)

where

δp = gbε
N
crit(δxb(t)−∆xib sin(ωt)) . (58)

Assuming that the boundary moves at its maximum
speed, (−bN?) ≈ (−bN?)max, the boundary velocity in
the QM→ NM half cycle (t1 < t < t2 in Fig. 6) is

dδxb

dt
' 1

bQ

√
DN

2τN

√[
δz/`N

]2
+ 2ηNδz/`N (59)

where δz ≡ |δxb − δxib| is how far the boundary is from
its equilibrium position at the current pressure, with the
typical length

`N =
(nN/χ

N
K)nQ

2(γ − 1)gbεN
crit

. (60)

Therefore with the periodic condition δxb(t) =
δxb(2π/ω + t), Eq. (42) and Eq. (59) fully specify the
movement of the phase boundary in response to the ex-
ternal pressure oscillation. Next we compute the energy
dissipation in this process and see whether it is capable
of saturating the r-mode.
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D. Dissipated power and saturation amplitude

From Sec. III B we know that during one cycle of an
r-mode of amplitude α the energy dissipated in a radi-
ally oriented cylinder with an infinitesimal base area dS
straddling the phase boundary at (θ, φ) is

dW (α, θ, φ) = dS (γ − 1) ∆pN

∫ τ

0

cos(2φ+ ωt)
dδRb

dt
dt

(61)
where the position of the phase boundary δRb(t) is the
same as δxb(t) in Sec. IVB and Sec. IVC, which we as-
sume to move at its maximal speed (see Eqs. (42) and
(59)), and dS = R̄2

b sin θdθdφ. From Eq. (24)

∆pN = gbε
N
crit|δRib| = εN

critCbα| sin2θ cos θ| (62)

Integrating Eq. (61) over solid angle gives the total
dissipation of the r-mode in one cycle of oscillation and
hence the total power dissipated Pdis. The r-mode am-
plitude stops growing (saturates) when this equals the
power injected via back-reaction from gravitational radi-
ation Pgr.

As an illustrative example, Fig. 7 shows the dissipated
power as a function of r-mode amplitude for a hybrid
star rotating with frequency f = 600 Hz, with quark core
size R̄b/R = 0.56 and temperature T = 108 K. For the
quark matter EoS we use the CSS parameterization [38]
with ntrans = 4n0, ∆ε/εtrans = 0.2, and c2QM = 1. The
hadronic matter EoS is taken from Ref. [39].

In the subthermal regime, the dissipated power first
rises with the r-mode amplitude α as α3 at very low am-
plitude, before entering a resonant region with a max-
imum in Pdis/α

2. At high amplitude in the suprather-
mal regime, the dissipated power is proportional to α2.
The power in gravitational radiation from the r-mode Pgr

(Eq. (A17)) rises as α2, and is also shown in Fig. 7 for
this particular hybrid star. At low amplitude, the phase
conversion dissipation is suppressed relative to the gravi-
tational radiation, and therefore plays no role in damping
the r-mode. If other damping mechanisms are too weak
to suppress the r-mode, its amplitude will grow. How-
ever, as the amplitude grows the phase conversion dissi-
pation becomes stronger, and in this example there is a
saturation amplitude αsat at which it equals the gravita-
tional radiation, and the mode stops growing.

Varying parameters such as the size of the quark mat-
ter core, rotation frequency or temperature of the star,
etc, will shift the curves in Fig. 7, and if the phase con-
version dissipation is too weak then there will be no in-
tersection point (Pgr will be greater than Pdis at all α)
and phase conversion dissipation will not stop the growth
of the mode. However, we can see from Fig. 7 that if sat-
uration occurs, the resultant αsat is in the low-amplitude
regime, where an analytical approach is available, and
the saturation amplitude is extraordinarily low, of order
10−12. This is typical of all model hybrid stars that we
investigated. In Appendix A we derive the analytical ex-
pression for the dissipated power in the low-amplitude

regime (dashed (black) line in Fig. 7), obtaining

P sub
dis (α) ≈ α3

15

(
105

756π

)3/2
γ − 1

∆p̃N

(εN
crit)

2Ω7R̄11
b

gbR3
. (63)

This expression allows us to assess how the strength of
phase conversion dissipation depends on the various pa-
rameters involved. It is particularly sensitive to the size
of the quark core, and this will be important when consid-
ering a whole family of hybrid stars with different central
pressures and hence different core sizes.

