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Nucleon exchange mechanism is investigated in central collisions of symmetric heavy-ions in the
basis of the stochastic mean-field approach. Quantal diffusion coefficients for nucleon exchange
are calculated by including non-Markovian effects and shell structure. Variances of fragment mass
distributions are calculated in central collisions of 40Ca + 40Ca, 48Ca + 48Ca and 56Ni + 56Ni
systems.

I. INTRODUCTION

The standard mean-field theory provides a good ap-
proximation for the average evolution of the nuclear
collective motion at low energies, but severely under-
estimates the fluctuation of collective variables [1, 2].
Considerable effort has been made to extend the time-
dependent Hartree-Fock (TDHF) theory beyond the
mean-field approximation [3–9]. The Stochastic Mean-
Field (SMF) approach goes beyond the standard mean-
field description by incorporating the quantal and ther-
mal fluctuations in the initial state [10]. The initial state
fluctuations, which can be specified in a suitable man-
ner, are incorporated into the dynamics by generating
an ensemble of single-particle density matrix according
to the fluctuations in the initial state. In a number of
applications, it was illustrated that the SMF approach
provides very good approximation for exact quantal evo-
lution of the many-body systems at low energies, where
collisional dissipation mechanism does not play an im-
portant role [11–13]. For a description of the approach
and its various applications we refer to [14, 15].

Recently, we investigated nucleon exchange mecha-
nism in the central [16–18] and off-central heavy-ion
collisions [19] by employing the SMF approach in the
semi-classical approximation and ignoring memory ef-
fect in the diffusion process. Transport coefficients ex-
tracted from the SMF approach in the semi-classical
limit have similar form as in the empirical nucleon ex-
change model [20], but provide a more refined description
of nucleon exchange mechanism. In the present work,
we study nucleon exchange mechanism in fully quantal
framework of the SMF approach, also incorporating the
memory effect in the diffusion process, and compare the
results with the semi-classical approximation. In this in-
vestigation, for simplicity, we consider the central colli-
sions of two identical ions, i.e. symmetric collisions, at
energies below the fusion barrier. In section 2, we present
formal description of the nucleon diffusion in the quan-
tal framework of the SMF approach. In section 3, we
carry out calculations of variances of fragment mass dis-

tributions in several symmetric collisions. Conclusions
are given in section 4.

II. QUANTAL DIFFUSION

The standard TDHF provides a deterministic descrip-
tion of a collision process, i.e. the system evolves from a
specified initial condition to a single final state [1]. On
the other hand, in the SMF approach the initial condi-
tion is specified by a distribution function characteriz-
ing the quantal and thermal fluctuations of the initial
state. The initial fluctuations are incorporated into the
dynamics by generating an ensemble of the single parti-
cle density matrices. The expectation values of the ob-
servables are evaluated by carrying out averages over the
generated ensemble. In a single event labeled by λ, the
single-particle density matrix is determined by evolving
the single-particle wave functions Φλ

j (~r, t) according to
the self-consistent Hamiltonian in that event. Conse-
quently, in a given event, nucleon density and current
density are given by

ρλ(~r, t) =
∑

ij

Φ∗λ
j (~r, t)ρλjiΦ

λ
i (~r, t), (1)

and

~jλ(~r, t) =
∑

ij

~

2im

[

Φ∗λ
j (~r, t)~∇Φλ

i (~r, t)

−Φλ
i (~r, t)~∇Φ∗λ

j (~r, t)
]

ρλji, (2)

where labels (i, j) indicate a complete set of quantum
numbers for specifying single-particle wave functions. In
these expressions, elements of density matrix ρλji are un-
correlated randomGaussian numbers with zero mean val-
ues ρλji = 0 and variances determined by

δρλjiδρ
λ
i′j′ =

1

2
δii′δjj′ [ni(1− nj) + nj(1− ni)] . (3)

The average occupation numbers nj are zero or one at
zero temperature, and specified by the Fermi-Dirac dis-
tribution at finite temperatures [10]. In this expression
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and below, the bar over the quantities indicates the aver-
age values over the ensemble generated in the simulation.
The current density for each event obeys the continuity
equation,

∂

∂t
ρλ(~r, t) + ~∇ ·~jλ(~r, t) = 0. (4)

In deep-inelastic collisions, since binary character of the
system is maintained, a set of macroscopic variables can
be defined with the help of the window between the col-
liding ions. In the central collisions of symmetric systems,
the collision geometry is rather simple, and the window
is located at the origin of the center of mass frame and it
is perpendicular to the collision direction. In this work,
we do not differentiate between protons and neutrons,
we consider only total nucleon diffusion. We can define
the mass number of the projectile-like fragments in each
event by integrating over the nucleon density on the right
side of the window as,

