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Cluster formation is a fundamental aspect of the equation of state (EOS) of warm and dense
nuclear matter such as can be found in supernovae (SN). Similar matter can be studied in heavy-ion
collisions (HIC). We use the experimental data of Qin et al. 2012 to test calculations of cluster
formation and the role of in-medium modifications of cluster properties in SN EOSs. For the
comparison between theory and experiment we use chemical equilibrium constants as the main
observables. This reduces some of the systematic uncertainties and allows deviations from ideal gas
behavior to be identified clearly. In the analysis, we carefully account for the differences between
matter in SN and HIC. We find that, at the lowest densities, the experiment and all theoretical
models are consistent with the ideal gas behavior. At higher densities ideal behavior is clearly
ruled out and interaction effects have to be considered. The contributions of continuum correlations
are of relevance in the virial expansion and remain a difficult problem to solve at higher densities.
We conclude that at the densities and temperatures discussed mean-field interactions of nucleons,
inclusion of all relevant light clusters, and a suppression mechanism of clusters at high densities
have to be incorporated in the SN EOS.

PACS numbers: 21.7.Mn, 26.50.+x, 21.30.Fe, 25.70.Pq
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I. INTRODUCTION

Cluster formation is a fundamental aspect of the equa-
tion of state (EOS) of warm and low density nuclear mat-
ter, i.e., for temperatures of several MeV and densities
below normal nuclear matter density n0

B ∼ 0.15 fm−3. It
has been shown in several works [1–5], that these condi-
tions are realized in nature in core-collapse supernovae
(SN). There, nuclear clusters appear abundantly in the
shock heated matter and in the envelope of the newly
born proto-neutron star. However, their role on the ex-
plosion dynamics and the subsequent cooling and com-
pression of the proto-neutron star is not yet fully un-
derstood. In particular, their impact on the evolution
of the neutrino spectra and luminosities has to be in-
vestigated further. This is important because these neu-
trino properties determine the nucleosynthesis conditions
in the so-called neutrino-driven wind, and thus the ques-
tion of whether or not a full r-process is possible in core-
collapse SN.

Fortunately, cluster formation and their in-medium ef-
fects can be probed by heavy-ion collision (HIC) experi-
ments. Experimental data can be used to discriminate
different SN EOS, see e.g. Refs. [6, 7]. From theory,
the necessity to account for medium effects on clusters
is known since a long time. Only now do the experimen-
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tal data allow a detailed analysis of this question. To our
knowledge, Ref. [6] is the first work with a clear state-
ment on density effects in the EOS of clusterized matter
deduced from experiments.
In comparisons between theory and experiment prob-

lems arise, because of differences of the state of matter in
SN compared to that in HIC. Temperatures and densities
are similar, but matter in SN can be more asymmetric,
i.e., can have a lower (total) proton fraction. Even more
important for our investigation, the fireball in a HIC has
a finite size, limiting the maximum mass number which
the clusters can have. Furthermore, matter in SN, which
can be considered as being infinite, has to be charge neu-
tral, whereas there is a net charge in HIC. This leads to
different Coulomb interactions in the two systems.
Another problem arises because some SN EOS make

limiting assumptions for the nuclear composition. For
example the EOS of Shen et al. [8] (STOS) and the EOS
of Lattimer and Swesty [9] (LS), which are frequently
used for astrophysical applications, only consider neu-
trons, protons, alpha particles and a representative heavy
nucleus as degrees of freedom. Regarding the representa-
tive heavy nucleus, it was shown already in Ref. [10] that
the so-called single nucleus approximation leads only to
minor deviations for thermodynamic quantities. How-
ever, for light nuclei it is not possible to introduce only a
representative nucleus, as we will also show in the present
study.
The main idea of Ref. [7] was to extract a quantity

from experimental data that is robust with respect to ef-
fects such as the asymmetry of the source or a limited
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nuclear composition, which can be difficult to control ei-
ther experimentally or in the theoretical description, as
described above. Instead of using the particle yields di-
rectly, the chemical equilibrium constant (EC) was con-
sidered. This quantity is given as a particular ratio of
particle number densities ni [7]:

