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We present the development of high-performance polarized 3He targets for use in electron scat-
tering experiments that utilize the technique of alkali-hybrid spin-exchange optical pumping. We
include data obtained during the characterization of 24 separate target cells, each of which was
constructed while preparing for one of four experiments at Jefferson Laboratory in Newport News,
Virginia. The results presented here document dramatic improvement in the performance of po-
larized 3He targets, as well as the target properties and operating parameters that made those im-
provements possible. Included in our measurements were determinations of the so-called X-factors
that quantify a temperature-dependent and as-yet poorly understood spin-relaxation mechanism
that limits the maximum achievable 3He polarization to well under 100%. The presence of this spin-
relaxation mechanism was clearly evident in our data. We also present results from a simulation
of the alkali-hydrid spin-exchange optical pumping process that was developed to provide guidance
in the design of these targets. Good agreement with actual performance was obtained by including
details such as off-resonant optical pumping. Now benchmarked against experimental data, the
simulation is useful for the design of future targets. Included in our results is a measurement of the
K-3He spin-exchange rate coefficient kK

se = (7.46± 0.62)×10−20 cm3/s over the temperature range
503 K to 563 K.

PACS numbers: 29.25.Pj, 13.60.Hb, 13.60.Fz, 25.30.Bf

I. INTRODUCTION

Nuclear spin-polarized 3He targets have proven to be
exceptionally useful in electron scattering for measure-
ments of spin-dependent observables involving the neu-
tron. This is due to the fact that the ground-state
3He nuclear wave function is dominated by a configu-
ration in which the proton spins are antialigned, and
the spin of the 3He nucleus is, to a good approxima-
tion, given by the spin of its sole neutron. Examples
of the physics investigated using polarized 3He include
the spin structure of the neutron [1], the Q2 dependence
of the generalized Gerasimov-Drell-Hearn (GDH) inte-
gral [2], the electric form factor of the neutron [3], and
single-spin asymmetries in semi-inclusive deep inelastic
scattering (SIDIS) [4]. These experiments, spanning al-
most two decades, have been made possible by significant
advances in the performance of polarized 3He targets.
These advances have been due to both an improved
understanding of the underlying physics of the targets
as well as technological advances including, for exam-
ple, dramatic progress in the capabilities of commercially
available lasers.
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University, Saint Louis, MO 63110
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Spin-exchange optical pumping (SEOP) is one of two
techniques that are widely used to spin polarize 3He for
use as a nuclear target [5–7]. The other technique is
metastability-exchange optical pumping [8, 9], but is not
the subject of this work. First demonstrated in 1960 [10],
SEOP is a two step process in which an alkali-metal
(or “alkali” for short) vapor is polarized using optical
pumping which subsequently polarizes noble-gas nuclei
via spin-exchange collisions [11]. Historically, a pure
rubidium (Rb) vapor was used to polarize 3He for nu-
clear targets. However, both calculations [12] and mea-
surements [13] have shown that potassium (K) is far
more efficient than Rb at transferring its polarization to
3He nuclei. This led to the use of hybrid mixtures of
Rb and K for improving the efficiency of the polarization
process, a technique we will refer to as alkali-hybrid spin
exchange optical pumping (AHSEOP) [14, 15]. In AH-
SEOP, the Rb vapor is still polarized by optical pumping,
but the Rb polarization is then rapidly shared with the K.
The exchange of polarization between Rb and K atoms
is sufficiently fast that the polarizations of the two va-
pors are nearly identical. If the alkali-hybrid mixture is
chosen so that there is significantly more K than Rb, the
spin-exchange efficiency is greatly improved even though
it is still Rb that is being optically pumped. For a given
amount of laser power, the higher efficiency means that
the rate at which 3He is polarized can be significantly in-
creased. The use of AHSEOP has indeed had a dramatic
effect on target performance.

Another factor that greatly improved performance was



2

the introduction of spectrally-narrowed diode lasers [16],
something that for several reasons boosts the maximum
alkali polarization that is achievable and thereby also re-
duces the required laser power. We will discuss in some
detail the impact on target performance of both AH-
SEOP and spectrally-narrowed diode lasers.

In this work, we present data collected while develop-
ing and characterizing 24 glass target cells, each of which
was constructed in preparation for one of four polarized
3He experiments performed in experimental Hall A at
Jefferson Laboratory (JLab) in Newport News, Virginia.
Those experiments included the Small Angle GDH exper-
iment (E97-110, referred to herein as saGDH, which ran
in 2003) [17], a measurement of the electric form factor of
the neutron, GnE , at high Q2 (E02-013, referred to herein
as GEN, which ran in 2006) [3], an experiment to measure
single-spin asymmetries in semi-inclusive deep inelastic
scattering (E06-010, referred to herein as Transversity,
which ran in late 2008 and early 2009) [4], and an ex-
periment to measure the twist three matrix element dn2
(E06-014, referred to herein simply as dn2 , which ran in
2009). In all cases the target cells included two cham-
bers: a pumping chamber, in which the 3He was polar-
ized, and a target chamber, through which the electron
beam passed. The two chambers were connected by a
single “transfer tube” through which the polarized 3He
diffused. All but the target cells made for the saGDH
experiment utilized alkali-hybrid mixtures for improved
performance.

The results presented here document dramatic im-
provement in the performance of polarized 3He targets,
as well as the target properties and operating parame-
ters that made those improvements possible. The data
include the 3He polarization achieved under various oper-
ating conditions, the time constants associated with the
polarization process, and data characterizing the proper-
ties of the target cell itself, such as pressure, the ratio of
K to Rb in the alkali-hybrid mixture, and spin-relaxation
rates that are intrinsic to the cell. In roughly half the cells
studied, we also measured the polarization and density of
the alkali vapor using Faraday rotation techniques. The
results presented here summarize several thousand hours
of data taking, and provide a valuable basis upon which
to design and build the next generation of 3He targets.

In addition to direct measurements of target-cell prop-
erties and target cell performance, it is possible to obtain
a particular derived measurement of a cell property that
is critical to target performance. In 2006, Babcock et
al. reported evidence for a previously unrecognized spin-
relaxation mechanism that limits the polarization when
using SEOP to polarize 3He [18]. This spin-relaxation
mechanism is temperature dependent, and empirically,
appears to be roughly proportional to the alkali den-
sity. The authors thus characterized the newly recog-
nized spin-relaxation mechanism by a dimensionless pa-
rameter referred to simply as X, and showed that the
maximum polarization that can be achieved in a target is
1/(1 +X). The parameter X can vary significantly from

cell to cell, so it was important to us to measure X in
our target cells. We note that in the course of our studies
we have observed what appears to be hints of a tempera-
ture dependence of the X parameter, which would imply
that the temperature dependence of the spin-relaxation
mechanism characterized by X is not exactly the same as
the temperature dependence of the spin-exchange rate, a
possibility that was indeed pointed out by Babcock et al.
in Ref. [18].

An illustration of the improvements that have been
achieved is given by Fig. 1, in which two relevant figures
of merit (FOM) are plotted for five different target cells.
One FOM is the effective luminosity Leff = LP 2

He, where
L is the usual luminosity for a fixed-target experiment
(i.e. the product of beam current, target density, and
interaction length) and PHe is the 3He polarization. The
luminosity L accounts for the actual number of scatter-
ing opportunites per unit time per unit area, whereas P 2

He
accounts for the reduction in the statistical precision of
some polarization-dependant asymmetry that is sought
after. The quantity that currently limits the number of
scattering opportunities in the type of electron scatter-
ing experiments described earlier is the number of tar-
get spins that can polarized per unit time. In order to
quantify the potential effective luminosity of a target, we
define another FOM as LN ≡ N Γs P

2
He, where N is the

total number of 3He atoms in the target, and Γs, defined
by Eqn. (43), is a rate that characterizes the buildup of
polarization. Fig. 1 suggests that the target Antoinette
could tolerate even higher luminosities than have already
been achieved, although this particular target was never
used in beam. Most of the data used to construct Fig. 1
can be found in Sections III and IV. [51]
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FIG. 1: (color online) Shown are two figures of merit (FOM)
for five polarized 3He targets. The solid circles (left-hand
scale) indicate the luminosity weighted by 3He polarization
squared (P 2

He) achieved in beam. The shaded columns (right-
hand scale) show a FOM proportional to the total number
of spins polarized per second, again weighted by P 2

He. The
target labeled E142 was used during the experiment reported
in Ref. [1]. The other targets are described in some detail in
this paper. The scales have been normalized so that the two
FOMs have the same height for the cell marked E142.
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We note that the large values of LN observed in cells
such as Antoinette, suggesting untapped potential, in-
spired the development of a new style of target cell, de-
scribed recently by Dolph et al. [19], in which gas trans-
fer between the pumping and target chambers is accom-
plished much more rapidly by using convection instead
of diffusion. Faster gas transfer is desirable because in
experiments such as Transversity (which used the cell
“Astral” in Fig. 1) the high luminosity caused signifi-
cant “polarization gradients” (∼ 10% relative) between
the pumping and target chambers. Without convection-
based targets, the polarization gradients in several future
approved experiments would be significantly more severe.

We begin in Section II by discussing the theory and
rate equations underlying alkali-hybrid optical pumping,
and a computer simulation that guided us in designing
our targets. The simulation, which incorporates several
important effects that influence the “photon demand” in
our targets, provides a fairly realistic description of the
optical pumping process, and insight regarding how to
best optimize performance. It clearly shows, for exam-
ple, the optimal range for the ratio of the K to Rb num-
ber density and the relationship of laser power & spec-
tral width to target performance. The simulation also
provides a valuable link between the “line-averaged” al-
kali polarization, which we accessed experimentally, and
the “volume-averaged” alkali polarization, which is the
important quantity in determining the 3He polarization.
In Section III, we describe our experimental methods
for both the construction of our target cells, including
how we prepare alkali-hybrid mixtures, and our measure-
ments. In Section IV, we present data on target perfor-
mance and compare the observed trends to those evident
in our simulations. In Section V, we use our data to
extract a value of the rate constant that quantifies K-
3He spin exchange. In Section VI, we present our studies
of the 3He polarization-limiting spin-relaxation mecha-
nism that is characterized by the parameter X.

II. THEORY AND SIMULATIONS

The spatial and spectral profile of the light used for
optical pumping is modified nonlinearly as it propagates
through the alkali vapor. When insufficient laser in-
tensity or spectrally broad lasers are used for optical
pumping, the optical pumping rate and, consequently,
the alkali polarization can vary dramatically through-
out the pumping chamber. Ultimately, because the
spin-exchange rate is relatively slow compared to the
3He diffusion rate, the 3He polarization depends only on
the volume-averaged alkali polarization. A computer
simulation was developed to better understand the in-
fluence of the various factors on the alkali polarization.
We describe the underlying theory, simulation, and re-
sults below.

A. Alkali-Hybrid Optical Pumping

In what follows, the two main simplifying assumptions
are (1) the alkali nuclear spin is fully conserved during
the optical pumping cycle and (2) the alkali excited state
multipole moments are zero. Violations of these assump-
tions are discussed in Sec. II D. Under these two assump-
tions, the density matrix of the alkali vapor is described
by the ground state & excited state populations of the
optically pumped alkali species and the ground state po-
larizations of the two alkali species. The coupled differen-
tial equations that describe the time dependence of these
quantities are:

ṗ = sR01 − p
[
R01 +

1

τp0
+ Γq + Γm

]
+ dΓ′m − sPRbR1

(1)

ḋ = sR02 + pΓm − d
[
R02

2
+

1

τd0
+ Γ′q + Γ′m

]
+
sPRbR2

2
(2)

˙(sPRb) = s

[
R1(1−X ′a)− R2

2

]
− pR1 +

dR2

4
− sPRb (R01(1 +Xa) +R02 + ΓRb + kK[K]) +Ase[K] (PK − sPRb) (3)

ṖK =

[
K1 −

K2

2

]
− PK (K0 + ΓK + k′Rb[Rb]) +Ase[Rb] (sPRb − PK) (4)

where s = 1−p−d is the population of the 5S1/2 ground
state of Rb, p (d) is the population of the 5P1/2 (5P3/2)
excited state of Rb, PRb (PK) is the Rb (K) ground state
polarization, R01 & R02 (K01&K02) are the Rb (K) D1 &
D2 unpolarized optical-pumping rates, R1 & R2 (K1 &
K2) are the Rb (K) D1 & D2 polarized optical-pumping
rates, K0 = K01 + K02 (R0 = R01 + R02) is the to-

tal K (Rb) unpolarized optical-pumping rate, τp0 (τd0) is
the natural radiative lifetime of the 5P1/2 (5P3/2) excited
state, Γq (Γ′q) is the N2 nonradiative quenching rate of
the 5P1/2 (5P3/2) excited state, Γm (Γ′m) is the transfer
rate from the 5P1/2 (5P3/2) state to the 5P3/2 (5P1/2)
state, ΓRb (ΓK) is the Rb (K) spin relaxation rate due
to collisions with other Rb (K) atoms, 3He atoms, &
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N2 molecules, kK (k′Rb) is the Rb (K) spin relaxation
rate constant due to collisions with K (Rb) atoms, and
Ase is the Rb-K spin-exchange rate constant. We have
also allowed for the possibility of additional light-induced
spin relaxation mechanisms by including the Xa & X ′a

terms. Sources of these terms, which we refer to as “al-
kali X-factors,” and their consequences are discussed in
Sec. II D. The equilibrium alkali polarizations, explicitly
assumed to be unequal, are found by solving Eqns. (1)–
(4) to give:

sPRb =
R1(1−X ′a)−R2/2−Apd + ηKD{K1 −K2/2}

R01(1 +Xa) +R02 +Bpd + ΓRb + kK[K] + ηKD{K0 + ΓK + k′Rb[Rb]} (5)

PK =
K1 −K2/2 + (ηRb/D){R1(1−X ′a)−R2/2−Apd}

K0 + ΓK + k′Rb[Rb] + (ηRb/D){R01(1 +Xa) +R02 +Bpd + ΓRb + kK[K]} (6)

where D = [K]/[Rb] is the ratio of the K to Rb vapor
number densities, ηRb (ηK) is the Rb (K) spin-exchange
efficiency with respect to collisions with K (Rb) atoms,
and Apd & Bpd are terms that arise due to the nonzero
excited state populations of Rb.

