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Recent work has shown that a temperature dependence of the shear viscosity to entropy ratio,
n/s, influences the collective flow pattern in heavy-ion collisions in characteristic ways that can be
measured by studying hadron transverse momentum spectra and their anisotropies. Here we point
out that it also affects the pair momentum dependence of the Hanbury-Brown-Twiss (HBT) radii
(the source size parameters extracted from two-particle intensity interferometry) and the variance of
their event-by-event fluctuations. This observation establishes interferometric signatures as useful
observables to complement the constraining power of single-particle spectra on the temperature

dependence of n/s.

PACS numbers: 25.75.-q, 12.38.Mh, 25.75.Ld, 24.10.Nz

I. INTRODUCTION

Recently, a great deal of theoretical attention has
been devoted to the accurate determination of the shear-
viscosity-to-entropy-density ratio (n/s) of the quark-
gluon plasma (QGP) and the hadron resonance gas
(HRG), and how its temperature dependence around
the transition point between these two phases might be
probed in heavy-ion collisions. In particular, a recent
study [1] suggested the possibility of discriminating ex-
perimentally between different parametrizations of the
temperature dependence of 1/s using systematic anal-
yses of the anisotropic flows vy and vy as functions of
transverse momentum pp and pseudorapidity n. In this
paper, we present a complementary analysis of the HBT
radii for Au+Au collisions at RHIC energies, to argue
that the HBT radii can be used profitably to help con-
strain viable parametrizations of (n/s) (T').

The HBT radii are physical observables which are
well defined on an event-by-event basis. As parameters
that describe the size and shape of the particle emitting
source, they fluctuate from event to event. Experimen-
tal data so far [2-7] determine only the average source
radii characterizing a large ensemble of events [8]. Else-
where [9] we discuss new ideas of how to complement such
measurements of the ensemble-averaged HBT radii by a
determination of their variances, i.e., the width parame-
ters characterizing their event-by-event fluctuations. In
that work [9] it is also shown that the experimentally ac-
cessible observables characterizing the mean source radii
and their variances clearly track the algebraic mean and
variance of the source radii that are calculated theoreti-
cally from the individual emission functions of a large set
of dynamically simulated heavy-ion collisions with fluc-
tuating initial conditions. We here show the transverse
pair momentum (Kr) dependencies of these mean radii
and their variances for the same four parametrizations of
the specific shear viscosity 7/s studied in [1]. We also
compare the mean radii to those one would obtain from
a single average source by dynamically evolving a single
initial profile, constructed as the ensemble average of the

fluctuating initial conditions of the full ensemble.

To save time and effort, we employ for this pioneer-
ing study the shortcut of calculating the HBT radii from
the source variances of the emission function [10-13] for
directly emitted pions only, instead of performing a 3-D
Gaussian fit to the correlation function including all res-
onance decays [13-16]. This approximation, which holds
exactly only for Gaussian sources [12], is known to be
sufficient to discern qualitative features of the HBT radii
and their K1 dependences, although it is not accurate
enough for quantitative comparisons with experimental
data [17].

II. ANALYSIS
A. Initial conditions

In this paper, we compute the HBT radii, as outlined
in the previous section, for central (0-10%) Au+Au col-
lisions at 200 A GeV, based on charged pion correlations.
We use the iIEBE-VISHNU package [18] in modeling the
evolution of heavy-ion collisions. For the (hydrodynami-
cal) initial conditions of the fireball, we employ the MC-
Glauber model [19] with p+p multiplicity fluctuations
[18] to generate the initial entropy density distribution
in the transverse plane. The subsequent dynamical evo-
lution is performed on an event-by-event basis, meaning
that each set of initial conditions that we generate ini-
tializes one of the Ng, hydrodynamically evolved events
in our ensemble. In this paper, we take N, = 1000.

B. Hydrodynamic evolution and (n/s)(T)

We perform the hydrodynamical evolution of the ini-
tial conditions with the VISH241 code [20], using the
s95p-PCE165-v0 equation of state [21]. We choose this
evolution to begin at an initial proper time 79 = 0.6 fm/c,
where 7 =0 corresponds to the instant at which the two



nuclei collide. Also, although necessary for quantitatively
precise comparisons with experimental data [22], we do
not incorporate here any initial transverse flow into the
hydrodynamical evolution.