Aλ
p (t) =

∫

d3rθ(x − x0)ρ
λ(~r, t), (5)

where x0 = 0 denotes the location of the window, which
is taken to be at the origin. According to the SMF ap-
proach, the mass number of the projectile-like fragment
follows a stochastic evolution according to the Langevin
equation [21, 22],

d

dt
Aλ

p (t) =

∫

dydzjλx (~r, t)|x=x0

= vA(A
λ
p , t) + δvλA(t), (6)

where jλx (~r, t) denotes component of the current density
along the collision direction, which is taken to be as the
x-component. The fluctuations of the nucleon flux across
the window in general has two contributions. One contri-
bution arises from the event dependence of the nucleon
drift coefficient vA(A

λ
p , t) through the fluctuating mass

number. The other part of the fluctuations arises from
the elements ρλji of the initial density matrix. In this anal-
ysis, we consider small amplitude fluctuations and ignore
the event dependence of the drift coefficient. Therefore,
in Eq. (6) we replace the fluctuating nucleon drift coeffi-
cient by its mean value, vA(A

λ
p , t) ≈ vA(Ap, t) ≡ vA(t),

vA(t) =
~

2im

∫

dydz
∑

j

[

Φ∗

j (~r, t)
~∇Φj(~r, t)

−Φj(~r, t)~∇Φ∗

j (~r, t)
]

x=0

nj .(7)

The mean value of the drift is determined by the net
nucleon flux across the window between colliding ions.
Since in the collisions of symmetric systems, net flux
across the window is zero, the mean value of the nu-
cleon drift vanishes, vA(t) = 0. The fluctuating part of
the nucleon flux which arises from the initial fluctuations
is given in terms of the elements ρλji of the initial density

matrix as,

δvλA(t) =
~

2im

∫

dydz
∑

ij

[

Φ∗

j (~r, t)
~∇Φi(~r, t)

− Φi(~r, t)~∇Φ∗

j (~r, t)
]

x=0

δρλji.(8)

According to the Langevin description, the fluctuating
flux acts as a stochastic force on the mass number. Using
Eq. (3) at zero temperature, it is possible to express the
correlation function of the fluctuating nucleon flux as,

δvλA(t)δv
λ
A(t

′) =
∑

p

Gp(t, t
′) +

∫

Gp(t, t
′)ρ(εp)dεp.(9)

Here, the summation p in the first term is over the dis-
crete negative energy particle states, while the integral
in the second term is carried out over the positive energy
continuum states. The density of states of the continuum
states is indicated by ρ(εp) and the quantity Gp(t, t

′) is
given by

Gp(t, t
′) =

(

~

2m

)2
1

2

∑

h

[

Aph(t) · A∗

ph(t
′)

+A∗

ph(t) · Aph(t
′)
]

. (10)

In this expression, the summation h runs over occupied
hole states, and the particle-hole elements of the matrix
A(t) are given by,

Aph(t) =

∫

dydz
[

Φ∗

p(~r, t)∇xΦh(~r, t)

−Φh(~r, t)∇xΦ
∗

p(~r, t)
]

x=0
. (11)

The variance of the mass distribution is defined as
σ2
AA(t) = δAλ

P (t)δA
λ
P (t). For small amplitude fluctua-

tions neglecting the effect arising from the fluctuations
in nucleon drift coefficient in Eq. (6), we can deduce the
following equation for the variance of the fragment dis-
tribution,

d

dt
σ2

AA(t) = 2DAA(t). (12)

Here, the quantal and memory dependent diffusion coef-
ficient for nucleon exchange is determined by the corre-
lation function of the stochastic part of the nucleon flux
according to,

DAA(t) =

∫ t

0

dt′δvλA(t)δv
λ
A(t

′). (13)

As can be seen from Eq.(9), the nucleon diffusion coeffi-
cient is given as the sum of proton and neutron diffusion
coefficients, DAA = DZZ +DNN , and there is no mixed
diffusion coefficient DZN as a result of the independent
nature of the nucleon exchange.
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III. RESULTS