We model the laser light as an incoherent mixture of
right-circular (R) and left-circular (L) polarized photons
with fluxes given by ΦR(~r, ν) and ΦL(~r, ν), where ~r is
the location inside the cell and ν is the frequency. In
this case, the polarized optical pumping rate An for the
Dn transition and the total unpolarized optical pumping
rate A0 = A01 +A02 for alkali species A are:

An(~r) =
∫∞

0
[ΦR(ν)− ΦL(ν)] cos(θ)σA

n (ν) dν (7)

A0(~r) =
∫∞

0
[ΦR(ν) + ΦL(ν)]

[
σA

1 (ν) + σA
2 (ν)

]
dν (8)

where the factor cos(θ) = k̂·B̂0 is due to the “skew” angle

θ between the laser propagation direction k̂ & the mag-

netic field orienting the spins ~B0. The absorption cross
section for the Dn transition in the pressure-broadened
limit for alkali species A is:

σA
n (ν) = πrecfn

[
Γn/(2π)

∆2
n + Γ2

n/4

]
g (2π∆nTd) (9)

where re is classical electron radius, c is the speed of light
in vacuum, fn is the oscillator strength of the transition,
Γn is the pressure-broadened absorption linewidth, and
∆n = ν−νn is the detuning from the pressure-shifted line
center (νn). As will be described more fully in Sec. II D,
the function g(x) and the parameter Td describe how the
absorption lineshape is modified from that of a simple
Lorentzian due to buffer gas collisions [20, 21]. If Td =
0 ps, then g(0) = 1 and the absorption lineshape is simply
Lorentzian.

The “pure” alkali spin relaxation rates (i.e. due to
collisions not involving the other alkali species) are:

ΓRb = kRb[Rb] + kHe[3He] + kN2
[N2] + ΓRb

se (10)

ΓK = k′K[K] + k′He[3He] + k′N2
[N2] + ΓK

se (11)

where ΓA
se = kA

se[3He] is the spin-exchange rate from
3He to alkali species A and we’ve ignored the fact that
spin exchange with 3He is spin relaxing only to the extent
that the 3He polarization is less than the alkali polar-
izations. The alkali-alkali spin exchange efficiencies are
given by:

ηRb =
Ase[K]

Ase[K] +R0 + ΓRb + kK[K]
(12)

and

ηK =
Ase[Rb]

Ase[Rb] +K0 + ΓK + k′Rb[Rb]
. (13)

The equilibrium populations of the Rb excited states are:

p =
τp
a

{
R01 +R02Mdτd − sPRb

[
R1 −

R2Mdτd
2

]}
and (14)

d =
τd
a

{
R01Mpτp +R02 − sPRb

[
R1Mpτp −

R2

2

]}
(15)

where the effective lifetimes & mixing rates are:

τp = 1/ (1/τp0 + Γq + Γm + 2R01) , (16)

τd = 1/
(
1/τd0 + Γ′q + Γ′m + 3R02/2

)
, (17)

Mp = Γ′m −R01 , (18)

Md = Γm −R02 (19)

and a = 1 − (Mpτp)(Mdτd). Finally, the terms in the
equilibrium alkali polarization due to these excited state
populations are:

Apd =
τp
a

[
2R1 −

R2

2

]
[R01 +R02(Mdτd)]

+
τd
a

[
R1 −

3R2

4

]
[R01(Mpτp) +R02] (20)

and

Bpd =
τp
a

[
2R1 −

R2

2

] [
R1 −

R2(Mdτd)

2

]
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+
τd
a

[
R1 −

3R2

4

] [
R1(Mpτp)−

R2

2

]
. (21)

These terms, which account for stimulated emission, are
only important when the optical pumping rates start lim-

iting the excited state lifetimes (i.e. τp ≈ 1/R01 and
τd ≈ 1/R02).

The attenuation of the photon fluxes as the light propagates through the polarized alkali vapor is given by:[
1

Φ(ν)

dΦ(ν)

dz

]
R,L

= −[Rb]

{
(s− p∓ sPRb cos(θ))σRb

1 (ν) +

(
s− d

2
± sPRb cos(θ)

2

)
σRb

2 (ν)

}
−[K]

{
(1∓ PK cos(θ))σK

1 (ν) +

(
1± PK cos(θ)

2

)
σK

2 (ν)

}
(22)

where the upper (lower) sign corresponds to right-circular (left-circular) polarized photons.

B. Overview of Simulation

Due to the high buffer gas pressures in the targets de-
scribed in this work, the alkali diffusion rate is very slow
compared to the alkali polarization rate. This implies
that the local alkali polarization is dependent only on
the local photon flux [22] and we can safely ignore the
effect of diffusion far from the chamber walls. In this
case, the simulation is simply a numerical integration
of Eqn. (22) over a discretized path through the pump-
ing chamber. Assuming azimuthal symmetry, a spherical
pumping chamber is divided into 100 radial bins from
the center of the cell to the top of the cell, each with
a different path length. The path for each radial bin is
divided into z-slices with a thickness of 100 µm, which is
chosen as a delicate balance between computational time
and accuracy. The initial flux of right- & left- circular
polarized photons is given by:

ΦR,L(r, z = 0, ν) =

N∑
k=1

Φk0(r, ν)

[
1± P kγ

2

]
(23)

where the sum is over a total of N lasers, r is the radial
distance from the center of the cell, z is the depth into the
cell, and P kγ & Φk0 are the polarization & total photon flux
from the k-th laser. Initially (at z = 0) the photon flux
from the k-th laser is assumed to have Gaussian spectral
and transverse spatial profiles given by:

Φk0 =

(
2P k0 /(hν)

πw2
k(σkγ
√

2π)

)
exp

[
−2r2

w2
k

− (ν − νkγ )2

2(σkγ)2

]
(24)

where the P k0 is the laser power, h is the Planck con-
stant, wk is the beam radius, νkγ is the central laser fre-

quency, σkγ = FWHMk/
√

8 log(2), and FWHMk is the full-
width half maximum of the laser spectrum. The atten-
uation of this incident photon flux due to a completely
unpolarized “diffusion” layer of alkali vapor [6, 23] at the
inner front surface of the pumping chamber is given by
exp(−σRb

1 (ν)[Rb]
√

2DRb/R1) [11] where DRb is the Rb

parameter value units

[3He]pc 6.5 amg
[N2]/[3He] 0.01
1/γse 3 hrs

D
0 (pure)

6 (hybrid)
2Rpc 3 in
w/Rpc 1
P0 75 W

FWHM
0.2 (narrowband) nm
2.0 (broadband) nm

Pγ 0.99
θ 3 deg
Td (Rb D1) −0.19 ps
Td (Rb D2) +0.10 ps
Td (K D1) +0.10 ps
Td (K D2) +0.10 ps

TABLE I: Baseline Input Parameters to the Simulation. The
cell diameter is given by 2Rpc. The laser spectrum is taken
to be centered on the pressure-shifted Rb D1 absorption line
center.

diffusion constant in 3He. The spectral profile of the laser
is binned by helicity and divided into 3000 frequency bins
that represent a ±1500 GHz (±3.2 nm) window centered
at the Rb D1 pressure-shifted line center. At the begin-
ning of each z-slice, the optical pumping rates are calcu-
lated using the attenuated photon flux from the previous
z-slice. These rates are then used to calculate the alkali
polarizations for the current z-slice, which are then used
to further attenuate the photon flux. Finally, the volume
averaged alkali polarization is calculated by weighting the
polarization in each radial bin & z-slice by the fractional
volume of that bin-slice.

The baseline parameters used in the simulation listed
in Tab. I were chosen to be representative of typical oper-
ating conditions during one of the experiments for which
the target cells were originally built. The laser power
listed in the table, 75 W, is the amount actually inci-
dent on the pumping chamber. This value might be a
bit optimistic since, in a practical situation, we have ob-
served that an optical transport system can easily result
in as much as a 50% loss of power by the time the beams
reach the pumping chamber. In order to make fair com-
parisons, all of the calculations were done at constant
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parameter Rb K/Rb units
D 0 6 -
D′ 0 4.58 -
[Rb] 13.7 2.46 1014/cm3

Top 210 260 oC
ΓRb 1.08 0.692 kHz
ΓK - 0.202 kHz
2k̄sd[Rb] - 0.107 kHz
1/ηse 92.0 58.8 -
1/η′se - 22.5 -
〈1/ηse〉 92.0 29.0 -
1/ηahse 92.0 38.8 -
ΓA 1.08 2.55 kHz

TABLE II: Alkali Spin Relaxation Rates and Spin Exchange
Efficiencies. Values are calculated using the baseline input
parameters for pure Rb and K-Rb alkali-hybrid SEOP. Al-
though the effective alkali spin relaxation rate ΓA is higher
for AHSEOP, the alkali-3He spin exchange efficiency is much
higher.

parameter BB NB units
FWHM 2.0 0.2 nm

ΓRb
1 0.27 same nm
R01 103 459 kHz
100R02/R01 0.374 0.083 -
100K01/R01 0.062 0.014 -
100K02/R01 0.133 0.030 -
Ase[Rb] 249 same kHz
Γp,Γ′p 110,495 same GHz

Γm,Γ′m 3.73,1.77 same GHz
Γq ,Γ

′
q 0.515,0.383 same GHz

ηRb 0.935 0.765 -
ηK 0.998 0.998 -
p 5.42 11.9 ppm
d 9.49 20.5 ppm

TABLE III: Optical Pumping and Excited State Parame-
ters. Values are calculated using D = 6 baseline parame-
ters for broadband (BB) and narrowband (NB) lasers at the
front/center (z = r = 0) of the cell.

spin-exchange rate γse, where γse is the rate at which
3He nuclei are being polarized through collisions with
alkali-metal atoms. The alkali densities and the operat-
ing temperature are calculated from the alkali-3He spin-
exchange rate and D using the following equation:

γse = kse[Rb] (1 +D′) (25)

where D′ = DkK
se/k

Rb
se is the alkali-3He spin exchange

rate ratio. To provide a sense of scale, the various rates
are listed in Tables II & III using the baseline parameters
for both pure Rb and K-Rb vapors and also both narrow-
band and broadband light. The rate constants and cross
sections, along with their estimated temperature depen-
dences, used to calculate these rates can be found in Ap-
pendix D of [24]. Finally, the 3He polarization is sen-
sitive to the polarization-weighted alkali spin exchange
rate given by:

〈PA〉 γse ≡ 〈sPRb〉pc k
Rb
se [Rb] + 〈PK〉pc k

K
se[K] (26)

where 〈· · ·〉pc refers to a volume average over the pump-

ing chamber and the quantity 〈PA〉 is the main result
obtained from the simulation.
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FIG. 2: (color online) Alkali Polarization vs. K to Rb Density
Ratio D. NB (BB) refers to a narrowband laser with 0.2 nm
(2.0 nm) linewidth. The optimal ratio for the NB (BB) laser
considered is approximately 7 (5).

C. Optimization of the K to Rb Density Ratio

Some of the important trends associated with alkali-
hybrid optical pumping are clearly evident in Fig. 2
which shows volume-averaged alkali polarization, 〈PA〉,
as a function of the ratio D. As one begins adding
K to the alkali mixture, for a fixed amount of laser
power (P0 = 75 W) and a fixed spin-exchange rate
(γ−1

se = 3 hrs), 〈PA〉 sharply rises. As the ratio D gets
sufficiently large, however, 〈PA〉 starts to roll over and
decrease. The optimal ratio appears to be 6± 1 which is
consistent with the range 5 ± 2 we report in Sec. IV A.
This can be compared to the optimal range 4 ± 2 ob-
served by Chen et al. [25], which was for a different set
of operating conditons such as lower 3He densitiies. It is
not difficult to understand some of the dominant factors
that influence these features in the D dependence.

When both alkali-alkali spin exchange efficiencies are
nearly unity ηRb, ηK ≈ 1, which as can seen from Tab. III
is not too far from the case, the effective alkali spin re-
laxation rate due to collisions can be written as:

ΓA = ΓRb +D
{

ΓK + 2k̄sd[Rb]
}

(27)

where k̄sd = (kK + k′Rb)/2 is the mean Rb-K spin relax-
ation rate constant. Although ΓK is significantly smaller
than ΓRb due to the greater spin-exchange efficiency of
K, its effect on the effective alkali spin-relaxation rate
is enhanced due to D. Ignoring all but the most dom-
inant terms in Eqns. (5) & (6), we can write the alkali
polarization in the following more familiar form:

PRb = PK = PA =
R1

R01 + ΓA
. (28)

It is clear from Eqn. (27), however, that ΓA becomes ar-
bitrarily large as D is increased, increasingly limiting the
alkali polarization PA, and causing much of the roll off
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evident in Fig. 2. We note that there are additional fac-
tors that contribute to this roll off that will be discussed
in the next section.

The fact that ΓA becomes larger for any nonzero value
of D almost leaves us wondering where the benefits lie
of having D > 0. Indeed, at the very front of the cell,
the alkali polarization will be ever so slightly lower for
any value of D greater than zero. The benefits, however,
arise as the laser beam propagates through the cell. The
“photon demand,” the number of photons per second re-
quired to maintain a given alkali polarization throughout
the pumping chamber, is proportional to [Rb], which for
a fixed spin-exchange rate, is proportional to 1/(1 +D′).
With less Rb to absorb the light, it takes fewer photons
to keep the entire alkali vapor polarized. This makes it
possible for the laser to penetrate further into the sample
without significant decrease in intensity, thus causing the
sharp rise in 〈PA〉 as K is added to the alkali mixture.
We discuss this argument in more detail in Sec. II E.

D. The Alkali X-Factors

It is now well documented that much more laser power
is required to achieve good performance than most sim-
ple optical pumping simulations suggest [15, 25, 26].
For this reason, every attempt was made to relax as
many assumptions as possible in deriving the equations
of Sec. II A that are used in our simulation. As a result,
this simulation includes (1) the full solution to the cou-
pled alkali-hybrid polarization equations, (2) the effect
of off-resonant absorption by the Rb D2 & K Dn lines
with realistic absorption lineshapes, (3) radiation trap-
ping, which is included “by hand” by using the factors
Xa & X ′a, (4) skew optical pumping [27], and (5) effects
associated with nonzero excited state populations. The
role of each of these effects, which until recently [28, 29]
have not been included in most optical pumping simula-
tions, can be understood by generalizing Eqn. (28):

PA =
2ΛR01(1−X ′A)

2ΛR01(1 +XA) + ΓA
(29)

where Λ is the probability of an electron spin flip (or
equivalently the amount of angular momentum gained
by the atom) per optical pumping cycle, XA & X ′A are
the total polarization independent & dependent alkali X-
factors respectively, and we have again assumed that the
alkali-alkali spin exchange efficiencies are nearly unity.
In other words, Eqn. (29) is equivalent to Eqns. (5) &
(6) when ηRb = ηK = 1 and the effects of off-resonant
pumping, radiation trapping, skew optical pumping, and
nonzero excited state populations are encoded by the pa-
rameters Λ, XA, & X ′A.

