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Hydrodynamic simulations are used to calculate the identical pion HBT radii, as a function of the
pair momentum kT. This dependence is sensitive to the magnitude of the collective radial flow in the
transverse plane, and thus comparison to ALICE data enables us to derive its magnitude. By using
hydro solutions with variable initial parameters we conclude that in this case fireball explosions
starts with a very small initial size, well below 1 fm.

I. INTRODUCTION

The so called Hanbury-Brown-Twiss (HBT) interfer-
ometry method originally came from radio astronomy [1]
as intensity interferometry. The influence of Bose sym-
metrization of the wave function of the observed mesons
in particle physics was first emphasized by Goldhaber et
al. [2] and applied to proton-antiproton annihilation. Its
use for the determination of the size/duration of the par-
ticle production processes had been proposed by Kopy-
lov and Podgoretsky [3] and one of us [4]. Heavy-ion
collisions, with its large multiplicities, turned the “fem-
toscopy” technique into a large industry. Early applica-
tions for RHIC heavy-ion collisions were in certain ten-
sion with the hydrodynamical models, but this issue was
later resolved, see e.g. [5]. The development of the HBT
method had made it possible to detect the magnitude
and even deformations of the flow.

Makhlin and Sinyukov [6] made the important observa-
tion that HBT radii are sensitive to collective flows of the
matter. The radii decrease with the increase of the total
transverse momentum kT = (p1T +p2T)/2 of the pair. A
sketch shown in Fig.1 provides a qualitative explanation
to this effect: the larger is kT, the brighter becomes a
small (shaded) part of the fireball, which the radial flow
is maximal and its direction coincides with the direction
of kT. This follows from maximization of the Doppler-
blue-shifted thermal spectrum ∼ exp (−pµuµ/Tf). In this
paper we will rely on this effect, as well as on ALICE
HBT data, to deduce the magnitude of the flow in high
multiplicity pp collisions.

(Although we will not use those, let us also mention
that the HBT method can also be used not only for de-
termination of the radial flow, but for elliptic flow as well:
see e.g. early STAR measurements [7]. Another devel-
opment in the HBT field was a shift from two-particle
to three-particle correlations [8], [9] available due to very
high multiplicity of events as well as high luminosities of
RHIC and LHC colliders.)

With the advent of LHC it became possible to trigger
on high multiplicity events, both in pp and pPb collisions:
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FIG. 1: (Color online)Sketch of how the radial flow (arrows
directed radially from the fireball center) influences the HBT
radii. At small kT the whole fireball (the circle) is visible,
but at larger kT one sees only the part co-moving in the same
direction – shown by shaded ellipse.

the resulting sample revealed angular anisotropies v2, v3

similar to anisotropic flows in heavy-ion (AA) collisions.
At the moment the issue whether those can or cannot be
described hydrodynamically is under debate. So far the
discussion of the strength of the radial flow was based
on the spectra of identified particles, see [10, 11]. In this
paper we look at the radial flow from a different angle,
using the measured HBT radii [12].

The HBT radii for pp collisions at LHC has been mea-
sured by the ALICE collaboration [12], as a function
of multiplicity. Their magnitude has been compared to
those coming from hydro modelling in Refs. [13, 14]. Our
analysis of the HBT radii focus on the strength of the ra-
dial flow. We illustrate how the radii, and especially the
ratio Ro/Rs, are indicative of the flow magnitude.

While at minimally biased collisions and small multi-
plicities the observed HBT radii are basically indepen-
dent of the pair transverse momentum kT, for high mul-
tiplicity the observed radii decrease with kT. So, the
effect we are after appears only at the highest multi-
plicities – the same ones which display hydro-like angu-
lar correlations and modifications of the particle spectra.
The strongest decrease, as expected, is seen for the so
called Ro radius, for which this reduction in the interval
kT = 0.1 · · · 0.7 GeV reaches about factor 4 in magnitude.

The kT dependence of the HBT radii tells us about
the strength of the flow. The reason these data are quite
important is the following: the HBT radii at small kT
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tell us the final size of the fireball, at the freezeout. The
radii at large kT, combined with hydro calculations to be
described below, can shed light on the initial size of the
fireball, which we consider to be the main result of this
work.

We do not speculate below on how such initial con-
ditions can be created: this should be determined by
models of the initial state. Our goal is only to derive
phenomenologically its parameters. Their importance
stems from the fact that high multiplicity pp collisions
create the most extreme conditions of the matter density
reached so far.