For our study, we use for (n/s)(T) one of the four
parametrizations given in [1]:

e LH-LQ, in which (n/s)(T) = 0.08 for all T}
e LH-HQ, in which (n/s)(T) = 0.08 for T < T, and

T T\?
(n/s)(T)qap = ~0.289 +0.288 - + 0.0818 ( — | ,

tr tr

for T > Tiy; (1)

e HH-LQ, in which (n/s)(T) = 0.08 for T > T, and

T T\?
(n/s)(T)ure = 0.681 —0.0594 — — 0.544 [ —
Ttr Ttr

for T < T}y (2)

e HH-HQ), for which we use (n/s)(T)urc for T < T,
and (n/s)(T)qagp for T > Ti;.

Here, T, = 180MeV [1] represents the transition tem-
perature between the QGP and HRG phases. The four
parametrizations are shown in Fig. 1.
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FIG. 1: The different parametrizations of (n/s)(T) used in
this work, taken from [1].

As also pointed out in [1], for identical initial condi-
tions viscous entropy production generates different final
multiplicities for different choices of (n/s) (T'). This ef-
fect is especially severe for the parametrizations LH-HQ
and HH-HQ where at early times, when the longitudinal-
transverse velocity shear is biggest, (n/s)(T) is very
large. To compensate for this effect, we rescale our initial
entropy profiles by a constant factor kg, which depends
on the chosen parametrization of (n/s) (T). For a given
choice of (n/s) (T), kgt is chosen so that an ensemble-
averaged initial entropy profile always reproduces the

same final thermal 7+ multiplicity.! Normalizing all of
the averaged profiles to the ideal fluid case (which thus
corresponds to kgt = 1) we find

e LH-LQ: kgt = 0.889
e LH-HQ: x5, = 0.596
e HH-LQ: xg¢ = 0.878
e HH-HQ: xg¢ = 0.589

As expected, parametrizations with a large plasma vis-
cosity require a significant suppression of the initial en-
tropy density profile in order to compensate for viscous
heating and to reproduce the measured final multiplici-
ties in Au+Au collisions at RHIC energies. Finally, we
terminate the hydrodynamical evolution on a decoupling
surface (the ”freeze-out surface”) of constant tempera-
ture Tgec = 120 MeV.

C. Pion emission function at freeze-out

On the freeze-out surface for each event, the pion emis-
sion function is defined by the Cooper-Frye integral [23—
25]

Sa.p) = ﬁ / p-do(y) 8 a—y) fwp), (3)
_ 1 PP T
— eu-w/T1 " 2T2(e+P)

fo(1+fo). (4)

Here, d f is the first-order viscous corrections to the ideal
distribution function fy [26, 27] for which we assume a
quadratic dependence on p. m,,(x) and u”(z) are the
shear stress and flow velocity profiles along the freeze-out
surface X, respectively. u, T', e, and P are the chemical
potential, decoupling temperature, energy density, and
pressure, respectively, which are all constant on X by
construction. d®c,(z) is the outward pointing normal
vector on X at point x.

D. Ensemble averaging

Theoretically, the HBT radii may be defined for either
a single event or an ensemble containing many events.
Due to statistical limitations arising from the finite num-
ber of particles emitted in a single event, precise mea-
surements of the full set of HBT radii and their K de-

1 Since we always decouble at the same constant freeze-out tem-

dN,

ot chh
perature, dn : : an -
Therefore, this normalization ensures that, on average, all events

have the same final charged multiplicity.

is a fixed fraction of the total multiplicity



pendences for a single event are not possible [8]. Three-
dimensional experimental HBT analyses, therefore, ex-
clusively report measurements based on large collections
of events, rather than measurements of event-by-event
HBT radii. In order to obtain an apples-to-apples com-
parison with experimental data, theoretical HBT calcu-
lations must therefore, at some level, average over all
events in the ensemble.