Before moving on to the main discussion, we would
like to point out the importance of the assumption that
ηRb, ηK ≈ 1. In the infinite laser power limit, when the
optical pumping rates overwhelm the alkali-alkali spin
exchanges rates (R0 � Ase[K] and K0 � Ase[Rb]), we

see from Eqns. (12) & (13) that ηRb & ηK approach zero
and the alkali polarizations in Eqns. (5) & (6) become
uncoupled (PRb 6= PK). Because we typically pump with
laser light tuned to the Rb D1 transition, the uncoupled
alkali polarizations in this case become PRb ≈ 1 and
PK ≈ 0. Therefore it is understood that the “infinite
laser power limit” invoked in the following discussions of
the limiting alkali polarization is really the “very high
laser power limit” such that ηRb, ηK ≈ 1.

It is natural to expect that at very high laser intensi-
ties (i.e. high optical pumping rates: R01 � ΓA), the al-
kali polarization asymptotically approaches unity. How-
ever, this is only true if there are no alkali spin-relaxation
mechanisms that scale with the laser intensity. In anal-
ogy to the 3He X-factors mentioned earlier, we find that
the alkali X-factors prevent the alkali polarization from
saturating at unity in this limit:

PA =
1−X ′A

1 +XA + ΓA/(2ΛR01)
→ P∞ =

1−X ′A
1 +XA

(30)

We are now in a position to discuss the sources, relative
sizes, and importance of the Λ, XA, and X ′A terms.

First we’ll consider violations of the assumptions made
at the beginning of Sec. II A, which, if perfectly true, are
equivalent to 2Λ = 1. Because the excited state hyperfine
coupling precession period (1 ns) is long compared to the
excited state electron disorientation rate (0.01 ns), very
little of the angular momentum that is stored by the nu-
clear spin is lost to the electron while in the excited state
[30]. Recently, Lancor & Walker [28] have argued that
this lowers the average amount of angular momentum
gained per optical pumping cycle and, under conditions
typical in target cells, we find 2Λ ≈ 1− 10−2. The effect
of nonzero multipole moments in the excited state is dis-
cussed in Ref. [24] and it was shown that 2Λ ≈ 1− 10−3.
In summary, these two effects are quite small, increase
the photon demand by at most a percent, and do not
ultimately limit the alkali polarization.

Nonzero values of XA & X ′A, on the other hand, do
limit the ultimate alkali polarization. As a consequence,
the transparency of the polarized alkali vapor is reduced,
and, as will be discussed more in the next section, even a
small alkali X-factor can significantly increase the pho-
ton demand. Although off resonant absorption and skew
pumping are already contained in Eqns. (5) & (6), it is
useful to describe them in the form of alkali X-factors
so that their sizes can be compared with other alkali
polarization-limiting factors.

Off resonant absorption of light by D2 transitions is
detrimental because optical pumping of the D2 transi-
tions pushes the equilibrium alkali polarization towards
−0.5 as opposed to +1.0 for D1 transitions. This sit-
uation is made worse by the fact that collisions with
3He create short lived alkali-3He quasi-molecules that en-
hance the off-resonant cross section relative to a simple
Lorentzian lineshape. Assuming a van der Waals poten-
tial between the alkali atom and 3He, Walkup et al. [21]
have shown that this enhancement, far off resonance, is
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source Narrowband Broadband scaling
100 〈XA +X ′A〉pc 100 〈XA +X ′A〉pc

K D2 absorption 0.29 4.0 D[3He](1+n)FWHM(1−n)

Rb D2 absorption 0.13 1.9 [3He](1+n)FWHM(1−n)

radiation trapping 0.35 0.9 1/[N2]
skew pumping 0.14 0.1 θ2

total 0.91 6.9
〈P∞〉pc 0.99 0.93

TABLE IV: Estimates for Alkali X-Factors. For a narrowband (broadband) laser, n = 1 (n = 0) and the linewidth is given by
FWHM = 0.2 (2) nm. Under our typical laser powers, the effect of stimulated emission (X ′A ≈ 10−5) can be safely ignored.

described by

g(2π∆Td) =
π
√
|2π∆Td|

6× 0.3380
(31)

where ∆ is the detuning of the laser frequency from the
line center of the off resonant transition and Td can be
thought of as the effective lifetime of the quasi-molecule.
This Td parameter quantifies the degree to which the
lineshape is modified and is possibly detuning-dependent.

In order to better understand the limits imposed solely
by off resonant optical pumping, we express the limiting
alkali polarization as:

P∞(ν) =
1− [σ2

Rb(ν) +Dσ2
K(ν)]/[2σ1

Rb(ν)]

1 + [σ2
Rb(ν) +Dσ2

K(ν)]/σ1
Rb(ν)

(32)

where we’ve assumed pumping with perfectly monochro-
matic light with frequency ν.

Measurements by Romalis et al. [20] and more re-
cently by Lancor et al. [31–33] indicate that |Td| is of
order 0.1 ps for alkali-3He collisions. Using this value,
we find that (3σ2

A)/(2σ1
Rb) ≈ 10−3 and consequently

(3Dσ2
A)/(2σ1

Rb) = 1 when D ≈ 103. This D scaling of
the K D2 off resonant absorption helps explain both the

calculated roll off discussed in Sec. II C and the observed
drop in P∞ with increasing D reported in Ref. [15]. Using
the Walkup parameterization is a simple & alternative
way to account for the effect of off resonant absorption,
which was first pointed out in Ref. [31]. We justify the
use of this approach because it reliably reproduces the
measured values of P∞ as function of ν for a pure Rb
cell reported in Ref. [32], when we set Td = 0.3 ps for Rb
D2. Finally, the benefits of pure K & Na SEOP are also
limited by off resonant absorption by the D2 lines, where
(3σ2

A)/(2σ1
A) ≈ 0.01 & 0.1 respectively.

The largest effect associated with nonzero excited state
populations is radiation trapping. There is a probabil-
ity of a few percent that an excited alkali atom will not
be quenched due to collisions with N2 and therefore will
reradiate a photon. This photon is only partially po-
larized and its reabsorption by a neighboring Rb atom
appears as a spin relaxation mechanism. The N2 also
mixes the fine structure states very efficiently, so that
both D1 and D2 light is emitted. The simple model
used for the calculation of Xa & X ′a due to this reemis-
sion/reabsorption process in a spherical pumping cham-
ber is described in Ref. [24].

The typical size of each of these mechanisms, averaged
over the pumping chamber volume, for the baseline pa-
rameters for a hybrid cell (with D = 6) are listed in
Tab. IV. It can be seen that off resonant absorption is
usually the dominant alkali X-factor and it is about an
order of magnitude larger than the values at the front
of the pumping chamber listed in Tab. (III). This is
because the on-resonant optical pumping rate decreases
more quickly than the off resonant optical pumping rates
as the the light travels through the cell. As can be seen in
Fig. 3, a narrowband laser (FWHM = 100 GHz) is far less
sensitive to the deleterious effects of off-resonant pump-
ing than a broadband laser (FWHM = 1000 GHz). The
quantity 〈P∞〉 depicted as blue triangles in this figure
is simply Eqn. (32) averaged over a Gaussian spectral
lineshape. It is not too surprising that a laser linewidth
that is about the size of the Rb absorption linewidth

(0.27 nm = 130 GHz for [3He] = 6.5 amg) is sufficiently
narrow to take full advantage of narrowband pumping.

E. Estimating the Photon Demand

To fully polarize the entire alkali vapor, there must
be a sufficiently high intensity of laser light to overcome
the alkali spin relaxation rate throughout the pumping
chamber. There are two main things to consider in order
to satisfy this condition. First, the transverse intensity
profile of the laser beam must be chosen carefully in order
to ensure that enough light is incident across the face of
the pumping chamber [34]. To achieve this for a spherical
pumping chamber, we’ve found that the optimal beam
radius of the laser light is about equal to the inner radius
of the pumping chamber.
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FIG. 3: (color online) Alkali Polarization vs. Laser Linewidth.
The red circles indicated the volume averaged alkali polariza-
tion under realistic conditions using the baseline parameters
for a hybrid cell. The blue triangles indicate the best case al-
kali polarization averaged over a Gaussian spectral lineshape
assuming ΓA = 0.

Second and more challenging is ensuring that enough
laser power is transmitted to the back of the pumping
chamber. Because there is always some nonzero alkali
spin relaxation, the laser beam is attenuated as it prop-
agates through the alkali vapor. As mentioned earlier,
the amount of laser light absorbed by the vapor per unit
time is referred to as the “photon demand.” To estimate
this photon demand, we first rewrite Eqn. (22) in the
following way:[

1

Φ

dΦ

dz

]
= −σRb

1 [Rb]
{

(1 +Xγ)− PA(1−X ′γ)
}

(33)

where Xγ & X ′γ describe alkali polarization independent
& dependent light absorption mechanisms such as off-
resonant pumping. These so-called “photon X-factors”
ruin the transparency of the alkali vapor even with unity
alkali polarization. The photon demand ∆P is found by
integrating this equation over all laser frequencies and
over the pumping chamber volume, and, after rewriting
[Rb] in terms of the spin exchange rate and ΓA in terms
of the alkali spin-exchange efficiencies, we find:

∆P

94 W
=

[
2Rpc

7.62 cm

]3 [
γse

1/(3 hrs)

] [
[3He ]

6.5 amg

] [
0.01

ηop

]
.

(34)
The optical pumping efficiency ηop is the ratio of the
number of 3He nuclei polarized to the number of photons
absorbed and, assuming a narrowband laser and small
photon & alkali X-factors, it is given by:

1

ηop
=

1

ηahse
+
R01

ΓRb
se

[
Xγ +X ′γ +XA +X ′A

1 +D′

]
. (35)

The alkali-hybrid spin-exchange efficiency ηahse is the ra-
tio of the number of alkali-3He spin exchange collisions
to the total number of collisions that result in the loss of

alkali polarization and it is given by:

1

ηahse
=

〈
1

ηse

〉
+

(kK[K]/ΓRb
se ) +D′(k′Rb[Rb]/ΓK

se)

1 +D′
(36)

where the first term is given by:〈
1

ηse

〉
=

1/ηse +D′/η′se
1 +D′

(37)

and the “pure” efficiencies are ηse = ΓRb
se /ΓRb and η′se =

ΓK
se/ΓK. It is apparent by examining these last two equa-

tions that ηahse is essentially the alkali density weighted
average of the individual alkali-3He spin exchange effi-
ciencies taking into account Rb-K collisions. To lowest
order, the photon & alkali X-factor sum in the numerator
of the last term in Eqn. (35) is given by:∑

X =
3(DK02 +R02)

R01
+Xa +X ′a + θ2 (38)

where off resonant absorption & skew pumping con-
tribute to both the photon and alkali X-factors.

To put the impact of AHSEOP and narrowband lasers
on the laser power requirement on a more quantitative
footing, we will use the quantities listed in Tabs. I, II,
& III throughout the following discussion. We start by
requiring that the alkali polarization at the back of the
pumping chamber be 0.98. For ΓA = 1.5 kHz, this can
be accomplished with 54 W of broadband light or 12 W
of narrowband light. Now we will estimate the photon
demand under different scenarios and compare these es-
timates with the results of the full simulation depicted in
Fig. 4.

For the first scenario, we consider pure Rb SEOP (D =
0) and ignore all photon & alkali X-factors (

∑
X = 0).

Using ηop = ηse = 0.011, we find that the photon de-
mand is 86 W. The total estimated laser power require-
ment is 125 W of broadband light or 95 W of narrow-
band light. We now turn our attention to the top panel
of Fig. 4 which shows the alkali polarization as a func-
tion of depth into the cell at the center of the pump-
ing chamber for 75 W. First, we note the difference in
the alkali polarization profile between narrowband and
broadband pumping. This is because narrowband lasers
have a higher density of photons at the absorption cross
section of the Rb D1 line, which results in about a fac-
tor of 5 higher optical pumping rate. This means that
as the laser penetrates the vapor, the alkali polarization
will be very high, until a sharp cut off when the opti-
cal pumping rate quickly drops to zero. In other words,
where there is narrowband light, there is very high and
uniform alkali polarization. It appears that indeed 75 W
of narrowband light is enough to keep the alkali vapor
highly polarized throughout the pumping chamber (i.e.
cell depth < 7.6 cm), whereas 75 W of broadband light
is clearly not enough.

Unfortunately, photon & alkali X-factors as small as
0.01 significantly reduce the optical pumping efficiency
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FIG. 4: (color online) Alkali Polarization vs. Depth into
Pumping Chamber. The red (blue) curve is NB (BB) which
refers to a narrowband laser with 0.2 nm (2.0 nm) linewidth,
where the corresponding numbers are the line-averaged polar-
ization to the end of the cell (dashed line). (a) Pure Rb SEOP
with no alkali X-factors. (b) Pure Rb SEOP with nonzero al-
kali X-factors. (c) AHSEOP with nonzero alkali X-factors.
The upper (lower) values for

∑
X is the average value at the

front of the cell for narrowband (broadband) pumping.

because, under our conditions, R01/Γ
Rb
se ≈ 104. The

observation that indeed many more photons were being
absorbed than expected based on the measured spin ex-
change efficiency (i.e. ηahse < ηop) was first made in
a remarkable paper by Babcock et al. [15]. We now
consider pure Rb SEOP under this more realistic sce-
nario of nonzero photon & alkali X-factors. Although∑
X is much smaller for narrowband pumping, the ratio

R01/Γ
Rb
se is larger for narrowband pumping by almost the

same amount. Consequently, we find that ηop = 0.0025
for both narrowband & broadband pumping and the pho-
ton demand is more than quadrupled to 380 W. The to-

tal estimated laser power requirement is now 410 W of
broadband light or 400 W of narrowband light. Both of
these are well above the 75 W used to generate the middle
panel of Fig. 4. Unsurprisingly, the laser light only pen-
etrates about half way into the cell for both narrowband
and broadband pumping.