II. METHOD OF ANALYSIS

A. Hydrodynamic evolution

For heavy-ion collisions one has good command of the
matter distribution in nuclei, and thus can model the
shape of the initial state rather accurately. However in
the case of high multiplicity pp collisions – which are cer-
tain fluctuations with small probability – there is still
no quantitative theory, and thus the shape remains un-
known.

A certain shape is preferable, not on physical but tech-
nical grounds. An analytic solution known as Gubser flow
[15] is restricted to a shape appearing in a stereographic
projection from a sphere to the transverse plane. Using
the same shape had allowed us to compare our numerical
solution to the corresponding analytic expression, pro-
viding control of the code numerical accuracy.

In the Gubser solutions, the energy density and veloc-
ity take the following form,

ε(τ, r) =
ε0(2q)8/3

τ4/3[1 + 2q2(τ2 + r2) + q4(τ2 − r2)2]4/3
, (1)

v⊥(τ, r) =
2q2τr

1 + q2τ2 + q2r2
. (2)

The space-time characteristics of the system are
parametrized by two variables,(

q [fm−1], ε0
)
. (3)

(The parameter q is widely used below, not to be con-
fused with the momentum transfer.) The dimensionless
energy density parameter ε0 is related with the entropy
per unit rapidity as

ε0 = f
−1/3
∗

(
3

16π

dS

dη

)4/3

, (4)

where f∗ = 11 is the number of effective degrees of free-
dom in QGP [15]. The entropy per unit rapidity is in-
ferred from the measured charged particle multiplicity,

dS

dη
' 7.5

dNch

dη
. (5)

Thus, the values of ε0 can be fixed by charged particle
multiplicity.

On the other hand, the parameter q quantifies the size
of the system. Figure 2 shows the temperature profiles
at τ = 0.6 fm as a function of r for q = 1.7 fm−1 and
q = 0.7 fm−1, the “smallest” and “largest” fireballs in
this study. One can see that the former fireball – with
larger q – is hotter and smaller in size.
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FIG. 2: (Color online) The temperature profiles of the Gubser
solutions for different values of the parameter q, at τ = 0.6 fm
as a function of r.

While we use Gubser solution for early evolution of
the system, unfortunately it cannot be used all the way
to freezeout. This solution was obtained by a confor-
mal transformation and thus can only be used for confor-
mal plasma with the conformal equation of state (EOS)
ε = 3p. While it is believed to be a good approximation
for early QGP phase of the collision, this is certainly not
the case near the QCD phase transition, where pressure
p remains roughly constant while the energy density ε
changes by about an order of magnitude. Therefore, the
initial Gubser-like stage is supplemented by numerical
hydro solution, based on the realistic lattice-based EOS.
We therefore start from the Gubser solution, but then,
at certain time τ0 = 0.6 fm, we switch to numerical evo-
lution with the realistic EOS, derived from recent lattice
QCD calculations [16].

(We remind the ideal relativistic hydrodynamic equa-
tions,

∂µT
µν = 0, (6)

where Tµν is the energy-momentum tensor. For a perfect
fluid, Tµν can be expressed as

Tµν = (ε+ p)uµuν − pηµν , (7)

where ε is the energy density, p is the pressure, uµ is the
fluid four-velocity, and ηµν ≡ diag{1,−1,−1,−1} is the
Minkowski metric. )
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FIG. 3: (Color online) Time evolutions of temperature and velocity for q = 0.7 fm−1 (left column) and q = 1.7 fm−1 (right
column). Temperature (dashed line) and velocity (solid line) profiles at τ = 0.6, 1.8, 3.0, 4.2 fm are plotted as a function of the
radial coordinate r. The dotted lines in the plots indicate the freezeout temperature Tf = 0.12 GeV.