This procedure, known as ensemble averaging, can be
performed in several ways, two of which we consider here.
According to one prescription, the initial conditions for
all events in the ensemble are averaged before their hy-
drodynamical evolution. We refer to this method of en-
semble averaging as ”single-shot hydrodynamics” (SSH)
[30]. For a sufficiently large ensemble, averaging over
many, individually fluctuating and bumpy initial condi-
tions results in a smooth initial transverse entropy density
profile, which in turn may be evolved hydrodynamically
as a single, averaged event. This prescription eliminates
any sensitivity to event-by-event fluctuations in the ini-
tial state. We will here denote the HBT radii derived
from single-shot hydrodynamics by Rfj (i, = 0,8,1).

An alternative prescription for computing the
ensemble-averaged HBT radii evolves each fluctuating
event independently and averages over the entire ensem-
ble only after the HBT radii have been computed for each
event from its individual hydrodynamic emission func-

tion S(z, K). This leads to the following definition of
ensemble-averaged HBT radii:
1 N?V
2\ _ 2
(Ri) = 5= D> (R, (5)
ev k=1

We denote by (RZ;), the HBT radii of the kth event, and
we label the mean I-fBT radii computed according to this
”direct ensemble average” (DEA) by <Rfj>.

E. HBT calculations

The basic formalism describing our calculation of the
HBT radii was presented in [8]. Once the emission func-
tion (3) for a particular event has been obtained from
the hydrodynamic output using Eq. (4), the HBT radii
corresponding to that emission function may be defined
by [10, 12]

R?j(K—) = <(§31
where fuzmu—<xu>s, B:I?/EK, Ex= \/m%—kl_@, and

the K dependence of Rfj arises from the K dependence

of the emission function in the definition of the source
average:

- ﬁzf) (‘%j - Bj£)>g7 (6)

[d*z f(z) S(z, K)
[d*x S(z,K)

<f(m)>s (7)

K = (K1,Pk,Y) is the average pair momentum in the
lab frame, K = % (p1+p2). In this paper, we consider only
pairs of identical particles at mid-rapidity (Y =0).

The dependence of the HBT radii on the pair emission
angle @ also allows them to be expanded in a Fourier
series (we suppress the additional dependence of all HBT
parameters on K and Y),

R2(®) = R”0+2Z[ %) cos (n(@r—,))

+ Rfj(if sin(n (‘I)K—\I’n))} ; (8)

where the flow-plane angle ¥, is defined by the complex
phase of the nth-order anisotropic flow coefficient v,, [31]:

nv,

vpe™ = () (9)
fooo dKT KT f:rﬂ_ dP g K fd4£L' S(x,K)
JoSdEKr Ky [T _d®g [dizS(z, K)

In this work, we average R2, R2, and R2 over @, but we
report the 2nd ® i -harmonic R? s of the out-side cross-
term R2 (®f), since the mean value of its ®x-average
<R3570> vanishes for symmetric nucleus-nucleus collisions
at midrapidity [32]. For single events with fluctuating
initial conditions RZ, 2 receives non-zero contributions

from both Rog 5 and Rig 5, on an event-by-event basis, but
the former contribution averages to zero for a sufﬁmently

large ensemble. We therefore consider only the mean and
variance of the event-wise fluctuations of R>") = R?

08,2 — ~Vlos,2
for the remainder of this paper. For notational simplic-
ity, we will drop the 0’ subscript from the azimuthally
averaged radii, and write simply R?j (i,j=0,s,1).

At Y =0, Eq. (6) gives
R =(i2),, Ri=

S

(T7) - (10)

R? and Rl2 thus depend only on the geometric aspects of
the emission function. By contrast, both R2 and R? in-
volve a combination of spatial and temporal source vari-
ances:

R? = (22) — 28r(Tol) o + B() g, (11)
R<2)s <Z‘01'S>S _/8T<'1"S >S (12)

In [9] we describe a method for experimentally measur-
ing, in addition to the mean, also the variance of an event-
by-event distribution of the HBT radii. As a prediction
for such measurements, we here also compute the vari-
ances of the HBT radii for our ensemble of N, = 1000
events, defined by?