Kc[i] =
ni

nNi
n nZi

p

, (1)

where Ni and Zi are the neutron and charge number,
respectively of nucleus i. The quantities nn and np are
the number densities of neutrons and protons not bound
in nuclei.
The usage of the EC reduces the influence of the prob-

lematic aspects in the model comparisons, but is still
able to discriminate between different EOS. The ECs Kc

are sensitive to medium modifications, in particular Pauli
blocking1 and the dissolution of bound states at high den-
sities. Compared with a nuclear statistical equilibrium
(NSE) description of ideal gases (also called the ideal
mass action law), the medium effects lead to a reduction
of the abundances of bound states and the mass frac-
tions of single nucleon states are increased. Both effects
reduce the value of Kc so that large deviations from NSE
are expected, as also verified by experiments. On the
other hand, Kc is less sensitive to the asymmetry of nu-
clear matter, and also less influenced by the abundance
of other (heavy) elements, than are the abundances or
mass fractions of light clusters. Therefore it is a good
signature for the medium modifications of light element
properties in dense matter.
A quantum statistical (QS) approach to calculate the

chemical constants has been used in Ref. [7]. It was
shown that the simple description of NSE based on ideal
(classical) gases is clearly ruled out at some of the densi-
ties under consideration. Interactions of the nucleons and
clusters and their medium modifications have to be taken
into account, for example as excluded volume effects or
as quasiparticle energy shifts including Pauli blocking.
On the other hand, in Ref. [7], unexpected deviations
were found among the different theoretical models at low
densities where the ideal NSE should be a good approxi-
mation. In the present study, we improve the calculations
presented in Ref. [7] and achieve a better agreement of
the different theoretical descriptions at low densities.
The general aim of the present study is to refine the

comparison of the predictions of various SN EOS with the
experimental results, to further constrain the medium ef-
fects at high densities. Different theoretical approaches
are considered, from excluded volume to quantum sta-
tistical calculations. We will also use the ECs as the

1 Light clusters are composite particles of nucleons. Thus, at large

densities the light clusters do not behave as free quasiparticles,

but are influenced by the filled Fermi sea of nucleons. This ef-

fect is called Pauli blocking and leads to a shift in the binding

energies.

main observables, but discuss aspects which were not
addressed in Ref. [7]. We investigate uncertainties and
model assumptions in the experimental and theoretical
data and identify to which degree they are of relevance.
In particular, we discuss the sensitivity of the chemical
ECs to the asymmetry of the emitting source, to lim-
iting assumptions for the nuclear composition, and to
Coulomb corrections.
The outline of this article is as follows: in Sec. II we

describe the experiment and the used methods to ex-
tract the relevant data. In Sec. III, we introduce some
definitions used later and discuss basic aspects of ECs.
In Sec. IV, we analyze effects of the asymmetry of the
system, of Coulomb interactions, and of particle degrees
of freedom on the ECs, using modifications of the EOS
model of Hempel and Schaffner-Bielich (HS) [11]. In
Sec. V, we introduce the other EOS models considered
in our work and modify them such that they fit to the
conditions in HIC. Sec. VI contains the main results of
our work, where the final comparison among the different
theoretical models and the experimental data is given. In
Sec. VII, we summarize and present our conclusions.

II. EXPERIMENTAL DATA

The NIMROD 4π multidetector at Texas A&M Uni-
versity was used to measure cluster production in col-
lisions of 47A MeV 40Ar with 112,124Sn and 64Zn with
112,124Sn. The yields of p (1H), d (2H), t (3H), h (3He),
and α (alpha particles, 4He) were determined. The com-
bined neutron and charged particle multiplicities were
employed to select the most violent events for subsequent
analysis. Double isotope yield ratios [12, 13] were used
to characterize the temperature at a particular emission
time, and densities were determined with the thermal co-
alescence model of Mekjian [14–16]. For comparison with
other methods of density determinations, see Ref. [17].
All experimental data that we are using are taken di-
rectly from Ref. [7]. For all details of the experimental
setup and analysis, we refer to Ref. [7].
The statistical uncertainty for the extracted densities