The results of such an investigation are shown in Fig. 8,
where the solid (red) curve gives the numerically calcu-
lated saturation amplitude (αsat in Fig. 7) as a func-
tion of the size of the quark matter core in units of the
star radius, R̄b/R. To construct this curve we used the
hadronic and quark matter EoS of Fig. 7 and varied the
central pressure, yielding a family of different star config-
urations. As R̄b/R decreases, the dissipation power Pdis

decreases rapidly relative to the gravitational radiation
Pgr. The relative shift in the two corresponding curves
in Fig. 7 leads to an upper limit on αsat when Pgr is tan-
gent to Pdis. This corresponds to the end of the solid
curve in Fig. 8 at αmax

sat at the critical value of the quark
core size, (R̄b/R)crit, below which the phase-conversion
mechanism cannot saturate the r-mode any more.

The black dashed curve in Fig. 8 is the low-amplitude
analytical approximation to αsat (see also Appendix A,
Eq. (A20)),

αapprox
sat =

(
222π9/2

33 · 55/2

)
G
D̃N

τN

(
χN

K

)3
nQn3

Nb
2
Q

g3
bM

2J̃2

Ω

R9

R̄11
b

≈ 4.2× 10−11 γ

(
D̃N

1.5 MeV3

)(
τN

2× 10−8 s

)−1

×
(
bQ
1/3

)−2(
nN

2n0

)−4(
χN

K

(100 MeV)2

)3(
gb

gu

)3

×

(
εQ

crit

2 εN
crit

)3(
εN

crit

600 MeV fm−3

)3(
M

1.4M�

)2

×

(
J̃

0.02

)2(
f

1kHz

)−1(
R

10 km

)(
R̄b/R

0.4

)−8

(64)

where DN ≡ D̃N · T−2 (see Eq. (54)), and gu is the
Newtonian gravitational acceleration at the phase bound-
ary when the quark core has uniform density ε = εQ

crit

(gu ≡ 4
3πGε

Q
critR̄b). This approximation is very accurate

when the the phase conversion damping is strong, but it
does not capture the sudden weakening of that dissipa-
tion when, for example, the core radius becomes small.
It is therefore useful to have some idea of its range of
validity.
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FIG. 7: (Color online) Panel (a) shows dissipated power due to phase conversion Pdis (thick solid red curve) as a function of r-mode
amplitude α for a specific example hybrid star (see text). Panel (b) shows the same quantity where the vertical axis now shows the
ratio Pdis/α

2. At first Pdis is proportional to α3 at very low amplitude (dashed line), then at some intermediate amplitude varies
less quickly, with a maximum in Pdis/α

2, and finally changes to α2 at higher amplitude. Also shown is gravitational radiation
power Pgr (thin solid blue straight line) which is proportional to α2 at all amplitudes. The r-mode amplitude will stop growing
when dissipation balances radiation, at the first point of intersection between the two curves. This defines the saturation amplitude
αsat.

E. Range of validity of low-amplitude approximation

The range of validity of Eqs. (63) and (64) is found by
calculating the next-to-leading (NLO) contribution, and
requiring that it be less than a fraction ε of the total
dissipated power. We find (see Appendix B) that the
approximation is valid when

ε >
239π5

31254

G2

(γ − 1)2

gbM
4J̃4Ω6(

εN
crit

)2 (
R

R̄b

)16

' 2.96

(
γ − 1

0.5

)−2
(
εQ

crit

2 εN
crit

)2(
gb

gu

)2(
M

1.4M�

)4

×

(
J̃

0.02

)4(
f

1 kHz

)6(
R

10 km

)2(
R̄b/R

0.4

)−14

. (65)

We see that the validity of the low-amplitude approxima-
tion is mainly determined by the size of the quark matter
core and the rotation frequency of the star.