— (R}, )2. (13)

2 The factor ~ 1_1 makes 0” an unbiased estimator of the true
v

variance of the event-by-event distribution of HBT radii [33].
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FIG. 2: R}; vs. K from single-shot hydrodynamics, for ideal
and viscous fluids with the temperature dependent shear vis-
cosities (n/s) (T') shown in Fig. 1. Note the almost perfect
overlap of the green (dashed) and blue (dotted) curves in pan-
els (b,c).

In this paper, we will use and plot o;;/ <Rfj> as a measure
for the widths of the HBT radii distributions. For the
quantity R2, ,, we define the corresponding variance to

08,2
be
2 _ 1 o= 2 2 2
J05,2 - — Z ((Ros,Q)k - <Ros,2>> . (14)
Ney—1 £~

III. RESULTS
A. Mean HBT radii and their K+ dependence

In this subsection, we present the mean HBT radii
computed according to the two averaging prescriptions
described above (single-shot hydrodynamics (SSH) and
the direct ensemble average (DEA)), and study their sen-
sitivity to the temperature dependence of the specific
shear viscosity (n/s) (T).

First we consider in Fig. 2 the radii Rfj extracted from
single-shot hydrodynamics which averages over event-by-
event fluctuations in the initial state. Panels (a) and
(d) show that the sideward radius R? and the out-side
cross term st,z exhibit sensitivity to the temperature
dependence of (n/s) (T') both below and above Tt,. How-
ever, (n/s)(T) affects hadronic observables in two dis-
tinct ways. First, there is the cumulative dynamical
effect of shear viscosity on the development of flow in
the fireball; flow probes the entire temperature history
of (n/s) (T') between the initial and decoupling temper-
atures. Second, the emission function is affected by
the viscous correction ¢ f to the distribution function at
freeze-out, Eq. (4), which is controlled by the value of

%.0 0.5 1.0 15 0.0 0.5 1.0 15 i.O'
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FIG. 3: Same as Fig. 2, but leaving out in Eq. (4) the viscous
correction df at freeze-out. Comparison of Figs. 2a,d and
3a,d shows that the sensitivity of R2(Kr) and RZ, »(K7)to
the temperature dependence of (n/s) (T') below T, is almost
entirely due to the theoretically poorly controlled viscous cor-
rection 0 f at freeze-out, and that any sensitivity to the tem-
perature dependence of (n/s) (T') during the dynamical evo-
lution, i.e. before freeze-out, is strongly weighted at high tem-
peratures, i.e. early times. The sensitivity to d f at freeze-out
of the HBT radii probing the outward and longitudinal di-
mensions of the emission function (panels (b,c)) is negligible.

(n/s)(T) on the freeze-out surface. This gives a con-
tribution to observables such as the HBT radii that de-
pends exclusively on the behavior of (1/s)(T) at Tyec
and is basically independent of its prior history (except
for the accumulated effect of (n/s) (T') on the flow pat-
tern whose associated shear tensor also affects the shear
stress at freeze-out). To separate the two effects, we plot
in Fig. 3 the HBT radii computed without the §f cor-
rection, so that only the cumulative dynamical effects of
(n/s) (T) remain. Figures 3a,d show that deleting d f re-
moves all sensitivity of the sideward and out-side HBT
radii on the shear viscosity in the hadronic phase, leav-
ing only a weak sensitivity on the behavior of (n/s) (T)
in the high-temperature QGP phase.

On the other hand, comparison of panels (b,c) in
Figs. 2 and 3 reveals that the outward and longitudi-
nal HBT radii are almost completely unaffected by the
behavior of (n/s) (T) below Ty, and, in particular, receive
no significant contribution from the viscous correction 6 f
at freeze-out. This finding is at variance with the results
reported in Teaney’s pioneering analysis [26] of 0 f-effects
on the HBT radii. We note, however, that Teaney’s anal-
ysis was based on a blast-wave parametrization of the
hydrodynamic flow profile at freeze-out, rather than the
profile from a genuine hydrodynamic simulation of the
flow. It was noted before in Appendix E of Ref. [20]
that §f is very sensitive to the details of the velocity
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FIG. 4: The ensemble averaged (R;;) as a function of pair
momentum K, for the same choices of (n/s) (T) as in Figs. 2
and 3. This figure should be compared with Fig. 2.