are 17%, and for the extracted temperature are 10%
for densities below 0.01 fm−3, increasing to ∼15% at
0.03 fm−3. The errors of the measured particle yields,
used to derive the values of the equilibrium constants,
are much smaller. Fig. 1 shows the experimental data.
There are two data sets: in addition to the standard
binning, which gives 34 different combinations of tem-
perature and density, there is a second data set where
the full information has been averaged to 7 data points
at temperatures of 5, 6, 7, 8, 9, 10, and 11 MeV. In the
calculations we always use only the mean values of the
measured temperatures and densities, and include their
uncertainties in the figures by grey bands or error bars.
In the following we discuss aspects of the experiments,

which are of particular importance for the present investi-
gation. The first is the question of which nuclear clusters
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FIG. 1: (Color online) Temperatures and densities extracted
from the experiment. The red diamonds show the full data
set, the black squares represent a reduced average. We only
show the statistical errors for the full set, because the uncer-
tainties of the averaged one are similar.

can be formed. The experimental data which we are us-
ing are extracted for a specific source which is identified
as the early emitted gas—it leaves the system in about
150 fm/c and is a relatively small fraction (∼ 20%) of the
total system, containing roughly 30 to 40 nucleons. Its
momentum sphere is initially detached from that of the
surrounding matter. The light clusters are assumed to be
formed from the nucleons in an equilibrium coalescence.
The combination of small overall source size and limited
reaction time limit the possible competing species. This
is a crucial aspect which has to be considered in the model
comparison below.

In the experiments, some very small quantities of 6Li
and 7Li were found. Note that 4Li and 5Li are very short-
lived unstable resonances decaying into p+3He or p+4He
in ∼ 10−24 sec. Thus effectively they are included in the
other light particle yields in the experiment—if they ex-
isted. The upper limit to Li which could be assigned to
the source (assuming a three source fitting process for all
observed Li) corresponds to an average multiplicity per
event of ∼ 0.09. Thus Li occurs in less than 1/10 of the
events and cannot account for more than 0.6 mass units
which is a a fractional mass of ≃ 2%. Thus Li is ignored
in the derivation of ECs from the models because these
are discrete entities and 90% of the events will not have
a Li present for the other particles to interact with. We
conclude that the proper comparison with experimental
results is to employ Z ≤ 2 as a constraint in the theo-
retical models. Obviously, one could ask what causes the
suppression of Li. We suggest that the production of Li
is time-constrained in the collision. The formation of Li

requires sufficient time to reach equilibrium and the HIC
is faster. Such a constraint could potentially be described
by a nucleation approach, cf. [18].
As will be shown below, the ECs have a dependency on

the asymmetry of the system. For the particular source
we are investigating, we have identified a total proton
fraction of Y tot

p = Zsource/Asource = 0.41 as a good rep-
resentative value. If not noted otherwise, we always use
this value in the theoretical models. The same value was
also used in the analysis of Ref. [7].

III. DEFINITION AND BASIC ASPECTS OF

THE EC

In this section we give definitions of quantities used
later and review some basic properties of the ECs. Let us
start with the number density of an ideal, non-interacting
Maxwell-Boltzmann gas of nuclear species i,

nid
i (T, µi) = gi

(

MiT

2π

)3/2

exp

(

1

T
(µi −Mi)

)

. (2)

The spin degeneracy factor is denoted by gi, µi is the
chemical potential of the corresponding nucleus including
the rest mass Mi and T is the temperature. We will use
the ECs of an ideal gas as a reference, given by

K id
c [i] =

nid
i

(nid
n )

Ni(nid
p )

Zi
. (3)

If we assume that chemical equilibrium (i.e., NSE) is es-
tablished,

µi = Niµn + Ziµp , (4)

one finds that the contribution of the chemical potentials
to K id

c cancels out, and that it is thus only a function of
temperature,

K id
c [i] = K id

c [i](T ) . (5)

Therefore it is also composition independent, i.e., it does
not depend on which other particles besides n, p, and i
are included as degrees of freedom.
For example for the alpha particle one has:

K id
c [α] =

nid
α

(nid
n )

2
(nid

p )
2 . (6)

By using Eq. (2) in Eq. (6) one obtains

K id
c [α] =

1

24

(

2π

T

)9/2 (
Mα

M2
nM

2
p

)3/2

exp

(

Bα

T

)