B. Freezeout

In order to obtain the single-particle distribution from
the hydrodynamic solutions, we use the standard Cooper-
Frye formula [17],

p0 d3N

dηdp2
T

=
1

(2π)3

∫
pµdσµ(x)

exp [p · u/T ]∓BF 1
. (8)

This formula is applied on a isothermal hypersurface
characterized by the freezeout temperature Tf . We per-
form Monte-Carlo sampling of pions according to the dis-
tribution (8), following the steps below:

1. Take a piece of surface elements dσµ. We first cal-
culated the average number of pions produced from

this surface by

dN =
1

(2π)3

∫
d3p

E

pµdσµ(x)

exp [p · u/T ]∓BF 1
. (9)

2. Since dN is typically a small number (∼ 10−3), we
can regard this number as a probability to produce
a pion. According to this probability, we throw
a dice and determine whether to make a pion or
not1. If we are to produce a pion, we sample the

1 Although this treatment is justified for small dN , in general
one should sample from the Poisson distribution with mean dN .
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momentum of the pion from the distribution,

f1(x,p) =
1

(2π)3

pµdσµ(x)

exp [p · u/T ]∓BF 1
. (10)

3. We repeat the steps 1-2 for all the freezeout surface
elements.

We refer the reader to Ref. [18] for the details of the
sampling procedures.

C. Calculations of correlations

We have obtained the momenta and emission coor-
dinates of produced pions from the sampling based on
the Cooper-Frye formula. The effect of interference of
identical particles is not included at this stage, since the
Cooper-Frye formula gives us only a single-particle distri-
bution function. The two-particle correlations come from
Bose symmetrization

C(kT, q) =

∑
<i,j>∈[kT] [1 + cos (qµ∆xµ)]∑

<i,j>∈[kT] 1
, (11)

where kT ≡ (p1T +p2T)/2 is the pair transverse momen-
tum, < i, j >∈ [kT] indicates a pair of pions in a partic-
ular kT bin, qµ = pµ1 − p

µ
2 is four-momentum difference

of a pion pair, and ∆xµ ≡ xµ1 − xµ2 is space-time dis-
tance of the pair. The correlation functions is evaluated
in the “longitudinally comoving frame”, where kz = 0
for each pair. We impose a pseudo-rapidity cut |η| < 1.0,
by which the particles in the mid-rapidity region are se-
lected.

We characterize the 3D correlation function in the
“out-side-long” parametrization [19, 20],

C(kT, q) = 1 + λ exp
[
−R2

oq
2
o −R2

sq
2
s −R2

`q
2
`

]
, (12)

where Ro,s,` = Ro,s,`(kT) are the HBT radii of interest in
this study, qo is the component of momentum parallel to
the pair transverse momentum, q` is the one parallel to
the beam, and qs is the one perpendicular to out and long
direction. For each kT bin, we determined the values of
HBT radii by χ2 fitting.

III. RESULTS

A. Time evolution of fireballs

The main qualitative feature of the solution is that the
explosion is stronger for smaller-hotter initial size – or
larger values of Gubser parameter q. Quantitatively the

This method is applicable for larger surface elements from which
more than one pion can be produced.

time evolution of the temperature and radial flow veloc-
ity for q = 0.7 fm−1 (left column) and q = 1.7 fm−1

(right column) is shown in Figure 3. The peak of the
temperature in the central region r ≈ 0 collapses, and
the maximum moves to the rim of the fireball. While
the pressure gradient pushes out the matter, a flow is
increasing. One can see that the flow velocity reaches
larger values for q = 1.7 fm−1, compared to the case
with q = 0.7 fm−1. Freezeout surfaces are located at the
intersections of the dashed lines (the fluid temperature)
and the dotted line (the assumed value of the freezeout
temperature), where fluid elements are turned into parti-
cles. At these intersections, the final flow is determined.

We again emphasize that while the absolute freezeout
times in both cases displayed is similar (∼ 4 fm), the
flow magnitude is quite different. As expected, it is sig-
nificanly larger for smaller fireballs, or larger q.

B. Flow and the distribution P (∆xµ)

Hydrodynamics gives us an intuitive explanation of
the kT dependence, as mentioned in the Introduction.
If one selects a larger value of kT, the relevant region
where particles originate becomes smaller and more el-
liptic (see Fig. 1). This intuitive picture can be quanti-
tatively checked by looking at the distribution, P (∆xµ),
of the pair-displacement vector ∆xµ = xµ1 − x

µ
2 and its

kT dependence.
In Fig. 4 and Fig. 5, we show the probability distri-

bution of the displacement in “out” and “side” direc-
tions, P (Xo, Xs), for three kT bins for two value of q
(0.5 fm−1 and 1.5 fm−1). It is determined after the par-
ticle pairs are selected, from the Cooper-Frye integral
over the freezeout surface. Here, Xo is the projection of
the displacement vector ∆xµ to the direction of kT, and
Xs is the projection of xµ in the direction perpendicular
to kT and the beam axis. At low kT (Fig. 4a and Fig. 5a
), the distribution is broad and circular in out and side
directions.