Finally, we consider AHSEOP with D = 6 and find
that ηop = 0.008 and the photon demand is significantly
reduced to 88 W. The total estimated laser power re-
quirement is now 180 W of broadband light or 100 W of
narrowband light. The estimated narrowband power is
more than the 75 W used to generate the bottom panel
of Fig. 4. In both cases, the laser light is able to pene-
trate past the end of the pumping chamber, but the alkali
polarization is only very high with the narrowband light.

In order to better account for the photon demand,
we’ve had to introduce both alkali X-factors in Eqn. (29)
and photon X-factors in Eqn. (33). As has been demon-
strated, these terms collectively result in extra light ab-
sorption that significantly increases the photon demand.
We have made every effort to include all that is known
in calculating these terms. Although we may have not
accounted for every mechanism that contributes to

∑
X,

we believe that Eqns.(29) & (33) do not need to be gen-
eralized further to fully describe optical pumping. By
comparing directly to the full simulation, we shown that
Eqns. (34) & (35) can be used to quickly and reliably
estimate the laser power requirement for future targets.

III. EXPERIMENTAL METHODS

A. The He-3 Targets

1. Overview of the Targets

As discussed earlier, the 3He target cells studied in this
work included two chambers, a pumping chamber and
a target chamber. An example of the cell geometry is
shown in Fig. 5, which shows dimensions that correspond
most closely the the targets used for GEN. All of the tub-
ing used in the cell’s construction was re-sized, a process
in which the diameter of commercial glass tubing was
manually altered using a glass lathe and a hand torch.
Re-sized tubing has proven to be critical to minimizing
wall relaxation [35, 36], perhaps because it minimizes the
prevalence of microfissures. The cells used for the saGDH
were made of Corning 1720, and all others discussed in
this work were made of GE180, both of which are types
of aluminosilicate glass.

Before being sealed, the cells were attached to a glass
manifold which was itself connected to a gas-handling
system. The cells were baked under vacuum at about
400◦C for roughly 48 hours. It is believed that this pro-
cess removes moisture and other contaminants that are
by-products of the glass-blowing process. We note that
we have, more recently, also baked target cells at a more
modest 150−200◦C with apparently similar results. After
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baking, the cells were filled with approximately 7–9 am-
agats of 3He gas (see Table V) and a small amount (ap-
proximately 0.1 amagats) of nitrogen to nonradiatively
quench the optically pumped alkali atoms. Alkali-hybrid
alloys were distilled into the pumping chamber before the
cell was sealed.

Pumping Chamber (PC)

Target Chamber (TC)

Transfer Tube (TT)

40 cm

0.75 in

1.2 cm 3.5 in

3.5 in

FIG. 5: (color online) Shown is the geometry of a two-
chambered glass cell used for polarized 3He targets. The di-
mensions shown are typical of those used in GEN.

2. Creating Alkali-Hybrid Mixtures

Alkali metals react violently with oxygen and water.
Consequently, to prepare a hybrid mixture, an inert at-
mosphere is necessary. We employed a glove box for this
purpose, which was filled with the boil-off of a liquid ni-
trogen dewar; although nitrogen is not totally inert, it is
economical and convenient. Because it is impossible to
avoid trace amounts of oxygen and water, the air inside
the glove box was passed continuously through a regen-
eratable purifier. The levels of moisture and oxygen were
measured with a “light bulb test” in which the lifetime of
an exposed incandescent filament was monitored; a du-
ration of greater than 2 hours was taken to correspond to
contaminant levels less than 5 ppm [37]. Details on how
to calculate the masses of K and Rb required to achieve
a prescribed vapor ratio as well as the reliability of the
following technique is described in Ref. [38].

Our procedure for creating alkali-hybrid mixtures is il-
lustrated in Fig. 6 which is adapted from Ref. [39]. These
alloys were prepared by adding an appropriate amount of
Rb to a larger quantity of K. Approximately 1g of molten
K was poured into a prescored ampoule with a narrow
neck. The K was then allowed to cool. Small amounts
of solid Rb (which is sticky) were lowered on the end of
a glass rod into the prescored ampoule. The Rb stuck to
the K and the rod was removed. The ampoule with the
mixture was removed and weighed on a scale. Once the
desired mass ratio had been achieved, the prescored am-
poule was heated until the mixture melted. We note that
the mass ratio was chosen to provide the desired ratio of
K to Rb at a particular operating temperature, and (in
our later mixtures) included an adjustment to account

Pasteur Pipette

score

A
 (usually K)

Rb

Special Cork
with Argon Tube

1

2 3

4

5

Hand Torch

Kapton Heater

G
la

ss
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od
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FIG. 6: (color online) Shown is the glove box procedure used
to create alkali-hybrid mixtures: 1. Molten alkali (K,Na, or
Cs) is forced out of its ampoule with a syringe (filled with N2).
The Pasteur pipette is necessary as the alkali forms beads
wider than the neck of the ampoule (which would become
clogged). 2. Solid Rb is lowered into the ampoule. 3. Once
the desired mass ratio has been reached, the mixture is corked,
heated, and swirled. 4. The ampoule is permanently sealed
under argon. 5. The prescored ampoule can now be heated
and agitated more thoroughly before being used in a target
cell.

for the fact that during distillation into the cell, the Rb
moves preferentially faster than does the K. The molten
alloy was then mixed by swirling the prescored ampoule.
Finally, the mixture was corked, cooled, and removed
from the glove box. Once outside, the prescored ampoule
was placed inside of an open box which had been filled
with argon. The cork was removed and replaced with a
special cork. The special cork had a hole drilled axially
through it and was connected to tubing, which was filled
with argon. The tubing was then removed from the argon
bottle so there was no positive pressure inside it. Finally,
the prescored ampoule was sealed along the narrow neck
using a hand torch. The sealed ampoule was then heated
and thoroughly agitated.

3. Determining the 3He density

One of the methods used to determine the 3He density
in each target involved measurements made during the
cell-filling process. A carefully calibrated volume was
used, together with pressure and temperature measure-
ments, to determine the volume of various spaces in the
gas-handling system. With all relevant volumes deter-
mined, the total quantity of 3He in the gas-handling sys-
tem prior to sealing the target cell required knowing only
the pressure and temperature of the system. Once the
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E
X

P Cell Total PC Fill TC
Volume(cc) Volume(cc) Density(amg) length(cm)

sa
G

D
H

Proteus 235.9 90.8 6.88 34.3
Peter 208.6 111.3 8.80 39.4

Penelope 204.3 102.2 8.93 39.7
Powell 213.3 111.6 8.95 40.5
Prasch 257.7 114.5 6.94 35.3

G
E

N

Al 168.4 90.2 8.91 38.4
Barbara 386.2 306.8 7.60 38.7
Gloria 378.2 298.8 7.40 38.4
Anna 386.8 303.7 8.09 38.7

Dexter 181.4 99.3 9.95 38.7
Edna 378.3 290.3 7.47 38.7
Dolly 378.3 293.5 7.42 38.7

Simone 219.5 118.6 8.17 37.9
Sosa 388.8 304.7 7.96 38.7

T
ra

n
sv

e
rs

it
y

a
n
d
d
n 2

Boris 246.1 166.1 8.08 38.4
Samantha 259.0 176.9 7.97 38.4

Alex 278.3 193.9 7.73 39.1
Moss 269.8 184.7 7.92 38.7

Tigger 271.7 186.9 7.81 38.7
Astral 251.4 164.9 8.18 38.4

Stephanie 244.3 164.9 8.10 38.5
Brady 249.9 169.3 7.88 38.4

Maureen 268.5 177.4 7.63 39.8
Antoinette 437.8 351.8 6.57 40.3

TABLE V: Shown are the names, total and pumping-chamber
volumes, fill densities and target-chamber lengths of the 24
target cells included in this study. Also indicated (left-most
column) are the experiments for which the targets were con-
structed.

cell had been filled and “pulled off” using a hand torch,
the total quantity of 3He remaining could be similarly
determined, thus establishing the amount of 3He in the
cell. The volume of the cell was measured by determin-
ing its buoyancy force in water and applying Archimedes
principle. Knowing the quantity of 3He within the cell,
and the cell’s volume, and further assuming all parts of
the cell to be at the same temperature, the 3He density
is determined to within about 1%.

A second technique for determining the 3He density
in each target involved measurements of the pressure-
broadening of the D1 and D2 absorption lines of both
alkali species using a scannable single-frequency laser.
Using existing accurate measurements of the pressure
broadening of Rb absorption lines [20], it was possible
to monitor the pressure of the sealed target cells at the
level of roughly 1%. These data also provided a measure-
ment of D by comparing the integral of the absorption
lines of the two different alkali species. While the value
of D thus obtained was for the temperature at which the
absorption studies were performed, the value of D at any
temperature of interest could be inferred using the alkali-
metal vapor pressure curves, and is shown in Table VII
as Dpb. The ratio D was also determined using the Fara-
day rotation techniques described in Section III C, shown
in Table VII as Dfr, and the two methods showed good
agreement within errors.

The fill densities and other geometric specifications
of the 24 cells we investigated are shown in Table V.
Where possible the fill density shown is the average of the
value obtained from our gas handling system and that ob-
tained through pressure-broadening measurements. The

two methods for determining the 3He fill density were in
agreement within uncertainties.

4. Operation of the target cells

The target cells were studied in an optical-pumping
apparatus similar in many essential respects to the appa-
ratus used to operate the targets during the experiments
for which they were constructed. They were heated us-
ing a forced-hot-air alumina-silicate ceramic oven, the set
temperature of which is listed in Table VII for our var-
ious measurements. It should be noted, however, that
the set temperature is not the only relevant measure of
the important temperatures affecting the operation of the
cell.

Since our targets have two chambers, it was essential
to know accurately the volume-averaged temperature in
the pumping chamber. This information was necessary
when calculating the density of 3He that was present in
the target chamber during operation. While the oven
set temperature was measured using a thermocouple at-
tached directly to the pumping chamber, the tempera-
ture of the gas within during operation was significantly
higher, by an amount ∆THe, because of heating due to
the lasers used for optical pumping. We measured ∆THe

by making a succession of NMR measurements with the
lasers alternately turned on and off. The difference in the
measurements reflected the fact that when the lasers were
turned on, the additional heating would redistribute gas
from the pumping chamber to the target chamber. We
typically found values for ∆THe in the range of 20−50◦C,
as is shown in Table VII.

Given the substantial values of ∆THe, it is natural
to ask what the relevant temperature was that deter-
mined the alkali number density. For measurements dur-
ing which Faraday rotation was used, we had a direct
measurement of the alkali density, and could thus infer a
temperature from expectations based on the Rb and K
vapor-pressure curves listed in Ref. [40]. The difference
between this inferred temperature and the oven set tem-
perature is shown in Table VII as ∆TRb, and is always
less than 10◦C. This information provides a valuable
measure of the limits inherent in estimating the alkali
density based on the oven temperature alone. We note
that the inferred temperature was much closer to the
oven set temperature than that of the volume averaged
temperature of the gas.

The target cells were illuminated with several lasers of
two distinct kinds: a spectrally broadband laser (roughly
2 nm linewidth) known as a Coherent FAP (for fiber ar-
ray package), manufactured by Coherent Lasers Inc., and
a spectrally narrowed laser (roughly 0.2 nm linewidth)
known as a Comet system, manufactured by a subsidiary
of the Newport Corporation. Both systems produced
roughly 25 W. Since the data we present were obtained
while testing our targets, we did not always measure the
exact output power. In Table VII, the number of broad-
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band lasers (B) and narrowed lasers (N) used in each
test is indicated. The average intensity is also estimated
based on whatever the most current power measurements
were at the time of the test. We typically used three
lasers, which is why in Sec. II we use 75 W as something
of a standard for our simulations.

B. Target-cell polarization dynamics

The dynamics of the buildup of polarization in a
double-chambered cell is somewhat involved, and has
been discussed recently by Dolph et al. in Ref. [19]. For
what follows, we have used the same notation.

We monitored the accumulation of 3He polarization
using the NMR technique of adiabatic fast passage
(AFP) [41]. These NMR measurements were calibrated
using a technique in which Electron Paramagnetic Res-
onance (EPR) was performed on the alkali vapor in the
pumping chamber, yielding an absolute polarization de-
termination of the 3He nuclei [42, 43]. An example of a
“spinup,” in which NMR measurements are successively
made while a cell becomes polarized, is shown in Fig. 7.
The polarization measurements shown in Fig. 7, as well
all the others reported in this work, were measured in the
pumping chamber of the cell.
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FIG. 7: (color online) (a) Shown is a “spinup” of the cell
Brady in which polarization was measured as a function of
time while the cell moved toward equilibrium. The spinup
data has been fit with a 3-parameter and a 5-parameter for-
malism (see text). (b) The residuals of the two fits are shown.
The residual for the 3-parameter fit is large because it does
not account for diffusion between the cell’s two chambers.

In a single-chambered cell, a spinup is described by:

P (t) = (P 0 − P∞)e−Γsct + P∞ (39)

where P∞ is the asymptotic polarization, P 0 is the ini-
tial polarization, and Γsc = γse(1 +X) + Γ is the spinup

rate describing the buildup of polarization. We use the
subscript sc as an abbreviation for “single chamber,” and
to distinguish it from a variable introduced below. The
quantity γse is the spin-exchange rate, and the quantity
X is used to parameterize an as-yet poorly understood
spin-relaxation mechanism, first identified by Babcock et
al. [18], that appears to be roughly proportional to γse.
The quantity Γ represents the spin relaxation rate due to
all mechanisms other than spin exchange and the relax-
ation mechanism parameterized by X, and is typically
measured at room temperature. The equilibrium polar-
ization P∞ is given by

P∞ =
〈PA〉γse

Γsc
=

〈PA〉γse

γse(1 +X) + Γ
(40)

where 〈PA〉 is the polarization of the alkali vapor aver-
aged over the cell.