, (7)

whereBα is the total binding energy of the alpha particle.
For arbitrary species i we have Bi = NiMn + ZiMp −
Mi. For the values of the binding energies, respectively
masses, in the ideal gas case we use Ref. [19].
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We want to emphasize that, as long as equilibrium
is maintained in the system, all deviations of Kc from
K id

c are just due to deviations from classical ideal gas
behavior. In turn, as soon as one has deviations from
the classical ideal gas behavior, either due to interac-
tions, or due to Fermi-Dirac (or Bose-Einstein) statis-
tics, there will be a remaining dependency on the chem-
ical potentials µn and µp. Below, instead of the chem-
ical potentials, we will use the baryon number density
nB = nn+np+

∑

i niAi, with Ai = Zi+Ni, and the total
proton fraction Y tot

p = (np +
∑

i niZi)/nB as state vari-
ables, where the sum over i denotes all considered nuclei.
Even in the ideal case, the relation between (µn, µp) and
(nB, Y

tot
p ) depends on which nuclei are included. Never-

theless, in the ideal, classical case the ECs are still just
a function of temperature, even if they are presented as
a function of density by using Fig. 1. Conversely, in the
non-ideal case, the ECs will depend on the composition
and density of the system, in addition to the temperature
dependence.

IV. DEPENDENCIES OF ECS RELEVANT FOR

THE MODEL COMPARISON

Before comparing different SN EOS models, we want
to identify the dependency of ECs on selected aspects of
the EOS which are relevant for this comparison. We are
especially interested in aspects which were not discussed
in Ref. [7]. For this analysis we use the model of HS [11]
as a starting point and then employ several modifications
to it. Obviously, the specifics of this dependence could be
different in other models. However, in the present section
we just want to identify and illustrate all aspects which
can have an influence on the ECs.

A. Brief description of the HS EOS

First we give a brief summary of the HS EOS, orig-
inally formulated in Ref. [11]. The HS EOS describes
SN matter as a chemical mixture of nuclei and un-
bound nucleons in NSE. Nuclei are described as classical
Maxwell-Boltzmann particles, nucleons with a relativistic
mean-field (RMF) model employing Fermi-Dirac statis-
tics. Several thousands of nuclei are considered, including
light ones. Their binding energies are either taken from
experimental measurements [19] or from various theoret-
ical nuclear structure calculations [20, 21]. The follow-
ing medium modifications are incorporated for nuclei:
screening of the Coulomb energies by the surrounding
gas of electrons, excited states in the form of an internal
partition function, and excluded volume effects.
The black diamonds in Fig. 2 show the equilibrium con-

stant for the alpha particle determined from HIC exper-
iments as published in Fig. 3 of Ref. [7]. The seven data
points correspond to the averaged experimental data set,
and are presented as a function of the extracted baryon
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FIG. 2: (Color online) EC for the alpha particle from experi-
ments (black diamonds), an ideal gas EOS (black dots), and
for the HS EOS, applying the NL3 interactions (dark blue
crosses). The grey band is the experimental uncertainty of
the density determination.

number density in a very similar way as in Ref. [7]. The
black dots in Fig. 2 show K id

c [α] of Eq. (6), i.e., the same
quantity but obtained from a non-interacting ideal gas
NSE model using the same temperatures as in Ref. [7].
Note again, that K id

c [α] is independent of the considered
particle degrees of freedom and only a function of tem-
perature, see Eq. (7). Thus in Fig. 2, the dependency
of K id

c [α] on density actually has to be seen as the de-
pendency on the corresponding temperatures due to the
tight correlation between temperature and density in the
experimental data, as shown in Fig. 1.
As a starting point, we compare our results for the HS

EOS [11] with the experimental results for the equilib-
rium constant of the alpha particle given in Ref. [7]. In
Ref. [7], the HS model with the RMF interactions NL3
[22] was selected. The ECs for this model are given by
the dark blue crosses in Fig. 2. They are calculated from
the particle densities, which were taken from the publicly
available electronic data tables of the HS(NL3) EOS.2

The results are different from those published in Ref. [7]
for the same model. The source of this deviation was a

2 See http://phys-merger.physik.unibas.ch/~hempel/eos.html.
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FIG. 3: (Color online) EC for the alpha particle from the
HS EOS, applying the DD2 interactions (red open symbols).
The red circles and squares show variations of the total proton
fraction from the value 0.41 used in all other calculations.

misinterpretation of definitions in the HS EOS in Ref. [7].
An additional deviation came from the method used to
interpolate the tabulated EOS data. It is important to
point out that in Fig. 2 the HS(NL3) model converges
to the ideal gas limit at low densities and temperatures.
The results presented for this model in Ref. [7] for HS
were not correct.