shear tensor at freeze-out, and even its sign is fragile.
Furthermore, there are well-known conceptual uncertain-
ties about the correct form of 0 f, especially its pr de-
pendence [27]. These uncertainties render suspect any
observable that strongly depends on §f at freeze-out.?
Therefore, we caution the reader not to trust the appar-
ent sensitivity in Fig. 2a,d of RZ(Kr) and RZ, ,(Kr) to
the behavior of (n/s) (T') in the hadronic phase. On the
other hand, the sensitivity of R2(Kr) and R?(Kr) ex-
clusively to the temperature dependence of (/s) (T) in
the QGP phase above Ti, appears to be robust and un-
affected by freeze-out uncertainties related to df. These
high-temperature effects of (1/s) (T) on R2 and R} are
not huge, but they can reach 20% (for the squared HBT
radii) for a range of Kr values below 1.5 GeV.

Studies such as [15, 16] have explored the sensitivity
of the HBT radii to shear viscosity using constant (7-
independent) n/s and varying that constant. Different
from our approach here, when changing 7/s they also
changed other hydrodynamic parameters to ensure that
not only the normalization but also the slope of the pp-
spectra was held fixed. Additionally, both of these stud-
ies extract the HBT radii from a Gaussian fit to the full
three-dimensional correlation function instead of using

3 We comment that § f-related uncertainties may also affect some
of the conclusions in Ref. [1] about the dependence of charged
hadron elliptic and quadrangular flow, v§®(pr) and v$P (pr), on
the behavior of (n/s) (T') in the hadronic phase. For example, we
found that, when calculated without the Jf correction, almost
all sensitivity of va(pr) of directly emitted (“thermal”) pions to
the temperature dependence of (1/s) (T') in the hadronic phase
disappears, leaving only a (significantly weaker, but robust) de-
pendence of this observable to the temperature dependence of
(n/s) (T) in the QGP phase above Ti;.
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FIG. 5: Same as Fig. 4, but without the § f correction. This
figure should be compared with Fig. 3.

the short-cut through the source variances. These differ-
ences make a direct comparison of our work with their
results difficult. Our findings are qualitatively supported
by the work [28] (whose authors, like us, used the source
variances method) where it was found that an increase
in the Knudsen number (or, equivalently, n/s) resulted
in a decrease in R2. The purpose of the present work is
not a realistic comparison with experimental data which,
as done in [15, 16], would require a simultaneous tuning
of several additional parameters (see also Ref. [29]). Our
goal is to check systematically the sensitivity of the HBT
radii to a possible T-dependence of 7/s, in particular in
the context of event-by-event source fluctuations. It is to
these fluctuations that we turn our attention next.

We now investigate how the mean HBT radii are af-
fected by event-by-event fluctuations in the initial condi-
tions. To do so we evolve 1000 central (0-10% centrality)
Au+Au events at /s =200 A GeV with fluctuating initial
conditions and average their correspondingly fluctuating
HBT radii after freeze-out, as described in Sec. IID. The
results are presented in Fig. 4 (including the full distri-
bution function (4) at freeze-out) and Fig. 5 (without the
viscous 4 f correction in (4) at freeze-out). Compared to
Figs. 2 and 3, we see no qualitative differences. Again,
robust (although not very strong) sensitivities to the tem-
perature dependence of (n/s) (T') above T;, are seen in all
radii, but for R? these are buried by a stronger sensitiv-
ity to the viscous 0 f correction at freeze-out (which, we
reiterate, is theoretically not well controlled). As was the
case for the R?j from single-shot hydrodynamics, the ¢ f
corrections to the <R?j> are negligible when 4, j =o, (.