In a double-chambered cell, the time evolution of po-
larization in the pumping chamber, Ppc(t), and target
chamber, Ptc(t), are distinct from one another because
of the time required for 3He to move (mostly by diffu-
sion) between the two chambers, and is given by:

Ppc(t) = Cpce
−Γf t + (P 0

pc −P∞pc −Cpc)e−Γst +P∞pc (41)

Ptc(t) = Ctce
−Γf t + (P 0

tc − P∞tc − Ctc)e−Γst + P∞tc (42)

where P 0
pc (P 0

tc) is the initial polarization in the pump-
ing (target) chamber, and P∞pc (P∞tc ) is the equilibrium
polarization in the pumping (target) chamber. The time
constant Γs is the “slow” time constant, which essen-
tially plays the role of Γsc in a single-chambered cell, and
is given by

Γs = 〈γse〉(1 +X) + 〈Γ〉 − δΓ (43)

where the quantity δΓ contains corrections that arise be-
cause of the finite time it takes the 3He to move between
the target cell’s two chambers. We note that in our stud-
ies, the value of δΓ was typically no more than 10% of
the size of Γs, and never more than 15%. The quantity
〈γse〉 = fpc γse is the cell-averaged spin-exchange rate,
where γse is the spin-exchange rate in the pumping cham-
ber, and fpc is the fraction of the total number of 3He
atoms that are in the pumping chamber. The quantity
〈Γ〉 corresponds to the quantity Γ defined before, but is
averaged over the entire target cell, thus allowing for the
possibility that relaxation rates may be different in the
pumping and target chambers. The new rate that ap-
pears, Γf (f for fast) also arises because of the dynamics
associated with two chambers. Since Γf is, for our condi-
tions, substantially faster than Γs, the time dependence
of PHe is characterized by a single rate at later times.
The quantities δΓ, Γf , Cpc and Ctc are functions of ge-
ometry, the various rates and initial conditions, but are
time independent. All of these quantities are defined in
detail in Ref. [19].
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When polarizing a target, two quantities of consider-
able interest include P∞pc (or similarly P∞tc ), and the rate
Γs. In Table VII of Section IV, we list values of P∞pc and
Γs that resulted from five-parameter fits of spinup data
to Eqn. (41) from each of our target cells for each tem-
perature studied. An example of such a five-parameter
fit is shown in Fig. 7, along with a three parameter fit
for comparison. The residuals to the fits, also shown
in Fig. 7, clearly indicate that a five-parameter fit more
closely describes the data.

Understanding why one achieves a particular value
of P∞pc requires additional measurements. One quan-
tity that is straightforward to measure is 〈Γ〉c, the cell-
averaged relaxation rate with which the polarization of
a particular cell will decay at room temperature. The
subscript c is used to distinguish this quantity from 〈Γ〉,
which is the analogous relaxation rate when the cell
is at operating temperature. Measurements of the re-
maining relevant parameters requires considerable addi-
tional work and represented a central effort in our target-
development work.

C. Faraday Rotation

In addition to 〈Γ〉, parameters that are important for
understanding the limits on 3He polarization include (re-
ferring to Eqn. (40) for simplicity) 〈PA〉, γse (which is in
turn is proportional to the density of alkali-metal atoms)
and X. A useful diagnostic for studying these parame-
ters in a target cell is the observation of Faraday rota-
tion [44, 45] using a linearly polarized probe laser.

Faraday rotation refers to the change in the orienta-
tion of the polarization axis that occurs when linearly
polarized light passes through a polarized alkali vapor.
It occurs because the polarized alkali vapor exhibits cir-
cular birefringence. For our purposes, it is sufficient to
consider only the alkali-metal atom’s D1 and D2 lines, in
which case the Faraday rotation angle, φr is given by:

φr(ν) =
(rec

6

)
PA cos(θ)[Rb]l {FRb(ν) +DFK(ν)} (44)

where l is the path length through the vapor, the other
parameters are the same as those for the absorption line-
shape given by Eqn. (9) in Sec.II A, we’ve assumed that
the alkali D1 & D2 oscillator strengths are f1 = 1/3 &
f2 = 2/3, and the function FA(ν) describes the frequency
dependence of alkali species A, which is given by:

FA(ν) =
ν

ν1

[
∆1

∆2
1 + Γ2

1/4

]
− ν

ν2

[
∆2

∆2
2 + Γ2

2/4

]
. (45)

A schematic illustrating the experimental setup that
was used to observe Faraday rotation is shown in Fig. 8.
The probe beam first passed through two polarizing
cubes. The first polarizing cube was used to control
the probe beam power (typically 1 mW after the PEM),
the second to define the linear polarization axis of the
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FIG. 8: (color online) Experimental setup for Faraday ro-
tation studies. For clarity, the pump laser (used for opti-
cal pumping) has been drawn at an angle relative to the
Helmholtz field. In reality, the pump beam is nearly parallel
to the Helmholtz field. See text for details.

beam. The linearly-polarized beam then passed through
a quarter wave plate (QWP) and a 50 kHz photoelastic
modulator (PEM) – the QWP and PEM were used in
conjunction with a lock-in amplifier to measure the rel-
atively weak signals. After the probe beam exited the
cell, it passed through a neutral density (ND) filter, a ro-
tatable half-wave plate (HWP), and a polarizing beam-
splitting cube before being detected in two photodiodes.
The ND filter was used to block out room light and min-
imize background from the pump laser. The polarizing
cube was used to separate the linear polarization into its
horizontal and vertical components. The two photodiode
signals were amplified before being added or subtracted
from each other. The HWP was used to null the differ-
ence between the photodiode signals — before the pump
lasers were turned on, the HWP was rotated until both
photodiodes collected the same amount of light. Pro-
vided the probe beam was sufficiently detuned, the ra-
tio of the difference and the sum of the two photodiode
signals, ∆ (not to be confused for the detuning) and Σ
respectively, was given by

∆

Σ
= N sin (2φr + 2φmisc − 4φHWP) (46)

where φmisc is an alkali-polarization-independent offset,
φHWP is the HWP setting, and N (which we call the
“normalization”) is a function of wavelength, PEM retar-
dation, and other electronic settings. The normalization,
N , and the phase Φ, defined by

Φ ≡ 2φr + 2φmisc , (47)

were measured (such measurements will be called “nor-
malizations”) by monitoring ∆/Σ at a fixed φr as the
HWP was rotated 360◦.
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Before a Faraday rotation angle was measured, the
HWP was rotated such that ∆ = 0 (we refer to this
as “nulling” the signal). Nulling was usually performed
with the pump lasers off (which forced PA = 0). Under
these conditions, 4φHWP = 2φmisc and Eqn. (46) can be
written as

2φr = arcsin

(
1

N

∆

Σ

)
. (48)

Because the arcsin is used to measure the rotation an-
gle, see Eqn. (48), care was needed to be taken to distin-
guish which 180◦ domain of 2φr was being observed. One
way to accomplish this was by slowly ramping the lasers
on while monitoring the rotation angle, which increased
as the increased laser power polarized the alkali vapor;
we refer to this as a “ramp-up.” In the ramp-up shown
in Fig. 9, three distinct maxima and minima (flips) and
three zero crossings are visible.
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FIG. 9: (color online) Ramp-up scan at 781 nm and 235 ◦C for
the target cell Brady during a Faraday rotation study. Shown
is the quantity ∆/Σ as three lasers are slowly ramped up in
succession thus producing 3 distinct flips and 3 zero cross-
ings. The irregular shape is created because the lasers heat
up the cell, whose temperature is controlled by a proportional-
integral-derivative (PID) feedback circuit.

A second method for checking the domain was to mea-
sure the normalization phase, Φ, before and after the
lasers were ramped up. A value for 2φr can be found
by taking the difference between these two numbers, see
Eqn. (47). Although this method is harder to visualize,
it gives a larger (360◦) domain for 2φr. This method was
used to confirm that only 3 flips occurred in Fig. 9.

During a typical Faraday rotation measurement, φr

was measured at several probe wavelengths and fit to
Eqn. (44). For example, the Faraday rotation data
shown in Fig. 10 were obtained with an oven set tem-
perature of 235◦C and it was found that PA[Rb]l =
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FIG. 10: (color online) Shown are measurements of the Fara-
day rotation angle for target cell Brady, at 235C, for each
of four wavelengths of the probe laser. The data are fit to
Eqn. (44), and the vertical lines show the location of the D1
and D2 lines for both K and Rb.

(18.7 ± 1.8) × 1014/cm2, and D = 2.6 ± 0.2. We will
discuss how we analyzed numbers such as these in sub-
sequent sections.

D. Line-Averaged Alkali Polarimetry

In order to extract a value for [Rb], it is first neces-
sary to measure l and PA. Alkali polarization measure-
ments can be made by probing Zeeman-transition pop-
ulations [22]. Under our operating conditions, the pop-
ulations of these sublevels are well modeled by a spin-
temperature distribution [46]. We made in situ mea-
surements of the alkali polarization by monitoring the
Faraday rotation angle while Zeeman transitions were in-
duced [45]. Such transitions depolarize the alkali-metal
vapor and consequently decrease the Faraday rotation
angle. During a measurement, see Fig. 11.A, the main
holding field was swept through the Zeeman transitions,
which for us, was kept at 18.2 MHz. A spectrum of
Lorentzian resonances was produced. A value for the
alkali polarization was extracted by comparing the areas
of successive peaks.

The area under a particular peak corresponding to the
transition m↔ m− 1 is given by

A(F,m) = A0 [F (F + 1)−m(m− 1)] exp (βm) (49)

where F is the total atomic angular momentum, m is
the azimuthal component, A0 is a proportionality con-
stant that is independent of F & m, and β is the spin
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temperature given by

β = log

[
1 + PA

1− PA

]
(50)

Under our operating conditions, transitions in the same
F manifold were well resolved; however, transitions in-
volving the same m were unresolved between the F and
F − 1 manifolds. Such transitions are called twin transi-
tions.

To extract a value for PA, we compared adjacent areas
in our spectra, computing the quantity

r =
A(F,m) +A(F − 1,m)

A(F,m− 1) +A(F − 1,m− 1)
(51)

where, since we could not resolve the twin transitions, the
quantity r contains contributions from both F manifolds.
Expressions for PA can be computed in terms of r by
combining Eqns. (49)–(51), and are shown in Table VI
PA for the different transitions.

r (transition ratio) PA (I = 5/2) PA (I = 3/2)

m=3↔2
m−1=2↔1

r−3/7
r+3/7

m=2↔1
m−1=1↔0

r−7/9
r+7/9

r−1/2
r+1/2

m=1↔0
m−1=0↔−1

r−1
r+1

r−1
r+1

m=0↔−1
m−1=−1↔−2

r−9/7
r+9/7

r−2
r+2

m=−1↔−2
m−1=−2↔−3

r−7/3
r+7/3

TABLE VI: Shown are expressions for the alkali polarization
in terms of the quantity r (as defined in Eqn. (51)) for isotopes
with nuclear spins I = 5/2 (Rb-85) and I = 3/2 (K-39 and
Rb-87).

We note that the alkali polarization measurement itself
introduces an additional alkali-relaxation mechanism. In
the presence of RF, we can generalize the alkali polariza-
tion in Eqn. (28) to include the effect of the RF as:

PA =
R1

R01 + ΓA
→ P ′A =

R1

R01 + ΓA + Γrf

(52)

where Γrf is the EPR RF depolarization rate. It is con-
venient to rewrite Eqn. (52) as

1

P ′A
=

1

PA
+ kI2

rf (53)

where PA is the alkali polarization in the absence of an
RF field given by Eqn. (28), k is a proportionality con-
stant, and it is assumed that Γrf ∝ B2

rf, the square of
the magnetic field created by the RF coil, which in turn
is proportional to I2

rf, the current in the RF coil. We ex-
trapolated to Γrf = 0 by performing several sweeps with

different RF field amplitudes. Each individual sweep was
fit and a value for P ′A(Γrf) was obtained. The resulting
polarizations were then fit to Eqn. (53) and a value for
PA was obtained.

Shown in Fig. 11 are data from a typical alkali po-
larization measurement, which was performed at an off-
resonance probe wavelength of 785 nm. With one Comet
laser, the extrapolated zero-RF polarization was PA =
0.95 ± 0.03. The value for two Comet lasers was PA =
0.99± 0.03. With 3 Comet lasers, the alkali polarization
was too high to measure, so we assume PA = 0.99±0.03,
where the lower limit on polarization is obtained by as-
suming that the smaller peaks were of the order of the
size of the noise. Combining this result with the data
from Fig. 10, we find [Rb]l = (18.9± 1.9)× 1014/cm2.
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FIG. 11: (color online) (a) High-RF alkali polarization scans,
obtained using Faraday rotation data, with 1 Comet laser for
target cell Brady (probe wavelength 785nm). With 3 lasers,
the alkali polarization is so high that it is difficult to see the
second 39K peak. (b) RF amplitude scan for 1 and 2 Comet
lasers on the target cell Brady. Individual alkali polarization
scans (see top figure) are plotted and then fit to Eqn. (53).
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E. Path Length Determination

The path length of the probe laser inside the cell was
difficult to measure with high accuracy. Although mea-
surements of the outer diameter of the pumping cham-
ber were trivial, our cells were hand blown and had large
variations in the thickness of the glass. Moreover, it was
difficult to ensure that the probe beam passed through
a full diameter of the sphere and not just a chord. Mea-
surements of the path length of the probe laser were thus
obtained using images from a CCD camera together with
an appropriate calibration (see Fig. 12). The calibration
was performed by calculating the ratios ci of the actual
size (in cm) to the image size (in pixels) of a ruler at var-
ious distances di from the camera. Such a set of images
was expected to obey the relation

ci = α(di + d) (54)

where α is a constant and d is an unknown offset related
to the distance between the front of the camera and the
CCD sensor. Several measurements of ci were fit to a
line, which yielded values for d and α. A value for cy, the
calibration constant at the location of the probe beam,
was thus obtained. The path length image (again see
Fig. 12), was obtained at modest alkali densities in the
absence of the pump laser, while using a D2 filter, and
with the probe laser tuned slightly off the D2 resonance.
The path length of the probe beam for target cell Brady
was found to be (6.59 ± 0.20) cm. We note that this is
consistent with the typical pumping chamber wall thick-
ness of 1.5 mm. Using the information from Secs. III C
and III D, this gives [Rb] = (2.86± 0.30)× 1014/cm3.
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FIG. 12: (color online) Illustrated is the measurement of the
path length l of the probe laser during a Faraday rotation
study. At left is shown the basic setup for obtaining path-
length data (see text for details), and at right is a CCD image
showing the probe laser passing through the cell.