B. Dependence on asymmetry

In this section, we start to identify factors which in-
fluence the ECs, by investigating the role of the asym-
metry, using the HS EOS. Above we presented updated
results for the NL3 interaction, because this was also
chosen in Ref. [7]. However, it is known that this RMF
parametrization is in disagreement with some constraints
for the saturation properties of bulk nuclear matter, see
e.g. Ref. [5]. In particular, it has an unrealistically stiff
density dependence of the symmetry energy. Therefore
in the following, for the HS model we will use the RMF
interaction DD2 [23] instead. This interaction gives a
very satisfactory agreement with many other experimen-
tal constraints [5]. The model with nuclei is called the
HS(DD2) EOS. Note that full SN EOS tables are avail-
able for HS(DD2), and have already been employed in
SN simulations [5].
In Fig. 3, the EC Kc[α] is depicted as a function of the

baryon density nB. The red symbols show the theoreti-
cal results for different values of the total proton fraction
from HS(DD2). The red triangles are for Y tot

p = 0.41,

the red squares for Y tot
p = 0.3 and the red circles for
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FIG. 4: (Color online) EC for the alpha particle from the
HS(DD2) EOS with (red triangles) and without Coulomb
screening (CS, red pluses).

Y tot
p = 0.5. For Y tot

p = 0.41 (the standard case) the re-
sults are similar to HS(NL3) presented in Fig. 2. The
asymmetry, denoted by the total proton fraction Y tot

p of

the system, has an effect on the EC. A higher Y tot
p in-

creases Kc[α]. This has to be seen as an indirect effect:
a change of the total proton fraction induces changes of
the partial densities of all particles. But as was shown
in Sec. III, the ECs have no density or asymmetry de-
pendence in the ideal gas case, because the changes of
the particle densities cancel out. In contrast, in an in-
teracting model, there is also a change of the strength
of the interactions, leading to modifications of Kc. Due
to the dependency observed here, the choice of Y tot

p is
important. For the remainder of the article we are using
Y tot
p = 0.41, corresponding to the value extracted from

the experiment, see Sec. II.

C. Role of Coulomb effects

In SN matter, the Coulomb interactions of nuclei are
screened by the surrounding electrons. This effect is
taken into account in some EOS models, and also in
the HS EOS. The Coulomb screening is an interaction
which favors the formation of nuclei with high charge as
compared to the no-screening case. Thus it also leads
to an enhancement of alpha particles compared to neu-
trons and protons. In HIC, there is no background of
electrons, and thus there should not be any Coulomb
screening. In addition to the strong interaction between
the different constituents, actually there is also Coulomb
repulsion which, in principle, contributes to the energy
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of charged species. However, to take this into account is
beyond the scope of the present investigation.
The case of the HS EOS without Coulomb screening

is shown in Fig. 4 by the red pluses. Switching off the
Coulomb screening leads to a reduction of Kc[α] and the
agreement with the experimental data gets marginally
better. However, the effect is very small due to the low
charge of the alpha particle. Because it is more realistic,
in all following cases of the HS model to be discussed,
the Coulomb screening is switched off. Also in all other
models considered, we will check the implementation of
Coulomb interactions.