V. CONCLUSION

We have described how phase conversion in a multi-
component compact star provides a mechanism for damp-
ing density oscillations, via the phase lag in the response
of the interface between components of different baryon
densities to the applied pressure oscillation. The phase
lag arises from the finite rate of interconversion between

the phases, which limits the speed with which the inter-
face can move. We studied the case where the two phases
are separated by a sharp boundary (first order phase
transition) and analyzed the movement of the interface
in the approximation of a steady state, neglecting addi-
tional acceleration effects and complicated hydrodynamic
effects like turbulence. In particular, we studied the as-
trophysically interesting case of the damping of r-mode
oscillations [17, 18] in a two-component star. We found
that phase conversion dissipation does not affect the r-
mode instability region, because it vanishes as α3 at low
r-mode amplitude α. However, depending on the values
of relevant parameters, phase conversion dissipation can
either saturate the r-mode at extremely low amplitudes,
αsat . 10−10 in the explicit example of hadron-quark
transformation at the sharp quark-hadron interface in a
hybrid star, or be insufficient to saturate the r-mode at
all. The reason for this behavior stems, analogously to
the bulk visocity [25], from the resonant character of the
dissipation, which is relatively strong when the time scale
of the dissipation matches the time scale of the external
oscillation (see Fig. 7). Whether saturation is possible
depends therefore on the microscopic and astrophysical
parameters, like in particular on the mass of the quark
core which should not be too small.

Our main result is (61), which must be evaluated using
numerical solutions of (42) and (59). We also give the
low-amplitude analytic expressions for the power dissi-
pated (63) and the saturation amplitude (64) which are
valid when the dissipation is sufficiently strong, obeying
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(Rb/R)crit

αsat
max

f=600Hz, T=108K
α s

at

10−12

10−11

10−10

Rb/R
0.4 0.5 0.6 0.7 0.8

FIG. 8: (Color online) R-mode saturation amplitude (red solid
curve) and its low-amplitude analytical approximation (black
dashed curve) as a function of the radius of the quark matter
core R̄b divided by the star radius R in a family of hybrid
stars. For R̄b/R < (R̄b/R)crit ≈ 0.38, damping is too weak
to saturate the r-mode. At R̄b/R & 0.75 the hybrid star is
unstable against gravitational collapse. The mass fraction of
the core is in the range 0.12 . Mcore/Mstar . 0.68 for all the
configurations shown on the red solid curve.

(65) with ε� 1.
Our results have significant implications for astrophys-

ical signatures of exotic high-density phases of matter,
such as quark matter. The observed data for millisec-
ond pulsars is not consistent with the minimal model
of pulsars as stars made of nuclear matter with damp-
ing of r-modes via bulk and shear viscosity [40]. Resolv-
ing this discrepancy requires either a new mechanism for
stabilizing r-modes, or a new mechanism for saturating
unstable r-modes at αsat . 10−8 − 10−7 [40–42]. Pre-
viously proposed mechanisms have problems to achieve
this. Suprathermal bulk viscosity and hydrodynamic os-
cillations both give αsat ∼ 1 [19, 22]. The non-linear cou-
pling of the r-mode to viscously damped daughter modes
could give αsat ∼ 10−6 to 10−3 [23, 43]. The recently pro-
posed vortex/fluxtube cutting mechanism [24] might give
sufficiently small saturation amplitudes but is present
only at sufficiently low temperatures T � Tc . 109 K,
which could be exceeded by the r-mode (and/or accre-
tion) heating [40]. One of the main results of this paper is
that phase conversion dissipation can provide saturation
at the required amplitude to explain millisecond pulsar
data.

Secondly, due to the extremely low r-mode saturation
amplitude of our proposed mechanism hybrid stars would
behave very differently from neutron or strange stars.
As discussed in [40], if the known millisecond sources
were hybrid stars then, for the low saturation amplitudes
that we have found, they would have cooled out of the

r-mode instability region quickly (in millions of years) so
that they would have very low temperatures by now. In
contrast, in neutron stars r-modes would be present and
would provide such strong heating that the temperature
of observed millisecond pulsars would be T∞ ∼ O(105 −
106) K [40]. This prediction assumes a (so far unknown)
saturation mechanism that would saturate the mode at
a value αsat . 10−8 required by the pulsar data. This
temperature is significantly higher than what standard
cooling estimates suggest for such old sources. The same
holds for strange quark stars where the enhanced viscous
damping can explain the pulsar data, but even in this
case the star would spin down along the boundary of the
corresponding stability window which would keep it at
similarly high temperatures. Measurements of or bounds
on temperatures of isolated millisecond pulsars provide
therefore a promising way to discriminate hybrid stars.