F. Volume-Averaged Alkali Polarimetry

One of the key parameters that determines the 3He
polarization is the volume-averaged alkali polarization,
〈PA〉, which is not the same as the line-averaged alkali
polarization, P `A, whose measurement is discussed in Sec-
tion III D. The probe laser used for the Faraday rotation

measurements was nearly parallel to direction of propaga-
tion of the optical-pumping lasers, and was well centered
on the pumping chamber. The polarization along this
line was thus somewhat higher than the volume average.
To obtain the volume averaged-polarization, we calcu-
lated two corrections, the product of which is the ratio
〈PA〉/P `A that is listed in Table VII. In all but three
cases, the net correction was less than 10%.

One of the two corrections was computed using the
simulation described in Section II that was also used to
guide us in the design of our alkali-hybrid targets. We
used as inputs to the simulation the geometry of the cell,
its pressure, the value of the ratio D and other parame-
ters, including information concerning the spectral con-
tent of the various optical-pumping lasers. For the alkali
density, we used the value measured using Faraday rota-
tion. We then compared the computed line-averaged po-
larization along the path of the probe laser to the actual
value obtained using the methods of Section III D. Gen-
erally, there was a small disagreement of a few percent.
Since our line-averaged alkali polarizations had smaller
errors than the errors on the alkali density, we then var-
ied the central value of the alkali density within its error
bars until the simulation successfully reproduced some-
thing very close to the measured line-averaged polariza-
tion. Occasionally, we would also vary the central value
of D. Having completed the fine tuning of our inputs,
the ratio of the computed values of 〈PA〉 and P `A was one
of our two corrections. The error associated with this
correction encompassed the full range of values obtained
by varying the inputs of both the alkali density and D
within our experimental errors.

The second correction, not accounted for by the simu-
lation, adjusted for portions of the cell that were not well
illuminated with laser light. In all of our tests, a small
portion of the transfer tube connecting the pumping and
target chambers was at elevated temperatures inside our
oven, and hence had an alkali number density similar to
that of the pumping chamber. The transfer tube was
not illuminated by the laser, however, meaning that ap-
proximately 1.5% of the alkali density was not optically
pumped. It is also the case that those portions of the
cell near the edges were only poorly illuminated with im-
perfectly circularly polarized light. This is because light
near the edges of the pumping chamber hit the glass at
a nearly glancing angle. The net correction from poorly
illuminated portions of the cell (not already accounted
for by the simulation) was 0.97 ± 0.02. The product of
this factor and the factor generated using the simulation
is what appears in Table VII as 〈PA〉/P `A.

IV. DIRECT MEASUREMENTS OF TARGET
PROPERTIES AND PERFORMANCE

Using some or all of the techniques described in the
previous section, we characterized each of 24 target cells
and summarize our results in Table VII, grouped accord-
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ing to the experiments for which the targets were con-
structed. The first group of cells, made for the saGDH
experiment, were made with Rb only. These data from
non-hybrid target cells provided something of a baseline,
and thus aided in the design and construction of targets
for the GEN experiment, the first of our target cells that
utilized alkali-hybrid technology. The lessons learned
from the GEN cells allowed us to optimize our approach
to the alkali-hybrid technology, as well as providing an
opportunity to study the benefits of spectrally narrowed
diode lasers. The last group of targets was constructed
for the Transversity and dn2 experiments, and show the
highest performance of all. Collectively, the data listed
in Table VII have provided critical data for the design of
the next generation of polarized 3He targets that will be
used in experiments following the 12 GeV energy upgrade
of JLab that is in progress at the time of this writing.

At the simplest level, the most important two mea-
sures of the performance of a particular polarized 3He
target are the saturation 3He polarization (P∞pc , because
we typically monitored the pumping chamber) and the
time constant that characterizes the buildup of polariza-
tion (Γ−1

s ). To understand why a target achieves a certain
level of performance, however, additional measurements
are required. In the earliest group of cells studied, those
built for the saGDH experiment, the only additional pa-
rameter measured was 〈Γ〉−1

c , the time constant char-
acterizing the cell-averaged spin-relaxation rate at room
temperature. In the later cells studied, however, we were
able to study additional parameters, and achieved a sig-
nificantly improved understanding of the factors influenc-
ing performance. In this section, we focus on parameters
that were measured directly. The so-called X parameter,
which can be inferred from direct measurements, will be
discussed in a later section.

A. The effect of alkali-hybrid mixtures

The impact of using of alkali-hybrid mixtures in our
target cells was dramatic, and is illustrated in Fig. 13,
which plots the maximum 3He saturation polarization
achieved as a function of the alkali-hybrid density ra-
tio, D, for each of the 24 target cells tested during our
studies. To isolate the impact of alkali-hybrid mixtures
from other (laser-related) factors, it is useful to consider
only those tests that used broadband laser light, which
included both cells containing Rb only, shown with open
triangles (that necessarily appear at D = 0), and cells
with alkali-hybrid mixtures, shown with open circles. For
Rb-only cells, the highest polarization achieved was 46%,
which corresponded to the cell Proteus as can be seen in
Table VII. In contrast, alkali-hybrid cells often achieved
over 50%, and in the case of Gloria, 60%.

It is also interesting to compare the data in Fig. 13 to
the simulations summarized in Fig. 2. Experimentally,
there were too many variables involved in each measure-
ment to expect that we would reproduce the smooth func-
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FIG. 13: Maximum Achieved He-3 Polarization as a Function
of D for target cells included in this study. Open triangles
(circles) correspond to pure Rb (alkali hybrid) cells pumped
with broadband light. Solid and grey data points correspond
to cells pumped with all or at least some spectrally narrowed
lasers. Despite the fact that these data were acquired over
an extended period of years under various different operating
conditions, the value of both the alkali-hybrid mixtures as well
as spectrally narrowed light is clearly evident. The values for
D in this table were extracted from pressure-broadening data,
as more cells were measured this way.

tional dependence evident in Fig. 2. Nevertheless, it is
clear that the best performance observed is correlated
with a relatively narrow range of D values, very roughly
between 3 and 7. Interestingly, again considering only
those cells pumped with broadband light, the tests of
cells falling outside of that range (Boris, with D ∼ 2.2,
Anna, with D ∼ 9.6 and Dolly with D ∼ 20), appear
to be limited in their performance as would be expected
from the simulation.
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FIG. 14: Maximum Achieved He-3 Polarization as a function
of 1/Γs for target cells included in this study. Triangles cor-
respond to pure Rb cells, circles correspond to alkali-hybrid
cells. The key indicating the meaning of the different types of
data points is the same as in Fig. 13. The optimal conditions
for running hybrid cells clearly correspond to smaller values
of 1/Γs than is the case for pure Rb cells.
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E
X

P
Cell Lasers

I0 T set
pc P∞pc

Γ−1
s 〈Γ〉−1

c 〈PA〉/P `A P `A Dfr Dpb
[Rb]fr ∆TRb ∆THe X

W/cm2 ◦C hrs hrs 1014/cm3 ◦C ◦C
sa

G
D

H

Proteus 3B 3.8 180 0.46 27 74 - - 0 0 - - - -
Peter 3B 3.8 180 0.44 21 56 - - 0 0 - - - -

Penelope 3B 3.8 180 0.39 18 46 - - 0 0 - - - -
Powell 3B 3.8 180 0.38 13 25 - - 0 0 - - - -
Prasch 3B 3.8 180 0.33 13 33 - - 0 0 - - - -

G
E

N

Al
2.5B 3.2 235 0.53(03) 7.86(05) 27.42(1.37) - - - 4.53(25) - - - -
5B 6.1 235 0.54(03) 6.73(18) 27.42(1.37) - - - 4.53(25) - - - -

Barbara
2.5B 1.6 235 0.37(02) 5.50(08) 42.95(2.15) - - - 4.80(25) - - - -
5B 3.1 235 0.57(03) 4.76(63) 42.95(2.15) - - - 4.80(25) - - - -

Gloria 3B 1.7 235 0.60(03) 6.13(04) 38.29(1.91) - - - 7.20(40) - - - -

Anna
1B 0.6 235 0.33(02) 5.60(34) 11.38(57) - - - 9.64(57) - - - -

1.5B 1.0 235 0.39(02) 5.37(08) 11.38(57) - - - 9.64(57) - - - -

Dexter
1.5B 1.5 235 0.47(02) 7.58(17) 18.45(92) - - - - - - - -
5B 6.1 235 0.49(02) 6.63(12) 18.45(92) - - - - - - - -

Edna 3B 2.4 235 0.56(03) 5.71(02) 27.42(1.37) - - - 3.63(20) - - - -

Dolly
3B 1.0 235 0.43(02) 6.16(03) 35.24(1.76) - - - 20(1.3) - - - -

1N1B 1.4 235 0.62(03) 5.79(07) 35.24(1.76) - - - 20(1.3) - - 17(10) -

Simone
2N1B 3.8 215 0.31(01) 14.08(06) 22.87(1.14) 0.947(020) 0.91(05) 10.66(54) 8.89(45) 0.20(02) -7(3) - -0.04(12)?

2N1B 3.8 240 0.48(02) 6.89(20) 22.87(1.14) - - - 9.76(49) - - - -
2N1B 3.8 255 0.58(02) 6.45(10) 22.87(1.14) 0.929(023) 0.92(05) 12.48(83) 10.3(52) 0.90(09) -4(5) - 0.11(06)?

Sosa

2N1B 1.9 160 0.57(02) 16.69(09) 73.68(3.68) 0.966(020) 1.00(03) 0 0 1.97(13) 4(1) 30(7) 0.24(06)†

2N1B 1.9 170 0.61(03) 11.67(04) 73.68(3.68) 0.964(020) 0.98(03) 0 0 3.00(33) 3(3) 38(14) 0.27(06)?

2N1B 1.9 180 0.55(02) 8.79(09) 73.68(3.68) 0.954(022) 0.97(03) 0 0 4.30(27) 1(2) 47(7) 0.43(06)†

2N1B 1.9 190 0.40(02) 6.39(22) 73.68(3.68) 0.854(075) 0.82(03) 0 0 5.69(63) -2(3) 48(20) 0.58(12)?

2N1B 1.9 200 0.26(01) 5.04(17) 73.68(3.68) - - 0 0 - - 43(18) -

T
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d
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Boris 3B 1.8 235 0.42(02) 6.25(04) 23.74(1.19) 0.871(050) 0.79(07) 1.96(18) 2.45(23) 2.19(34) -8(7) - 0.26(10)?

Samantha
3B 1.8 235 0.50(02) 6.30(13) 36.51(1.83) - - - 4.34(23) - - - -
3N 2.6 235 0.68(03) 4.62(03) 22.13(1.11) 0.956(020) 0.99(03) 4.37(10) 4.34(23) 1.80(10) 7(2) 21(10) 0.12(05)?

Alex 2N1B 2.6 235 0.59(03) 4.81(02) 32.96(1.65) 0.942(042) 0.99(03) 1.37(08) 1.19(07) 4.08(36) 0(4) 42(10) 0.34(06)†

Moss 1N1B 1.8 235 0.62(03) 5.35(04) 33.00(1.65) - 0.95(09) - 2.40(13) - - 29(8) -
Tigger 1N1B 1.8 235 0.51(02) 4.89(05) 12.62(63) - 0.95(09) - - - - 23(9) -

Astral 2N1B 2.6 235 0.69(03) 6.57(12) 48.90(2.45) 0.954(020) 0.99(03) 7.09(55) 6.21(56) 0.97(09) 3(5) 25(4) 0.17(05)†

Stephanie 3N 2.6 235 0.63(03) 4.55(09) 48.35(2.42) 0.929(114) 0.99(03) 1.39(11) 1.50(10) 5.08(58) 7(5) 54(6) 0.31(08)?

Brady
1N 0.9 235 0.62(03) 4.82(1.08) 33.50(1.68) - 0.95(03) - 2.36(24) - - 14(9) -
2N 1.8 235 0.68(03) 5.52(70) 33.50(1.68) - 0.99(03) - 2.36(24) - - 25(8) -

3N 2.6 235 0.70(03) 5.30(01) 33.50(1.68) 0.956(021) 0.99(03) 2.60(20) 2.36(24) 2.86(30) 6(5) 39(9) 0.14(05)†

Maureen 3N 2.6 235 0.66(03) 5.42(12) 29.21(1.46) - 0.97(09) - 4.42(55) - - 32(12) -

Antoinette
3N 1.7 215 0.49(02) 6.63(37) 20.93(1.05) 0.958(020) 0.99(03) 2.85(13) - 0.96(07) 0(3) 16(8) 0.28(08)†

3N 1.7 235 0.61(03) 4.18(10) 20.93(1.05) 0.936(043) 0.99(03) 3.32(27) - 1.83(20) 0(5) 20(10) 0.24(07)†

3N 1.7 255 0.41(02) 2.66(11) 20.93(1.05) 0.776(099) 0.93(10) 3.57(23) - 2.88(39) -5(6) 33(9) 0.55(13)†

TABLE VII: Cell Performance for three sets of experiments: saGDH (top), GEN (middle), and Transversity & dn2 (bottom).
Within each experiment grouping, data is sorted by type of laser used (B = Broadband, N = Narrowband). I0 is the nominal
incident laser intensity at the center of the pumping chamber. T set

pc is the oven set temperature. P∞pc is the equilibrium
polarization in the pumping chamber and Γs is the slow time constant extracted from the five parameter fit to the polarization
build up curve. Γc is the cell-averaged room temperature spin relaxation rate. 〈PA〉 /P `

A is the volume averaged to line averaged
alkali polarizaiton ratio determined from the optical pumping simulation. P `

A is the measured line averaged alkali polarization.
Dfr & Dpb are the K to Rb density ratios determined from Faraday rotation and pressure broadening measurements. [Rb]fr
is the Rb number density measured from Faraday rotation. ∆TRb is the temperature of Rb inferred from the number density
relative to the oven set temperature. ∆THe is the temperature of 3He inferred from temperature tests relative to the oven set
temperature. X is the best combined value for the X-factor. ? indicates X was measured using only spinup, alkali polarization,
and Faraday rotation data. † indicates X was also measured using the early-time behavior of the spinup.