D. Particle degrees of freedom

Next we investigate the effect of the included particle
degrees of freedom. Note again, that there would be no
composition-dependence in the ideal case. All composi-
tion effects on Kc in non-ideal systems are only indirect.
A change of the number of particle species as relevant de-
grees of freedoms can change partial densities and thus
leads to a change of the strength and form of the inter-
actions, which influences Kc. In general, all clusters that
are allowed to be formed from the source in the experi-
ment should be included in the model calculation. The
simplest and most obvious constraint is that the nuclei
formed cannot have a mass above the sum of the two
colliding nuclei. However, as we have argued in Sec. II,
for comparison to the data which we are considering, the
composition should be much more constrained, namely
to Z ≤ 2
Before discussing the composition dependence of the

equilibrium constant, we have a look at the chemical com-
position itself which is shown in Fig. 5 as a function of
the density. In the HS(DD2) model, there is a small con-
tribution of very heavy nuclei, as can be seen in the lower
panel of Fig. 5. The top panel of this figure shows the
mass fractionsXi = niAi/nB of the most important light
nuclei with Z ≤ 2, nucleons, and the summed mass frac-
tion of all other nuclei (rest). The bottom panel gives
the summed mass fractions of nuclei above mass num-
ber A = 10, 20, and 50. The summed mass fraction of
nuclei with Z > 2 (the “rest”) can exceed 20%. It is
made up from other light and intermediate nuclei, with
an exponential distribution as a function of mass number.
Helium and Lithium isotopes give the largest contribu-
tions. The mass fraction of nuclei with A > 10 still can
exceed 3% for some of the conditions. The mass fraction
of nuclei with A > 20 is only around or below 10−3, see
Fig. 5. Nuclei with A > 50 are highly suppressed, and
their abundance is completely negligible.
Now we return to the EC of the alpha particle. The red

crosses in Fig. 6 show Kc[α] if only nuclei with A ≤ 10
are considered. The contribution of nuclei with A > 10 is
too small to have a strong effect on Kc[α]. For the filled
red circles in Fig. 6, only nuclei with A ≤ 4 and Z ≤ 2 are
considered: neutrons, protons, deuterons, helions, tritons
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FIG. 5: (Color online) Composition in the HS(DD2) EOS
without Coulomb screening. (a) Mass fractions of neutrons,
protons, alpha particles, deuterons, tritons, helions and the
sum off the rest, i.e., all other nuclei on a linear scale. (b)
Summed mass fractions of nuclei above mass number A = 10,
20, and 50 on a logarithmic scale.
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set (black diamonds) and for different compositions of the HS(DD2) EOS, always without Coulomb screening (CS). The ECs
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and alpha particles. This case is motivated by the argu-
ments given in Sec. II that the formation of all heavier
nuclei is suppressed in the experiment. We find that this
limited composition induces some small, but notable dif-
ferences compared to the case of A ≤ 10 (red crosses)
or the unconstrained composition (red pluses). For the
HS(DD2) model it leads to better agreement with the ex-
periment. For the red asterisks (denoted by “npα”) only
neutrons, protons, and alpha particles are included. It is
clear that this limited composition is only considered for
illustrative purposes. Other nuclei, e.g. the deuteron, are
in fact seen abundantly in the experiment. We include
this case here, because the limited npα-composition (plus

a representative heavy nucleus) is used, e.g., in the STOS
and the LS EOS. The results shown in Fig. 6 for this
case demonstrate once more that the considered degrees
of freedom can have a big effect on Kc. Even though the
agreement of the npα case of the HS(DD2) EOS with
the experiment is excellent, we do not think this model
should be regarded as more realistic. Instead this agree-
ment rather has to be seen as a coincidence. Obviously,
the npα EOS would fail to explain the non-zero values of
Kc[d], Kc[t], or Kc[h].

This is illustrated in Fig. 7. In contrast to the figures
above, we are comparing with the full experimental data
set, which also includes the ECs of deuterons, helions
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and tritons. We are considering again the four different
assumptions for the composition as in Fig. 6. Strictly
speaking, the npα case makes the prediction that Kc[d],
Kc[h], and Kc[t] are all zero. Therefore we have put the
corresponding symbols on the x-axis. If instead the right
corrections for the comparison to HIC experimental data
(A ≤ 4, no Coulomb screening) are applied, the HS EOS
model is in quite good agreement with the experimental
data. The most apparent deviation appears for the alpha
particle, where the HS model predicts slightly larger val-
ues, but still mostly within the experimental error bars.

V. DESCRIPTION AND MODIFICATIONS OF

OTHER EOS MODELS

In a similar way as for the HS EOS, in the following
we give a brief description of various other SN EOS mod-
els, and modify them such that they can be applied for
the HIC experiments. We will not go through all the
steps which were done in Sec. IV, but concentrate on the
peculiarities of each model.