In the previous semi-classical calculations [16–19], we
employed the TDHF code of Kim et al. with the SLy4d
interaction [23]. In this work, we carry out calcula-
tions of the quantal diffusion coefficients for nucleon ex-
change in the central collisions of 40Ca + 40Ca, 48Ca
+ 48Ca and 56Ni + 56Ni by employing the TDHF code
of Umar et al. with the SLy4 interaction [24, 25],
and compare the quantal diffusion coefficients with their
semi-classical values obtained by the code of Kim et al.

with the SLy4 interaction. Original version of the code
of Umar et al.calculates only the time dependent occu-
pied wave functions. In order to determine the quan-
tal diffusion coefficient, we extended the code to calcu-
late the time-dependent unoccupied single-particle wave
functions in addition to the occupied hole states. In prac-
tice, 3000−4000 positive energy states have been used in
calculations. The code writes the amplitudes Aph(t) of
Eq. (11) which are calculated and stored in each time
step since for calculation of Eq. (13) the entire time his-
tory is needed. This makes these calculations extremely
computation intensive. Formally, the unoccupied par-
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FIG. 1. (Color online) Diffusion coefficient (a) and variance
of fragment mass distribution (b) as a function of time in
central collision of 40Ca + 40Ca at 52.7 MeV. Solid, dashed
and dotted lines are the quantal and the semiclassical results
with Umar et al.’s code and Kim et al.’s code, respectively.

ticle states consist of a finite number of negative energy
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FIG. 2. (Color online) Diffusion coefficient (a) and variance
of fragment mass distribution (b) as a function of time in
central collision of 48Ca + 48Ca at 50.7 MeV. Solid, dashed
and dotted lines are the quantal and the semiclassical results
with Umar et al.’s code and Kim et al.’s code, respectively.

bound states and an infinite number of continuum states.
In Eq. (9), we approximate the integral over the con-
tinuum states as a sum over narrow slices (bins) in the
energy space as follows,

∫

Gp(t, t
′)ρ(εp)dεp ≈

∑

j

Gj(t, t
′)ρj∆εj , (14)

where the summation run over the discrete energy bins.
In this expression,

Gj(t, t
′) =

1

Nj

∑

α∈∆εj

Gα(t, t
′) (15)

denotes the average value of the Gα(t, t
′) over the cal-

culated states within the energy bin ∆εj , ρj = ρ(εj) is
the density of states of the continuum states evaluated at
the center energy εj of each bin, and Nj is the number
of states in the interval.We use the Fermi gas expression
for the density of states,

ρ(εj) =
1

2
V

(

2m

~2

)3/2
4π

(2π)3
√
εj = C

√
εj, (16)

where V denotes the normalization volume of the contin-
uum states. In the calculations, we use rectangular box



4

of a volume V = 24× 24× 49 fm3, which gives a value of
C = 7.0 MeV−3/2 for the constant C. As a technical fea-
ture, in the program there is a threshold energy for the
continuum positive energy proton and neutron states, εp
and εn, respectively. Since positive energy states should
begin at zero value for both protons and neutrons, in
the calculations we use the level density expressions with
shifted energies for protons and neutrons as follows,

ρ
p
j = ρp(εj) = C

√

εj − εp, (17)

and

ρnj = ρn(εj) = C
√

εj − εn. (18)
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FIG. 3. (Color online) Diffusion coefficient (a) and variance
of fragment mass distribution (b) as a function of time in
central collision of 56Ni + 56Ni at 99.9 MeV. Solid, dashed
and dotted lines are the quantal and the semiclassical results
with Umar et al.’s code and Kim et al.’s code, respectively.

We take a uniform value ∆εj = 1.0 MeV for the width
of energy bins. The code generates finite number of dis-
crete continuum states. Using these continuum states
and hole states we calculate the diffusion nucleon coeffi-
cient DAA(t), and calculate the variance of the fragment
mass distribution according to,

σ2

AA(t) = 2

∫ t

0

dt′DAA(t
′) . (19)

In principle, the variance of the fragment mass distribu-
tion should be calculated as [26],