Wide circular component comes from the times when
flow is still small, while a narrow strip from the region
where it is substantial. For higher kT, the distribution is
squeezed, and is narrower in the out direction compared
to the side direction. These plots illustrate effect of the
radial flow schematically shown in Fig. 1.

C. HBT radii

Now let us turn to the results of HBT radii. In Fig. 6,
we show the HBT “volume“ (RoRsR`) as a function of kT

for different values of q, together with the experimental
data from ALICE. The parameter ε0 is chosen to match
the observed multiplicity in ALICE. The radii from q =
1.5− 1.7 fm−1 reproduce the volume in the ALICE data
well.
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FIG. 4: (Color online) Distribution of displacements in out (Xo) and side (Xs) directions for q = 0.5 fm−1. Three figures are
for different kT bins.
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FIG. 5: (Color online) Distribution of displacements in out (Xo) and side (Xs) directions for q = 1.5 fm−1.

In Fig. 7, we show the ratio Ro/Rs as a function of
kT. Basically, Ro/Rs is a decreasing function of kT. At
small values of q, the slope of Ro/Rs is gentle. As q
becomes larger, the slope becomes steeper and Ro/Rs is
suppressed at large kT. The ALICE data shows further
suppression compared to the result from the largest value
of q. Judging from the data, we can infer that Ro/Rs
is indicative of the strength of the flow. However, the
reason why Ro/Rs is suppressed at large kT is not so
trivial, which we explain in Sec. III D.

D. Why is the ratio Ro/Rs most sensitive to the
strength of radial flow?

Here we discuss the reason why Ro/Rs is suppressed
at large kT in the presence of a strong radial flow. De-
pending on the kT cut, the area where particles originate
changes. As kT becomes higher, the region shrinks, espe-

 0

 2

 4

 6

 8

 10

 12

 14

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

R
oR

s R
l[f

m
3 ]

Kt [GeV]

q=0.5 
q=0.7 
q=0.9 
q=1.1 
q=1.3 
q=1.5 
q=1.7 

ALICE data

FIG. 6: (Color online) HBT volume as a function of the pair
transverse momentum kT for various values of the parameter
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FIG. 7: (Color online) The ratio Ro/Rs as a function of kT
for various values of q. The initial size is more compressed for
a larger q, which results in stronger radial flow at freezeout.

cially in the outward direction. If the system is composed
of a gas with a large mean free path, such a behavior
would not be present. This trend indicates that the sys-
tem is strongly interacting. Furthermore, we claim that
the ratio Ro/Rs is sensitive to the strength of the flow.
What is difficult to understand is that, if one looks at the
distribution itself, P (∆xµ), the ratio of the widths of out
and side direction, Lo/Ls, does not appear to be different
for different values q (compare Fig. 4 and Fig. 5).

This might seem to be inconsistent with the behavior
of Ro/Rs at large kT calculated from the fitted radii: the
ratio is almost unity at weak flow case (q = 0.7 fm−1),
and it decreases as q gets larger. Below we explain the
reason of the apparent discrepancy. We will find that
the suppression of the ratio Ro/Rs at large kT for strong
flow case is mainly driven by correlation of emission time
difference and distance of the emitted points in the out
direction. This was first pointed out in Ref. [22] and is
consistent with those in Ref. [21], in which the HBT radii
for pp collisions are studied using a blast-wave model.

We consider the following quantities,

∂2C(kT, q)

∂qi∂qj

∣∣∣∣
q=0

, (13)

where i, j ∈ {t, o, s, `}. When P (∆xµ) is approximated
by a gaussian form,

P (∆xµ) =
1

16π2V
exp

[
− X

2
t

4L2
t

− X2
o

4L2
o

− X2
s

4L2
s

− X2
`

4L2
`

]
,

(14)
where Lt,o,s,l are the widths in time, out, side, and long
directions, and V ≡ LtLoLsL`, the HBT radii can be
expressed by the moments as

R2
i =

∂2C(kT, q)

∂q2
i

∣∣∣∣
q=0

, (15)

with i ∈ {o, s, `}.
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FIG. 8: (Color online) Ro/Rs calculated from the moments.