Our analysis considered only strangeness-changing
non-leptonic processes when we discussed the hadron-
quark transformation as an example of phase conversion
dissipation. However, there are also leptonic processes
that equilibrate the non-strange neutron-proton or up-
down ratio. For ordinary bulk viscosity in hadronic or
quark matter these processes are only relevant at tem-
peratures far above the temperature of a neutron star
because their rate is parametrically smaller than the
strangeness changing rate discussed here by a factor of
(T/µ)2 [2]. However, leptonic processes might play an
important role in phase conversion dissipation because
hadronic matter has more electrons and up quarks than
quark matter, so, just as for strangeness, there will be
a conversion region behind the moving boundary where
conversion and diffusion of up-ness is occurring. Taking
this into account could change the estimates given here
and should be studied in more detail in the future.

As well as the quark-hadron interface in a hybrid star,
any first-order phase transition that leads to a sharp in-
terface between two phases with different baryon densi-
ties could, via the mechanism discussed here, cause dis-
sipation of global pressure oscillation modes. One pos-
sibility would be different phases of quark matter, per-
haps with different Cooper pairing patterns, such as the
color-flavor locked (CFL) phase, the 2-flavor color su-
perconductor (2SC) or various forms of inhomogeneous
and asymmetric pairing [44], which are all generally con-
nected by first order phase transitions. Because cross-
flavor pairing induces shifts in the Fermi surfaces of
the participating species, different color superconduct-
ing phases will often have different flavor fractions, so
movement of the interface between them requires weak
interactions, as in the case of the quark-hadron interface.
The dissipation mechanism discussed here may therefore
be expected to operate, albeit mildly suppressed by the
smallness of the baryon number density differences be-
tween these phases.

Our discussion was limited to the case of a sharp in-
terface, which is the expected configuration if the sur-
face tension is large enough. If the surface tension is
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small there will instead be a mixed phase region where
domains of charged hadronic and quark matter coexist
[45, 46]. We expect that the phase conversion dissipation
mechanism will operate in this case too, as the domains
expand and shrink in response to pressure oscillations.
However, to estimate this contribution is far more com-
plicated since it requires us to consider the dynamic for-
mation, growth, and merging of these structures, taking
into account the costs and gains due to surface tension
and electric field energy. Such an analysis is far beyond
the scope of this work, but we expect that the dissipation
due to such transformations will be roughly comparable
to the estimates given here. A similar mechanism should
also be relevant for the “nuclear pasta” mixed phases
in the inner crust of an ordinary neutron star. In this
case in addition to the slow beta equilibration processes
there may also be slow strong interaction equilibration
processes, whose rate is suppressed by tunneling factors
for the transition between geometric domains of different
size. This could further enhance the dissipation.

The phase conversion mechanism for damping relies
on the transition between two phases being first order.
If there is a crossover then dissipation due to particle
conversion is described by the standard bulk viscosity.
Examples are the appearance of hyperons in the dense
interior or the crossover from npe to npeµ hadronic mat-
ter, where the conserved particle density is lepton num-
ber instead of baryon number [47]. The conversion is
then not restricted to a thin transition region and par-
tial conversion giving rise to bulk viscosity dissipation
takes place all over the relevant part of the star. The
additional effect, that the size of the region where muons
are present changes as well, is negligible, since the muon
fraction continuously goes to zero. This is also reflected
by the vanishing of the prefactor in the parenthesis of our
general expressions Eq. (12).