In Fig. 6 we plot the fractional change
(<R12j >—R?j) / R?j of the mean squared HBT radii arising
from event-by-event fluctuations, as a function of pair
momentum. Generically, event-by-event fluctuations are
seen to boost the ® g -averaged means of the fluctuating
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squared HBT radii due to event-by-event fluctuations, as a
function of pair momentum Kr. See text for discussion.

radii by a few percent above the corresponding radii
obtained from single-shot hydrodynamic evolution of
a smooth averaged initial condition. Exceptions to
this rule are the sideward radius for the HH-LQ and
HH-HQ parametrizations (i.e., for large shear viscosities
at freeze-out) in the range Kp >0.5GeV, driven by
effects from the § f correction at freeze-out, and the lon-
gitudinal radius at small pair momentum Kp < 0.2 GeV.
The systematic effects of event-by-event fluctuations
on the mean ®g-oscillation amplitude <R3572> are less
unambiguous, with fluctuations increasing or decreasing
<R5872> relative to R(Q,S,Q in different Kp-ranges depend-
ing on the specific temperature dependence selected
for (n/s)(T); the differences can become substantial
at small Kp where the oscillation amplitude is small,
with (R2, ,) even changing sign relative to R2, , in the
LH-HQ and HH-HQ parametrizations. Generically the
differences between the mean fluctuating HBT radii and
their single-shot hydrodynamic analogs are largest for
ideal fluid evolution and somewhat smaller for viscous
evolution. This is consistent with the idea that viscosity
attenuates fluctuation-driven effects.

For a better understanding of how different tempera-
ture dependences of (n/s) (T) affect the magnitudes and
Kt dependences of the radius parameters Rfj and <R?j>
we can look directly at the emission functions. These are
shown in Fig. 7a for a randomly selected single fluctuat-
ing event, and in Fig. 7b for the single-shot hydrodynamic
event with smooth ensemble-averaged initial conditions.
Having seen in Figs. 2-5 that at RHIC energies the HBT
radii discriminate mostly between (1/s) (T') parametriza-
tions that differ in the value of /s at the earliest times
and highest temperatures, we focus in Fig. 7b on the
HH-LQ and HH-HQ parametrizations (a comparison of
LH-LQ with LH-HQ would lead to similar conclusions).

As is well known (see, e.g., Ref. [34]), the average ra-
dial flow velocity increases approximately linearly with
r as one moves from the top of the freeze-out surface
in Fig. 7b (at r=0) to its vertical part (where 7 =rmnax
takes its maximum value). For the cases studied in Fig. 7,
this is shown in Fig. 8. This observation explains why,
for increasing K, the region of maximal emissivity (col-
ored red) moves from around r =0 for small momentum
pairs to rpmax for large momentum pairs. Fig. 7a illus-
trates how this phenomenon manifests itself in an indi-
vidual fluctuating event: While the regions of highest
emissivity roughly follow the average tendencies seen in
Fig. 7b, these tendencies are strongly modulated by fluc-
tuations in the shape of the freeze-out surface and of the
radial flow along this surface, giving rise to peaks and
valleys of emissivity as one moves around the freeze-out
surface at constant values of r or 7. Fig. 7a also illus-
trates that, in an individual event, the regions of maximal
emissivity have a strong dependence on the azimuthal di-
rection ®x of pair emission, and that therefore, for an
individual fluctuating event, one should expect strong
® i-dependence of the HBT radius parameters.

Comparing the freeze-out surfaces and regions of max-
imal emissivity shown in Fig. 7b for the two ensemble-
averaged sources that were evolved with shear viscosities
(n/s) (T') differing only in their behavior at high temper-
atures, we can make several observations:

(1) The larger specific shear viscosity of the HH-HQ
parametrization drives stronger radial flow which causes
the fireball to expand to larger radii and complete
its freeze-out at earlier times than for the HH-LQ
parametrization. This agrees with similar observations
made in Ref. [20].