Below we express the measured HBT radii in terms of
the moments the distribution P (∆xµ). The two-particle
correlation function reads

C(kT, q)− 1 =

∫
dXtdXodXsdX` P (∆xµ) cos (qµ∆xµ)

= Re

[∫
dXtdXodXsdX` P (∆xµ)eiqµ∆xµ

]
.

(16)

The exponent in the integral can be written as

qµ∆xµ = q0Xt − q ·∆x
= β · q Xt − qT ·∆xT

= (βTqo + βLq`)Xt − qoXo − qsXs − q`X`,

(17)

where β = k/k0 and we used βs = 0 (β is parallel to
k), and q0 = β · q (↔ kµq

µ = 0), and βT and βL are the
projections of β in transverse and longitudinal directions.
In the current case, where the correlations function is
evaluated in the frame with kz = 0, βT = β and βL = 0.
Thus, the HBT radii and the moments are related by

R2
o =

〈
(Xo − βXt)

2
〉

=
〈
X2
o

〉
+
〈
β2X2

t

〉
− 2 〈βXtXo〉 , (18)

R2
s =

〈
X2
s

〉
, (19)

R2
` =

〈
X2
`

〉
. (20)

Indeed, one can see that the radii calculated from the
moments, using Eqs. (18), (19) and (20), shows consis-
tent behavior with the ones obtained by fitting procedure,
compare Fig. 8 and Fig. 7.

Now let us discuss the reason why Ro/Rs is suppressed
at large kT in the presence of strong flow. In terms of the
ratio of moments, Ro/Rs is composed of three terms,

R2
o

R2
s

=

〈
X2
o

〉
〈X2

s 〉
+

〈
β2X2

t

〉
〈X2

s 〉
− 2
〈βXtXo〉
〈X2

s 〉
, (21)



7

 0

 0.5

 1

 1.5

 2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

< 
X o

2  >
 / 

< 
X s

2  >

Kt [GeV]

q=0.5 
q=0.7 
q=0.9 
q=1.1 
q=1.3 
q=1.5 
q=1.7 

FIG. 9: (Color online)
〈
X2
o

〉
/
〈
X2
s

〉
as a function of kT.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

< 
`2  X

t2 > 
/ <

 X
s2 >

Kt [GeV]

q=0.5 
q=0.7 
q=0.9 
q=1.1 
q=1.3 
q=1.5 
q=1.7 

FIG. 10: (Color online)
〈
β2X2

t

〉
/
〈
X2
s

〉
as a function of kT.

In order to see which term plays the dominant role in
the suppression of Rs/Ro for strong flow, we plotted the
values of each term for different values of the Gubser
parameter q, as a function of kT. The behavior of the
first term

〈
X2
o

〉
/
〈
X2
s

〉
is shown in Fig. 9. For all the

values of q, the ratio is around 1 at lowest kT, and is less
than unity at higher kT. Note the fact that, at highest
kT, the ratio is more suppressed for weaker flows. This
indicates that the suppression of Ro/Rs at large kT for a
strong flow is not caused by the term

〈
X2
o

〉
/
〈
X2
s

〉
.

The suppression of Ro/Rs is driven by
〈βXtXo〉 /

〈
X2
s

〉
, which is shown in Fig. 11. This

term is a measure of correlation between emission time
difference and the displacement in the out direction.
For a weak flow (small q), it is close to zero and the

correlation is weak for the entire region of kT. As we
go to stronger flow (larger q), the lines rises and the
correlation at high kT becomes stronger. Since this term
contribute to Ro/Rs with a negative sign, it leads to the
suppression of Ro/Rs at large kT.
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FIG. 11: (Color online) 〈βXtXo〉 /
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as a function of kT.

IV. SUMMARY

ALICE HBT data [12] provided striking indication
that the highest multiplicity bin of pp collisions at LHC is
rather different from others: it shows evidence for strong
radial flow. We performed simulations of the system, us-
ing ideal relativistic hydrodynamics. The early evolution
is described by Gubser conformal solution, complemented
by a numerical one, with a realistic EOS at later stages.
We show how strength of the radial flow depends on the
initial size/temperature of the fireball.

Comparison of the resulting HBT radii with high mul-
tiplicity data shows the best agreement only for the
smallest fireball we study, with Gubser parameter q =
1.5− 1.7 fm−1. It confirms that one in fact observes the
presence of collective hydrodynamical flow in an unprece-
dented small system, smaller than 1 fm initially.
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