In this work, we obtained a reasonable first estimate
of the size of the damping by treating the movement of
the phase boundary in the steady-state approximation
[33], assuming that it can accelerate arbitrarily fast and
that it can move as fast as allowed by general thermody-
namic constraints. In reality the acceleration of the phase
boundary near the turning points of its motion might be
further slowed down by the fact that the steady-state
conversion region has to form, and if it therefore cannot
accelerate fast enough there will be additional dissipation
during this part of the cycle, even if the phase boundary
is eventually fast enough to stay in chemical equilibrium
near the equilibrium position. Our analysis showed that
even being out of chemical equilibrium for only a small
fraction of a cycle causes the system to dissipate a huge
amount of energy, so it is possible that including these
additional acceleration effects may yield an even lower
r-mode saturation amplitude and saturate r-modes even
in stars with small quark cores. Including the realistic
acceleration of the phase boundary will require solving
the full time dependent evolution of the phase conversion
front. Similarly, it is likely that turbulence plays a major

role in the phase conversion, as found in several analyses
[31, 32, 48] of the one-time burning of a (meta-stable)
neutron star. The inclusion of these complications is an
interesting future project.

Appendix A: Angular integral and saturation
amplitude in the subthermal regime

To determine the velocity of the boundary in the
NM→ QM half cycle, we define a dimensionless parame-
ter y(ϕ) ≡ δxb/∆xib with ϕ = ωt, then Eq. (42) becomes(

dy

dϕ

)
N→Q

' AQ

√
ρQ(sinϕ− y)2 + (sinϕ− y) (A1)

where AQ represents an overall amplitude of the speed

AQ =
3

aN

√
DQ

2τQ

(γ − 1)ηQ

(nQ/χ
Q
K)nQ

gbε
N
crit

Ω
√

∆pN
, (A2)

while ρQ is the ratio of suprathermal to subthermal con-
tribution

ρQ =
(γ − 1)∆pN

ηQ(nQ/χ
Q
K)nQ

. (A3)

Similarly in the QM→ NM half cycle Eq. (59) becomes(
dy

dϕ

)
Q→N

' AN

√
ρN(sinϕ− y)2 + (sinϕ− y) (A4)

and the two coefficients are

AN =
3

bQ

√
DN

2τN

(γ − 1)ηN

(nN/χN
K)nQ

gbε
N
crit

Ω
√

∆pN
, (A5)

ρN =
(γ − 1)∆pN

ηN(nN/χN
K)nQ

. (A6)

Combining Eq. (A1) and Eq. (A4), and setting s(ϕ) ≡
sinϕ− y(ϕ) we have

cosϕ− ds

dϕ
=

{
AN→Q

√
ρQs(ϕ)2 + s(ϕ), s(ϕ) > 0,

AQ→N

√
ρNs(ϕ)2 − s(ϕ), otherwise.

(A7)
With the periodic condition (s(ϕ) = s(2π + ϕ)), one can
solve for the full profile of the interface position and con-
tinue to calculate the dissipated energy.

The total dissipation of the r-mode in one cycle of the
oscillation is

W (α) =

π∫
0

2π∫
0

dS(γ − 1)
(∆pN)2

gbεN
crit

V (∆pN) (A8)

where the integral V (∆pN) depends on the velocity of
the boundary in both directions

V (∆pN) ≡
∫ 2π

0

sinϕ
d(sinϕ− s)

dϕ
dϕ (A9)
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and s(ϕ) is the solution to Eq. (A7). In general this
integral can be computed numerically as long as coeffi-
cients A’s and ρ’s in the differential equation Eq. (A7)
are known.

At small oscillation when ∆pN is tiny, however, the
subthermal regime dominates (ρQ, ρN � 1) and Eq. (A7)
can be simplified as

cosϕ−
(

ds

dϕ

)
sub

=

{
AQ

√
s(ϕ), s(ϕ) > 0,

AN

√
−s(ϕ), otherwise.

(A10)

Since both AQ and AN are much greater than 1, to lead-
ing order the analytical solution to Eq. (A10) is

s(ϕ) = Θ(cosϕ) · cos2ϕ

A2
Q

−Θ(− cosϕ) · cos2ϕ

A2
N

(A11)

where Θ is the Heaviside step function. The integral
Eq. (A9) becomes

Vsub(∆pN) =
4

3

(
1

A2
Q

+
1

A2
N

)

=
4

3
∆pN

(
1

∆p̃Q
+

1

∆p̃N

)
(A12)

where

∆p̃Q ≡
9

a2
N

(γ − 1)
DQ

τQ

ηQ

(
gbε

N
crit

)2
nQ

(
nQ/χ

Q
K

) 1

Ω2
, (A13)