(2) For longitudinally boost-invariant expansion with
longitudinal velocity component v, = z/t, emissivity re-
gions centered at later times see a smaller longitudi-
nal flow gradient and thus a larger longitudinal region
of homogeneity, reflected in a larger value for R? [12].
Fig. 7b shows that maximal emissivity for small and
intermediate Kp pairs is shifted to later times for the
HH-LQ parametrization than for HH-HQ, while for large
Kp=2GeV the pairs are emitted at roughly the same
times for both parametrization. This explains why in
Figs. 2¢ (and also in Fig. 4c) the longitudinal HBT radii
are larger for HH-LQ than for HH-HQ at small and in-
termediate K7 but nearly identical at large K.

(3) For small K, the regions of highest emissivity are
geometrically smaller in the outward and sideward? di-
rections for the HH-LQ case than for HH-HQ, but the
opposite is true at intermediate and high pair momen-
tum. This explains the behavior of the sideward radius
R? for these two parametrizations shown in Figs. 2a.

4 To see the truth of this second statement the reader should in
her mind visualize the emission surface rotated in ¢ direction
and look at its horizontal width when frontally viewed.
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FIG. 7: (a) The emission function S(z, K), for three values of Kt as indicated, Y =0 and integrated over ®x and 7, for
a single fluctuating event from the 0-10% centrality range, evolved with (1/s)un-rq. Colors code the emission intensity,
normalized to its maximum value on the freeze-out surface. (b) The emission function S(z, K) for the smooth average single-
shot hydrodynamic event corresponding to 0-10% centrality, for the same three values of K, Y =0 and integrated over ®x
and 7s, using the same color code as in (a). The width of the bands arises from plotting the (7, r) freeze-out contours for all
spatial angles ¢s on top of each other. The left and right columns of panels show results for evolution with (n/s)un—1q and

(n/s)uH-HQ, respectively. See text for discussion.

The most important aspect of the freeze-out surfaces
shown in Figs. 7b is the earlier freeze-out associated
with larger shear viscosities at early times (high temper-
atures). It reduces the emission duration and increases
the longitudinal flow gradient at freeze-out, which re-
duces the (z7) g and (%) ¢ contributions to R? and R?
in Egs. (10), (11) and is the root cause for the robustly
smaller RZ and R values observed in Figs. 2b-c and 4b-c
for the HH-HQ parametrization of (n/s) (T') compared to
the HH-LQ case. Its effect on the cross-terms variances

<£ois>s, <£Of>s and <a~cst~>s (and thus the behavior of
the cross-term radius R2,) is less intuitively obvious.
Last but not least, it is well established that the rate
at which R? decreases with increasing pair momentum
Kr is a measure of the radial velocity gradient along
the freeze-out surface [12]. Comparison of Figs. 8b,e,h
(middle column) to Figs. 8c,f,i (right column) shows that
evolution with (n/s)un—_nq leads to a larger radial flow
gradient along the freeze-out surface than evolution with
(n/s)un—rq (which has smaller shear viscosity at early
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FIG. 8: For each cell on the freeze-out surface the radial velocity is plotted against its radial position, color coded as in Fig. 7
for its emission intensity normalized by its maximal value on the surface. Panels a,d,g in the left column are for the single
fluctuating event, evolved with (1/s)um-1q, shown in Fig. 7a, for the same three Kr values as indicated. Panels b,e,h in the
middle column and panels c,f,i in the right column are for the ensemble-averaged event shown in Fig. 7b, evolved with single-
shot hydrodynamics using (1/s)au-rq (middle column) and (n/s)un—uq (right column), respectively. See text for discussion.

times). This correlates with the steeper Kp dependence
for R? in Figs. 2a and 4a for the HH-HQ parametrization
(green dashed curves) than for the HH-LQ one (black
dash-dotted curves).

B. Variances of HBT radii and their K+
dependence

Finally, we consider the variances of the event-by-event
distributions of the HBT radii. We present them in the
form of relative widths, normalized to the directly en-
semble averaged squared radii, in Figures 9 (full freeze-
out distribution function) and 10 (without the viscous
df correction on the freeze-out surface). For the @ -
averaged radius parameters the relative widths are seen
to be of order 10 — 15%, with little dependence on either
K7 or the specific shear viscosity used in the hydrody-

namic evolution. The event-by-event distribution of the
out-side oscillation amplitude RZ, , shows a somewhat
smaller relative width, especially at small K1 where the
mean amplitude is small. At larger Kp, shear viscos-
ity appears to reduce the relative width of the event-by-
event distribution of this oscillation amplitude compared
to ideal fluid evolution.