σ2

AA(t) = σ2

ZZ(t) + σ2

NN (t) + 2σ2

ZN (t), (20)

where σ2
ZN arises from the proton-neutron correlations in

diffusion process, which is mainly driven by the symme-
try energy of the binary system. In the central collisions
of symmetric systems below barrier energies, because of
the relatively short collision time and small energy dis-
sipation, the correlations remain small. Therefore in the
calculations, we neglect the correlations and retain only
the total nucleon variance given by Eq.(19).
In the calculations, we gradually increase the number

of discrete continuum states until the variance of frag-
ment mass distribution reaches approximately its satura-
tion value. The upper panels of Fig. (1-3)a show quantal
diffusion coefficients (solid lines) for central collisions of
40Ca + 40Ca, 48Ca + 48Ca and 56Ni + 56Ni at the bom-
barding energies, Ecm = 52.7 MeV, Ecm = 50.7 MeV,
and Ecm = 99.9 MeV, respectively, as a function of time.
The time dependence of the diffusion coefficients can also
be viewed as dependence on the separation distance be-
tween ions. In the same figures, we also plot the semi-
classical diffusion coefficients which are obtained with
the Kim et al.’s code (dashed lines) and the Umar et

al.’s code (dotted lines). The SLy4 inteaction [27] is em-
ployed in both codes. The reason for using both codes is
to make sure that differences between the codes do not
give dissimilar results. In addition to differences in nu-
merical procedures, Kim et al.’s code assumes symmetry
with respect to z = 0 plane whereas Umar et al.’s code
does not. Furthermore Umar et al.’s code contains few
extra time-odd terms for the Skyrme interaction [24]. As
we see the results from the two codes are in a reason-
able agreement. Diffusion calculations are carried out at
bombarding energies slightly below the barriers. Conse-
quently collisions do not lead to fusion in the mean-field
description, after touching, the colliding ions exchange
several nucleons and re-separate again. Overall magni-
tudes of the quantal diffusion coefficients are smaller than
their semi-classical values and exhibits oscillations as a
function of time. These oscillations in quantal calcula-
tions are partly due to the shell structure of the nuclei
and partly due to the memory effect. In fact, as a re-
sult of the non-Markovian behavior, diffusion coefficients
take negative values during the separation stage of the
collision. On the other hand, the semi-classical calcula-
tions exhibit a smooth behavior as a function of time or
the separation distance. Part (b) in Figs. (1-3) shows
the variances of the fragment mass distributions for the
same systems at the same energies. The solid lines in-
dicates the quantal results, while and the result of semi-
classical calculations obtained in Kim et al.’s code and
Umar et al.’s code are shown by dashed and dotted lines,
respectively. The variances of the fragment mass dis-
tributions calculated in the semi-classical approximation
by employing two different TDHF codes are in relatively
good agreement with each other. On the other hand,
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the magnitude of quantal variances are smaller than the
semi-classical results by nearly a factor of two in collisions
of 40Ca + 40Ca and 56Ni + 56Ni, and a factor of three in
48Ca + 48Ca. This difference between the quantal and
the semi-classical calculations are partly due to genuine
quantal effects, shell structure and non-Markovian be-
havior in the diffusion coefficients. On the other hand,
an important part of the difference between the quantal
and the semi-classical results may be due to the density
of states factor of the continuum states. In the calcula-
tions we employ the Fermi gas level density expression,
which underestimates the actual density of the positive
energy continuum states.

IV. CONCLUSIONS

In this work, we investigate the nucleon exchange
mechanism in the quantal framework of the SMF ap-
proach. We carry out calculations of nucleon diffusion
coefficients and variances of fragment mass distributions
for central collisions of 40Ca + 40Ca, 48Ca + 48Ca and
56Ni + 56Ni at the bombarding energies, Ecm = 52.7
MeV, Ecm = 50.7 MeV and Ecm = 99.9 MeV, respec-
tively. These bombarding energies are slightly below the
fusion barriers of these systems. Consequently, collid-
ing ions in the TDHF description do not fuse, but dur-
ing contact they exchange several nucleons and separate
again. In the quantal calculations we employ the TDHF
code of Umar [24, 25], which is extended for obtaining

time dependent particle states. We compare the quan-
tal diffusion coefficients and the quantal variances of the
fragment mass distributions with those obtained in the
semi-classical framework by employing the TDHF code
of Umar et al. and also the TDHF code of Kim et al. The
quantal variances are smaller than those obtained in the
semi-classical approximation by nearly a factor of two in
collisions of 40Ca + 40Ca and 56Ni + 56Ni, and a factor of
three in 48Ca + 48Ca. The difference in the results partly
arises from the shell structure and non-Markovian effects
in the quantal calculations. In the quantal calculations
of diffusion coefficients, we use the Fermi gas expression
for the level density of positive energy continuum sates.
An important part in the difference between quantal and
semi classical result may be due to the Fermi gas ex-
pression, which underestimates the actual level density
continuum states. Further studies are needed to clar-
ify the effect of the level density of continuum states on
the quantal diffusion coefficients of nucleon exchange in
heavy-ion collisions.
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