B. Impact of using narrowband Lasers

As discussed in Section II, the significant benefits of
alkali-hybrid SEOP arise from the more efficient use of
the optical-pumping photons, which in turn makes it pos-
sible to operate at significantly higher alkali number den-
sities than would otherwise be possible. Higher alkali
number densities result in faster spin exchange, which in
turn makes it easier to overwhelm spin-relaxation mecha-
nisms that would otherwise drive the polarization lower.
This effect is clearly evident in Fig. 14, which shows
data on the maximum P∞pc achieved versus Γ−1

s for each
cell studied under the various optical pumping conditions

also considered in Fig. 13. If, for example, we again focus
our attention on the open circles and open triangles that
correspond to illumination with broadband lasers, we see
that the optimal values of Γ−1

s for the hybrid cells were
significantly smaller than was the case for the pure Rb
cells, and that in all but three cases (corresponding to
Dolly, Boris and Anna, the cells with D outside the opti-
mal range), they achieved higher polarizations than even
the best pure Rb cell (when it was pumped with broad-
band lasers). Instead of spinups characterized by time
constants of around 10–20 hours, the time constants for
the hybrid cells were more typically 4–6 hours. Finally, it
is worth noting that smaller values of Γ−1

s also make the
target less susceptible to depolarization from the electron
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beam.
The advantages of using spectrally-narrowed diode

laser arrays are quite evident in both Figs. 13 and
14, where the highest polarizations obtained were from
alkali-hybrid cells pumped using either narrow-band
lasers (solid black circles) or a mix of narrow-band and
broadband lasers (solid grey circles). As discussed in
Section II, the origins of the improved performance are
twofold. Firstly, light that is closer to the Rb D1 line
center results in higher optical pumping rates, and hence
higher alkali polarizations. Secondly, it becomes possi-
ble to use higher alkali densities (and hence higher spin-
exchange rates) while still maintaining high alkali po-
larization. This second point is particularly evident in
Fig. 14 in which many of the smallest values of Γ−1

s are
associated with cells pumped with at least some narrow-
band lasers. We note that the benefits of the narrowband
light are not limited to the alkali-hybrid cells. The best
performance from Rb-only cells were also obtained while
using narrow-band lasers.

C. Optimization and limits on polarization

As the results presented in the previous two subsec-
tions make clear, significant improvements in the perfor-
mance of the spin-exchange polarized 3He result from us-
ing alkali-hybrid mixtures and spectrally-narrowed lasers.
For optimal performance, it is best to have the ratio of
the K to Rb number densities in the general range of
3–7, and also to operate the cells with relatively small
values of the spin-up time constant Γ−1

s . Since the high-
est polarizations measured were around 70%, however,
it is clearly desirable to better understand the limits on
further improvement.

As discussed earlier, Babcock et al. showed that
cells used for SEOP of 3He suffer from a temperature-
dependent spin-relaxation mechanism that can be char-
acterized by the parameter X [18]. Because this relax-
ation increases with γse, it cannot be overcome by run-
ning the cell “harder” at higher temperatures. Indeed,
if we assume that X is proportional to γse, the limit of
the polarization of the 3He at high values of γse can be
expressed as

lim
γse→∞

PHe = lim
γse→∞

〈PA〉〈γse〉
〈γse〉(1 +X) + 〈Γ〉 =

〈PA〉
1 +X

. (55)

The use of alkali-hybrid cells and the use of narrow-band
lasers has made it easier to achieve faster spin-exchange
rates γse while maintaining high alkali polarization. This
has meant that the X parameter associated with a cell
has increasingly become the main limiting factor on per-
formance. It is thus of considerable importance to know
the value of X associated with a given target, and we
describe our efforts to measure this parameter in Sec-
tion VI. For these studies, however, it is also important
to have a good handle on the coefficients that govern spin
exchange, which is the subject of the next section.

V. THE K-3HE SPIN-EXCHANGE RATE
CONSTANT

It was shown by Dolph et al. that at sufficiently small
values of time, the polarization in the pumping chamber
can be written

Ppc = γse〈PA〉(t−t0) + b(t−t0)
2

= mpct+ bt2 + c (56)

where it is assumed here that the 3He polarization passes
through zero at t = t0, and we have defined the quantity
mpc ≡ γse〈PA〉 as the coefficient of the linear term in
the above equation. Indeed, measurements by Dolph et
al. taken during the first 20-30 minutes of a spinup were
shown to be extremely linear (see, for example, Fig. 3 of
Ref. [19]), so much so that it is hard to see the influence
of the quadratic term at all.

We have performed a set of dedicated spinups during
which an NMR AFP signal was taken every 3 minutes
to determine the slope mpc. Care was taken to account
for small AFP losses during measurements. Also, since
AFP measurements cause the 3He spins to be temporar-
ily aligned opposite to the direction in which they are
being polarized, we were careful to take into account the
time during which the spins were “anti-aligned”. We will
refer to measurements of mpc determined during such a
dedicated spinup as ms

pc, where the superscript s denotes
that this quantity was measured during a spinup.

It is also possible to compute the expected value for
mpc using entirely separate measurements. The Faraday
rotation methods described in Section III C provide us
with a measure of the alkali number densities. We further
expect

γse = kRb
se [Rb] + kK

se[K] , (57)

where kRb
se (kK

se) is the constant characterizing the spin-
exchange rate between 3He and Rb (K). Finally, we know
the volume-averaged alkali polarizations from our mea-
sured line-averaged polarizations together with small cor-
rections from our simulation. We will refer to values of
mpc calculated in this manner as mF

pc, where the super-
script F denotes that this quantity was computed using
the Faraday rotation data.

From the above discussion, we expect the ratio
mF

pc/m
s
pc to be equal to one, where mF

pc and ms
pc are

measured for a particular cell under identical conditions.
To compute this ratio, however, we must know both
kRb

se , which has been measured and reported in the lit-
erature multiple times, and kK

se, for which we are aware
of only one measurement described in the Ph.D. thesis
of Babcock [47]. For kRb

se , we combine the measure-
ment due to Baranga et al. [13] and the even more
accurate measurements from Chann et al. [45] to find
kRb

se = (6.79 ± 0.14) × 10−20cm3/s. We choose these
particular measurements because they are insensitive
to systematic effects associated with the temperature-
dependent relaxation mechanism characterized by the X
parameter. In Fig. 15, for the two measurements asso-
ciated with the Rb-only cell Sosa, we show the resulting
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values for mF
pc/m

s
pc with solid circles, and the ratio is

seen to be quite close to unity in both cases.
When we compute mF

pc/m
s
pc for cells that contain K

in addition to Rb, we need a value for kK
se. The num-

ber that appears in Babcock’s thesis is (5.5 ± 0.4) ×
10−20cm3/s [47]. We note that this result is also ref-
erenced in a later paper by the same group, with an er-
ror that is improved by a factor of two [48]. We found,
however, that the resulting value for the ratio mF

pc/m
s
pc

came out to be less than unity in all but one of the six
cases we studied, as is shown with the open diamonds in
Fig. 15. Among other things, this causes an inconsistency
between two of the methods for computing X that we dis-
cuss in the next section. We were thus led to consider
fitting our alkali-hybrid data for the ratio mF

pc/m
s
pc to

unity while treating kK
se as a free parameter. The result,

for cells Alex, Brady, Astral and Antoinette, is shown in
Fig. 15 with the solid diamonds and yields

kK
se = (7.46± 0.62)× 10−20cm3/s . (58)

Also shown in Fig. 15 are the oven set temperatures at
which the measurements were made. The values of D for
each cell can be found in Table VII.
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FIG. 15: (color online) Plotted is the ratio mF
pc/m

s
pc for eight

separate measurements, where ms
pc is the slope measured

at the beginning of a spinup, and mF
pc is calculated using

Eqn. (56), Faraday-rotation determinations of the alkali den-
sities, and the spin-exchange coefficients kRb

se and kK
se. For all

but the Sosa (Rb only) measurements, kK
se was treated as a

free parameter, while fitting mF
pc/m

s
pc to unity, yielding the

result of Eqn. (58).

Our value for kK
se is significantly higher than Babcock’s,

and the cause is unclear. One possibility may be tem-
perature dependence. Taking the oven set temperatures
shown on Fig. 15, and adding to them the values of ∆THe

as shown on Table VII, our measurements of mF
pc/m

s
pc

were obtained over the temperature range 230 − 290◦C.
This temperature range appears to be significantly higher
than that at which Babcock measured kK

se, suggesting a
possible explanation for the difference. Both our mea-
surement at T ≈ 260◦C and Babcock’s measurement at
T ≈ 190◦C are consistent with the temperature depen-
dence of kK

se recently calculated by Tscherbul et al. [49].
With this said, we note that the coefficient that charac-
terizes Rb-3He spin exchange, kRb

se , does not appear to

depend strongly on temperature based on the measure-
ments of Baranaga et al. [13] and Chann et al. [45]. In the
next section, we use our own determination of kK

se rather
than that due to Babcock in one of the four methods we
employed to measure the X parameter. We make this
choice both because our determination of kK

se was made
under similar operating conditions to our other measure-
ments, and also because this choice significantly improves
the internal consistency of our data, which was important
for some of the other effects we studied.

VI. THE X FACTOR

As has already been discussed, the so-called X factor
is an important intrinsic property of a target cell. Unlike
most of the properties discussed in Section IV, however,
which were measured fairly directly, the X factor is a
derived quantity, and its determination relies on our the-
oretical understanding of the cell’s behavior, including
the relevant constants that characterize spin exchange.

A. Measuring X

The measurements we performed while characterizing
our target cells provided sufficient data to determine X
in several different ways. This provided us with a sense of
the self consistency of our data, and also made it possible
to combine our different determinations into an appropri-
ately weighted average. Since several of the methods used
to determine X are performed at a single temperature,
we were also able to search for a possible temperature
dependence.

In the following two sections, each method used to de-
termine X relies on the cell-averaged spin relaxation rate
〈Γ〉 at operating temperatures. We have assumed that
the only difference between 〈Γ〉 and 〈Γ〉c, which is mea-
sured at room temperature, is the change in the cell-
averaged 3He-3He dipolar spin relaxation rate when the
cell is heated from room temperature to operating tem-
perature. This correction is calculated by

〈Γ〉=〈Γ〉c−
[
n0−fpcnpc/f

d(tpc)−ftcntc/f
d(ttc)

]
/τd (59)

where n0 is the 3He fill density, npc(tc) the 3He density
in the pumping (target) chamber, fpc(tc) is the frac-

tion of 3He atoms in the pumping (target) chamber,
tpc = Tpc/(296.15 K), ttc = (313.15 K)/(296.15 K),
τd = 744 hrs · amg [35], and fd(t) is a function that pa-
rameterizes the temperature dependence of the dipolar
relaxation from Appendix D.5.1 of [24]. Under operating
conditions, 〈Γ〉 is usually only a few percent smaller than
〈Γ〉c. In doing this, we are implicitly assuming that the
relaxation rate due to collisions with the walls is the same
for the two chambers and equal to the value measured at
room temperature. This point is discussed in more detail
in Sec. VI B. Finally, whenever the difference (Γs − 〈Γ〉)
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appears in the following sections, we include in 〈Γ〉 a
small additional correction to account for the measured
NMR AFP losses at operating temperatures.

1. The hot relaxation method

The first method we describe for determining X is
what was described in Ref. [18] as the “hot relaxation
method.” Rearranging Eqn. (43), we see that 〈γse〉 can
be expressed as follows:

〈γse〉 =
Γs − 〈Γ〉+ δΓ

(1 +X)
. (60)

To extract a value for X, we plot 〈γse〉 as a function of
Γs − 〈Γ〉 + δΓ, and the slope of a linear fit to the data
is expected to be equal to 1/(1 + X). In Fig. 16, we
present data collected using the hot relaxation method
for three target cells. Also shown in In Fig. 16 are the
three fits, which we note were constrained to pass through
the origin. The resulting values of X from the three fits
are also shown on the figure, and, two of the three are
seen to be significantly different from zero. Because of
the large uncertainty, a strong statement can not be made
about Simone, the cell with the smallest X value.

The quantity δΓ is a relatively small correction that
appears because we are working with a double-chambered
cell. It is given approximately by

δΓ ≈ fpcftc(dpc + dtc)u2 + higher order terms (61)

where dpc and dtc are transfer rates describing the prob-
ability per unit time that a particular 3He atom will exit
the pumping and target chambers respectively, and can
be computed using the geometry of the cell, its fill pres-
sure, and information on the temperatures at which it is
operated (see Dolph et al. [19]). The quantity u is given
by

u =
γse(1 +X) + Γpc − Γtc

dpc + dtc
(62)

where Γpc and Γtc are the spin-relaxation rates in the
pumping and target chambers respectively. The awk-
ward thing here is that X, the quantity we are seeking to
determine using the hot relaxation method, appears in
the quantity that is the abscissa of our plot. This is not
a problem, however, because as mentioned earlier, δΓ is
typically 10% or less of the size of Γs. What we do in
practice is to take X = 0 initially, and after finding a
value for X, use that value to recompute δΓ and find an
improved value for X. This process can be iterated a few
times, and quickly converges to a stable value for X.

2. Single Temperature Methods

One drawback of the hot relaxation method is that it
necessarily assumes that the temperature dependence of
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FIG. 16: We plot the cell-averaged spin-exchange rate, 〈γse〉,
as determined using Faraday rotation and measured values of
the spin-exchange constants kRb

se and kK
se, versus the quantity

Γs − 〈Γ〉 − δΓ for three cells, as labeled. For kK
se, we use the

value given in Eqn. (58). Also shown are linear fits to the
data, constrained to go through zero. The values quoted for
X are the inverse of slopes of the lines minus one. The errors
bars on each data point are the uncorrelated errors. The
error quoted on each value of X includes the uncertainty in
our determination of kK

se.

the new relaxation mechanism is identical to the temper-
ature dependence of γse. It is quite possible, however, to
extract values for X at a single temperature, and even
search for a temperature dependence in the X parameter
itself. It is also the case that making measurements such
as those shown in Fig. 16 are time consuming, and we
only carried out such measurements for a small subset
of the target cells studied. All but the second method
described in this section are based on the “polarization
method” described in Ref. [18]. The only difference is
that, for the third and fourth methods, we incorporated
information about the product PA 〈γse〉 from early time
measurements of the polarization buildup. The second
method described in this section is essentially a single
point version of the “hot relaxation method” described
in Ref. [18].