Focusing on the ®g-averaged radii (panels (a-c) in
Figs. 9 and 10) we observe that, just as was the case for
their ensemble averages, all sensitivity of their variances
to the temperature dependence of 7/s in the hadronic
phase appears to come from the viscous d f correction at
freeze-out and thus not to be of dynamical origin. The
sensitivity of the HBT variances to dynamical evolution
effects caused by varying the temperature dependence
of /s at temperatures above freeze-out can be seen in
Fig. 10 where the df contribution at freeze-out is re-
moved. The results for viscous evolution split into two
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FIG. 9: The normalized widths of the event-by-event distri-
butions of HBT radii as functions of pair momentum Kr,
for ideal fluid evolution and viscous dynamics with the four
parametrizations shown in Fig. 1.

bands, one for high, the other for low shear viscosity at
early times. The relative widths for ideal fluid dynam-
ics fall in between these two bands. The two bands are
characterized by the behavior of /s at high temperature,
not at low T: Higher shear viscosity at early times (i.e.
at high temperatures) leads to HBT variances that are
10-20% larger than those for evolution with lower shear
viscosity at early times. The behavior of the shear vis-
cosity at late times in the hadronic phase has no visible
dynamical effect on the normalized widths of the HBT
radii.

IV. CONCLUSIONS

We have presented a first analysis of the sensitivity
of the HBT radii to the temperature dependence of the
specific shear viscosity in relativistic heavy ion collisions
at top RHIC energies, taking into account that the HBT
radii fluctuate from event to event and that a consis-
tent comparison of experimental data with theoretical
predictions should thus be based on event-by-event evo-
lution of fluctuating initial conditions on the theory side.
We explored the effect of event-by-event fluctuations on
the mean HBT radii (and their deviation from the val-
ues obtained from single-shot hydrodynamics where the
initial-state fluctuations are ignored by averaging over
them before hydrodynamic evolution) and their relative
widths. We found that fluctuations tend to increase the
mean value of the fluctuating HBT radii by a few percent
above the value obtained by the traditional process of av-
eraging over the fluctuations already in the initial state,
and found that the event-by-event distributions of the
HBT radii are characterized by relative widths of order
10%.
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FIG. 10: Same as Fig. 9, but without the viscous correction
df to the freeze-out distribution function. One sees that for
the normalized width of the distribution of sideward radii R2,
deleting d f removes all sensitivity to the temperature depen-
dence of n7/s in the hadronic phase, while all other normalized
widths are only weakly affected by 6 f.

Comparing the HBT radii from hydrodynamic evolu-
tions with five different assumptions for the specific shear
viscosity and its temperature dependence we showed that
both the mean squared HBT radii and their relative
widths are affected by a possible increase of the specific
shear viscosity by a factor 10 between T}, and 37;, at
the level of 10-20%, with larger shear viscosities leading
to smaller mean HBT radii and larger relative widths of
their event-by-event distributions. There is little to no ef-
fect on either from variations in the behavior of (n/s) (T)
in the hadronic phase below Ti,, except for the sideward
and out-side radius parameters R? and Rgs’z and the
sideward variance o2 which all show significant sensitiv-
ity to the viscous ¢ f correction at freeze-out. The latter,
in turn, depends on the value of 7/s at the freeze-out
temperature but not on its prior dynamical evolution in
the hadronic phase. Since the §f correction is not the-
oretically well constrained at the present moment, this
sensitivity of R2 and R2,_ , to 11/s at freeze-out should be
viewed with some caution.

The levels of sensitivity of the HBT radii and their
variances to the temperature dependence of 7/s observed
here are comparable to those observed in Ref. [1] for the
elliptic and quadrangular flows. This indicates that pre-
cise 3-dimensional HBT measurements, in particular new
measurements of their variances [9], can play a valuable
supporting role in constraining the temperature depen-
dence of the QGP shear viscosity.
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