∆p̃N ≡
9

b2Q
(γ − 1)

DN

τN

ηN

(
gbε

N
crit

)2
nQ

(
nN/χN

K

) 1

Ω2
. (A14)

At sufficiently low oscillation amplitude , the integral
Vsub(∆pN) is dominated by the term with the smaller
value of A. For the class of models we have analyzed, in
general AQ � AN � 1 (∆p̃Q � ∆p̃N � ∆pN), because
in nuclear matter diffusion is less efficient (DN/DQ ≈
O(10−2)) and weak interactions take more time to pro-
ceed (τN/τQ ≈ O(102)). Therefore the QM→ NM tran-
sition half cycle dominates the dissipation and Eq. (A12)
becomes

Vsub(∆pN)
∆p̃Q�∆p̃N�∆pN−−−−−−−−−−−→ 4

3
∆pN/∆p̃N. (A15)

Performing the angular integral in Eq. (A8) gives the
expression for dissipated power Pdis ≡W · (Ω/2π) at low
amplitude

P sub
dis (α) ≈ α3

15

(
105

756π

)3/2
γ − 1

∆p̃N

(εN
crit)

2Ω7R̄11
b

gbR3
. (A16)

The power emitted by the mode as gravitational radia-
tion is [49]

Pgr ≡

(
dẼ

dt

)
GR

=
217π

3852
α2GM2R6J̃2Ω8 (A17)

The radial integral constant is given by

J̃ ≡ 1

MR4

∫ R

0

ε(r)r6dr (A18)

and its typical value for hybrid stars is ' 2× 10−2.
The saturation amplitude αsat is determined by the

equation

Pdis =

(
dẼ

dt

)
GR

(A19)

Solving Eq. (A19) with Eqs. (A14)-(A18), we obtain the
low-amplitude approximation for αsat

αapprox
sat =

(
222π9/2

33 · 55/2

)
G
D̃N

τN

(
χN

K

)3
nQn3

Nb
2
Q

g3
bM

2J̃2

Ω

R9

R̄11
b

(A20)
where DN ≡ D̃N · T−2 (see Eq. (54)).

Appendix B: Range of validity of the analytical
approximation for the saturation amplitude

To give an estimate for the validity of the analytic ex-
pression for the saturation amplitude, we have to com-
pute Eq. (A11) to NNLO

s(ϕ) = cos2ϕ

[
Θ(cosϕ)

A2
Q

− Θ(− cosϕ)

A2
N

]

+ (4 cos2ϕ sin2ϕ)

(
1

A4
Q

+
1

A4
N

)
+ (−8 cos4ϕ+ 20 cos2ϕ sin2ϕ)

×

[
Θ(cosϕ)

A6
Q

− Θ(− cosϕ)

A6
N

]
+ ... (B1)

in order to obtain the NLO correction to Eq. (A12)

Vsub(∆pN) =
4

3

(
1

A2
Q

+
1

A2
N

)

− 16

5

(
1

A6
Q

+
1

A6
N

)
+ ... (B2)

This yields the correction term to the dissipated power
in the low-amplitude regime

P sub
dis (α) = P0(α) + P1(α) + ... (B3)

where P0 is the previous result Eq. (A16) and the NLO
correction reads

P1(α) = −2α5

105

(
105

756π

)5/2

× γ − 1

(∆p̃N)
3

(εN
crit)

4Ω11R̄17
b

gbR5
(B4)
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The requirement that the analytical approximation for
the saturation amplitude (Eq. (A20)) deviates from the
exact result by less than a fraction ε, i.e. P1(αLO

sat ) 6
εP0(αLO

sat ) yields the bound on the underlying parameters

239π5

31254

G2

(γ − 1)2

gbM
4J̃4Ω6(

εN
crit

)2 (
R

R̄b

)16

6 ε, (B5)

We can see for the set of parameter values on the left-
hand side below ε � 1, Eq. (A20) is a good approxima-
tion. With the EoS we applied in Fig. 8, for R̄b/R = 0.56,
the left-hand side is ≈ 0.04; for R̄b/R = (R̄b/R)crit =
0.38 at α = αmax

sat , it is ≈ 4.
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