The first and simplest “single-temperature” method
for measuring X, the result from which we label as X1,
requires measurements of 〈PA〉, P∞pc , 〈Γ〉, and Γs. Here

we start with an equation for the equilibrium 3He polar-
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ization in a double chambered cell:

P∞pc =
〈PA〉〈γse〉

Γs + δΓ− δΓ′ (63)

where δΓ′ = ftcΓ2
tc/(Γtc + dtc). Eqn. (63) is essentially

Eqn. (11) from Ref. [19] with the one difference that γse

in the denominator has been replaced with γse(1 + X).
We note that δΓ′ is typically only a few percent of the
size of Γs. Next we use Eqn. (60) for 〈γse〉, substitute
into Eqn. (63), and solve for X1:

X1 =
〈PA〉
P∞pc

(
Γs − 〈Γ〉+ δΓ

Γs + δΓ− δΓ′
)
− 1 . (64)

Again we have the issue that δΓ, which depends on X,
appears in the expression. We can iterate, however, be-
ginning with X = 0, to converge on a stable value.

The second method, the result from which we label X2,
requires measurements of 〈Γ〉, Γs, [Rb], and D. We solve
Eqn. (43) for X to get

X =
Γs − 〈Γ〉+ δΓ

〈γse〉
− 1 (65)

and then plug in γse from Eqn. (57) to find

X2 =
Γs − 〈Γ〉+ δΓ

fpckRb
se [Rb] (1 +D′)

− 1 . (66)

Again we have the issue with δΓ which is handled the
same way as with X1. Here, however, we also have the
issue of needing to know kK

se, which as discussed earlier, is
not known as accurately as is kRb

se . We have chosen in this
case to use our own value for kK

se, with its accompanying
large error, since this provides the best self-consistency
in our data.

The third method, the result from which we call X3, is
very similar to the second method and requires measure-
ments of 〈PA〉, 〈Γ〉, Γs, and ms

pc. Again we start with
Eqn. (43), but now we evaluate 〈γse〉 = fpcm

s
pc/ 〈PA〉

from the linear term in Eqn. (56) to get

X3 = 〈PA〉
Γs − 〈Γ〉+ δΓ

fpcms
pc

− 1 . (67)

For the measurements we present on the cell Sosa, which
is pure Rb, X2 and X3 represent truly independent de-
terminations of X. In cells for which D 6= 0, however,
X2 and X3 are highly correlated, since we determined kK

se

through measurements of mpc.
The fourth method, the results from which we call X4,

requires measurements of 〈PA〉, P∞pc , 〈Γ〉, and ms
pc. We

obtain the needed expression by plugging Eqn. (43) into
Eqn. (63), solving for X, and evaluating γse from linear
term of Eqn. (56) to get

X4 =
〈PA〉
P∞pc

− 〈PA〉(〈Γ〉 − δΓ′)
fpcms

pc

− 1 . (68)

Cell T (oC) X1 X2 X3 X4 X12/X1234

Simone
215 -0.02(12) -0.10(14) - - -0.04(12)
255 0.13(08) 0.08(09) - - 0.11(06)

Sosa

160 0.22(07) 0.28(09) 0.32(15) 0.18(09) 0.24(06)†

170 0.24(07) 0.37(15) - - 0.27(06)

180 0.45(08) 0.40(09) 0.50(17) 0.45(09) 0.43(06)†

190 0.59(16) 0.57(17) - - 0.58(12)

Boris 235 0.21(14) 0.31(14) - - 0.26(10)
Sam. 235 0.08(06) 0.22(09) - - 0.12(05)

Alex 235 0.34(09) 0.35(09) 0.63(20) 0.29(10) 0.34(06)†

Astral 235 0.15(07) 0.22(10) 0.20(14) 0.14(07) 0.17(05)†

Steph. 235 0.31(17) 0.31(10) - - 0.31(08)

Brady 235 0.13(07) 0.15(09) 0.23(14) 0.11(07) 0.14(05)†

Antoinette
215 0.27(09) 0.44(17) 0.30(19) 0.25(11) 0.28(08)†

235 0.20(09) 0.34(12) 0.36(17) 0.15(09) 0.24(07)†

255 0.55(26) 0.54(16) 0.50(30) 0.56(26) 0.55(13)†

TABLE VIII: Shown are values of the X factor for the in-
dicated cells at the indicated oven set temperatures. Either
two or four separate methods (all described in the text) were
used to compute X in each case. The final column represents
a combined best value for X, which is either X12 or X1234,
depending on whether two or four different values for X were
available. A † indicates combined values for which we were
able to compute X1234.

In Table VIII, we show the values of X for each cell and
temperature for which we have adequate data, together
with the corresponding errors. The different values of X
are quite consistent with one another, even when corre-
lations between errors are taken into account. We note
that X1 is quite consistent with the other methods for
determining X, despite being completely independent of
both mpc and kK

se. We found that that was much less the
case when we used Babcock’s value for kK

se. While it is
a bit hard to quantify, we see this as additional evidence
supporting our value for kK

se as being reasonable.

We also show in Table VIII a “best value” for X ob-
tained by an appropriate weighted average of either X1

and X2 ( referred to as X12), or all the values of X
(X1234). The errors were assigned to the best of X by
taking a weighted average of the results from the differ-
ent methods while taking into account the correlations
among the methods.

To the best of our knowledge, there has not been a
dedicated study of the X factors, and the temperature-
dependent relaxation mechanism they characterize, with
a large number of cells using measurements of the al-
kali polarization since the original work by Babcock et
al. [18]. The results presented in table VIII can thus be
viewed as an independent verification of the existence of
what we might call the X-factor mechanism. For tem-
peratures in the range at which we operate our targets,
the X factors imposed limits to the 3He polarization of
62–88%. The highest polarizations measured, however,
were around 70%. We note that we rarely pushed our
targets to the highest possible temperatures because we
did not want to risk damaging, or even worse, destroying
a target.
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B. Possible temperature dependence

As can be seen from Table VIII, we have determina-
tions of X at multiple temperatures for three of our cells.
In these cases, we can thus pose the question of whether
or not X is constant with temperature. Some variation,
after all, would mean only that the relaxation mecha-
nism associated with X had a temperature dependence
slightly different from that of γse, a possibility explic-
itly mentioned by Babcock et al. [18]. Indeed, as can
be seen in Fig. 17, for the cells Simone, Sosa (pure Rb)
and Antoinette, when we plot X as a function of tem-
perature, we see what appears to be systematic variation
with temperature.
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FIG. 17: Shown is the best-value for the X-factor (either X12

or X1234 from Table VIII) versus temperature for the three
cells Sosa, Simone and Antoinette. Also shown is a linear fit
to each set of data.

If we assume a linear dependence of X with temper-
ature, we find for the case of Sosa a slope of (0.012 ±
0.002)/◦C, a slope that is six sigma away from zero. In
the case of Antoinette, the slope is (0.007 ± 0.005)/◦C,
just over one sigma from zero. In the case of Simone
we have only two temperature points, but the trend still
seems to be present. While these data can hardly be
viewed as providing conclusive evidence regarding the
temperature dependence of X, they are certainly sug-
gestive.

When we first noticed the temperature dependence of
X, we were concerned that we could be viewing a system-
atic effect of some sort rather than physics. For example,
since our cells had two chambers, the distribution of the
gas between those two chambers (as reflected in fpc and
ftc) changes at different temperatures. We found, how-
ever, that the uncertainties in fpc and ftc had only negli-
gible effects on the observed temperature dependence of
X. In fact, as we analyzed our data, the identification
and elimination of various systematic effects only caused
the temperature dependence to become more pronounced
while simultaneously decreasing the scatter in our data.
We mention below two of the potential systematic effects
that we considered.

One possible systematic is associated with the fact
that the calculation of X requires knowing 〈Γ〉 at op-
erating temperatures, which is the sum of cell-averaged
dipolar relaxation rate

〈
Γd
〉

and the cell-averaged wall
relaxation rate 〈Γw〉. At the beginning of Sec. VI A,
we discussed how we accounted for the temperature
and density dependences of the dipolar relaxation rate
by using Eqn. (59). The wall relaxation rate is more
subtle. Following Dolph et al. [19], we note that the
cell-averaged wall relaxation rate can be expressed as
〈Γw〉 = Γwpc (Rftc + fpc), where Γwpc is the wall relaxation
rate in the pumping chamber and R is the ratio of the
target to pumping chamber wall relaxation rates. As a
starting point, we set Γwpc equal to the room temperature

wall relaxation rate given by 〈Γ〉c−n0/τ
d where n0 & τd

were defined in Sec. VI A. We then considered a range of
the ratio R between one and a value close to three. We
found that the resulting variation in the values of X was
fairly minimal, resulting in the average value of X1234, for
example, decreasing by an average amount of 0.04 (abso-
lute). Again, there was essentially no effect on the tem-
perature dependence of X. We note that in Table VIII,
we have chosen to take R = 1, which is equivalent to
〈Γw〉 = Γwpc = 〈Γ〉c − n0/τ

d. This particular choice was
motivated by some recent studies of convection-driven
target cells of the sort described in Ref. [19], in which it
was possible to obtain a measure of the relative size of
Γpc and Γtc by observing the ratio of the polarizations
in the target and pumping chamber, Ptc/Ppc, as a func-
tion of both time and the speed with which convection is
driven.

We also considered the possibility that our choice of a
value for kK

se might introduce an apparent temperature
dependence for X. In particular, we considered both our
own value for kK

se from Eqn. (58), as well as that due
to Babcock [47]. We found that the temperature depen-
dence of X was present with either choice, although our
values for X were significantly more self consistent when
using our own value for kK

se. Perhaps a more interest-
ing question is whether a temperature dependence in kK

se

could cause the apparent temperature dependence in X.
Naively, this seems to be ruled out by the fact that a
temperature-dependent value for kK

se would produce dif-
ferent behaviors in our calculated values of X1, X2, X3

and X4. As can be seen in Table VIII, the temperature
dependence of the different calculations of X appear to
be similar to one another within errors.

One possible temperature-dependent contribution to
the X-factor is anisotropic spin exchange [48]. Recently,
Tscherbul et al. [49] have calculated that anisotropic spin
exchange contributes about only about 0.03 to the X-
factor due to K-3He spin-exchange collisions for our oper-
ating temperatures. Although their calculations indicate
that the anisotropic spin exchange contribution to the
X-factor has a temperature dependence, it is very small
in the temperature range relevant to our measurements
(≈ 10−4/◦C) above T = 463 K.

In summary, we were unable to identify a plausible ex-
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planation for our observations other than an actual tem-
perature dependence in X. While we hesitate to suggest
that our observations are conclusive, they certainly pro-
vide motivation for further study. If X factors increase
with increasing temperature (as suggested by Fig. 17),
the limits that they impose on 3He polarization may be
more severe than had previously been assumed.

VII. CONCLUSION

We have presented data obtained while developing
polarized 3He targets, based on spin-exchange optical
pumping, for four separate experiments at Jefferson Lab-
oratory in Newport News. Data are included from 24
glass target cells, and they clearly demonstrate the sub-
stantial gains that were made possible through the use of
hybrid mixtures of Rb and K, and the use of spectrally-
narrowed high-power diode laser arrays. One measure
of these gains is the figure of merit discussed in the in-
troduction, LN , that essentially represents the number
of spins polarized per second, weighted by the square of
polarization. In Fig. 18 we plot LN for all 24 of the tar-
get cells studied. The points, labeled according to the
cell in which LN was measured, are arranged in roughly
chronological order according to when LN was measured.
The reader should note the logarithmic scale.
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FIG. 18: Shown for all 24 cells included in our study is the
best value actually measured for the Figure of Merit equal to
V ρΓs(P

∞
pc )2 where Γs and P∞pc are given in Table VII, and

V and ρ are the volume and fill density of the cell respec-
tively, both given by Table V. Notice that the vertical axis is
logarithmic.

We have also presented results from a numerical sim-
ulation of optical pumping that incorporated several im-
portant effects that have recently been established as be-
ing quite important. These simulations provided an im-
proved understanding of how it is that hybrid alkali mix-
tures and spectrally narrowed lasers contribute to better

target performance, and guided us in optimizing various
design and operational parameters, including the optimal
ratio of the K number density to the Rb number den-
sity. The simulations were also useful in connecting the
“line-averaged” alkali polarization, which we measured
experimentally, to the “volume-averaged” alkali polar-
ization, which is the critical quantity in determining the
ultimate polarization of the 3He. Having benchmarked
our simulation against real data, we also have a valuable
tool for the ongoing design of future targets. For the
few cases where the volume-averaged alkali polarization
was much less than the line-averaged alkali polarization
(〈PA〉 /P `A < 0.9), the line-averaged alkali polarization
from experiment was, with large uncertainties, system-
atically lower than those calculated from the model. We
further note that a new study [50] seems to indicate that
the EPR technique for measuring line-averaged alkali po-
larizations overestimates the true volume-averaged alkali
polarization [52]. More rigorous tests of our simulation
under a more diverse set of operating conditions are nec-
essary. These further studies are planned and include
comparisons with cells with lower 3He densities & higher
D and dedicated measurements of PHe as a function of
temperature.

In nine of the target cells studied, we have performed a
careful determination of the X factors that characterize
the as-yet poorly understood relaxation mechanism that
limits the maximum polarization of 3He targets polarized
using SEOP. We believe that this is the first careful study
of X factors since the work of Babcock et al. [18], and
we report unambiguous evidence confirming the X-factor
mechanism as a dominant limiting factor in the 3He po-
larization we have achieved. We furthermore see hints of
a non-zero temperature dependence of the X factor itself,
although a definitive confirmation of this would require
additional work.

Finally, in the course of our studies, we have made
a measurement of kK

se, the coefficient that characterizes
K–3He spin-exchange. We find a value somewhat larger
than that found by Babcock [47], which could be ex-
plained by a temperature dependence of kK

se.

When compared to the first liter-scale polarized 3He
targets used in electron scattering at SLAC [1], we report
herein an increase in the FOMs Leff and LN (defined
in the introduction) of 16 and 35 respectively. While
our primary motivation in these studies was the devel-
opment and construction of 3He targets for four exper-
iments, we have nevertheless obtained data that are of
considerable value to those using spin-exchange optical
pumping for various applications. The studies presented
here also provide a critical foundation for the next gen-
eration of spin-exchange polarized 3He targets that are
under development for future experiments at JLab.
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