A. STOS

As in the HS EOS, the STOS EOS of H. Shen et

al. [8, 24] also uses a RMF interaction for the nucle-
ons. However, only one EOS table is available which
is based on the TM1 parametrization [25]. The STOS
EOS employs neutrons, protons and alpha particles as ex-
plicit particle degrees of freedom. Nucleons are described
by Fermi-Dirac statistics, alpha particles with Maxwell-
Boltzmann statistics and excluded volume corrections.
Excited states of alpha particles are not considered. The
formation of heavy nuclei is treated in the single-nucleus
approximation (SNA). The properties of the representa-
tive nucleus are obtained from Wigner-Seitz cell calcu-
lations within the Thomas-Fermi approximation for pa-
rameterized density distributions of nucleons and alpha
particles. Its translational energy is not taken into ac-
count.
In Fig. 8, we show the mass fraction of heavy nuclei of

the STOS EOS for the thermodynamic conditions corre-
sponding to Fig. 1. For most of the data points, about
50% or more of all nucleons are bound in heavy nuclei.
These heavy nuclei have masses in the range from 40 to
140 which is shown in the bottom panel. In the unmodi-
fied HS model, such heavy nuclei are not found, but light
and intermediate nuclei are favored instead, see Fig. 5.
Heavy nuclei also appear in HS, but only at higher den-
sities. The appearance of heavy nuclei in STOS can thus
be interpreted as a compensation effect for missing light
nuclei, but might also depend on different descriptions of
temperature effects in heavy nuclei (compare also with
Ref. [26]).
The composition found for STOS cannot be produced

in the experiment. Therefore we have repeated the cal-
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FIG. 8: (Color online) (a) Mass fraction of heavy nuclei of the
STOS, LS220, SHT(NL3) and SHO(FSU2.1) EOSs, for the
conditions extracted from the experiment. (b) Corresponding
average, respectively representative, mass number of heavy
nuclei.

culations of STOS, suppressing the formation of heavy
nuclei by assuming uniform nucleon and alpha particle
distributions. In this situation, one obtains the npα com-
position which was also considered as one of the HS mod-
ifications in Sec. IVD. We think that the npα case rep-
resents the appropriate limit of the STOS EOS for the
HIC we are investigating, because other light nuclei are
not considered in the model of STOS.
The npα model of STOS is slightly different than that

of HS. Different RMF interactions are employed in the
two models for the nucleons, the excluded volume pre-
scriptions are different and no Coulomb screening is used
in STOS for the alpha particles. The last point means
that we do not have to apply any further corrections for
the Coulomb energies, as done in the HS model. We
have checked that our calculations of the npα case of the
STOS model agree with the published data in regimes
where the full STOS EOS gives the npα composition by
itself. The agreement was typically up to the third digit
in mass fractions and second digit for ECs.
In Fig. 9, we show the alpha particle EC, for the orig-

inal STOS model and the STOS npα model, denoted as
“STOS, HIC modif.” in which we suppressed heavy nu-
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FIG. 9: (Color online) EC for the alpha particle from the
original STOS EOS [8] (green stars) and for a modification of
it for the conditions in the HIC experiment (green squares),
where heavy nuclei are suppressed.

clei. The model modified for HIC shows a better agree-
ment with the experimental data than the uncorrected
one. The results are close or within the error bars. Inde-
pendent of whether or not these corrections are applied,
the STOS EOS does not include any other light nuclei
than alpha particles, and thus cannot explain the other
ECs.
The EOS of Furusawa et al. [27, 28] represents an ex-

tension of the STOS EOS where other light nuclei and
a distribution of heavy nuclei are already included. Fur-
thermore, it incorporates both Pauli-blocking shifts and
excluded volume effects to dissolve light clusters at high
densities [28]. This model has already been used to ex-
plore the effect of light nuclei in core-collapse SN sim-
ulations [29]. We expect that this EOS gives a better
agreement with the experimental data. A tabulated ver-
sion of this EOS is not yet publicly available, therefore
here we are using only the STOS EOS.

B. LS

The EOS of Lattimer & Swesty [9] exists for three
different (non-relativistic) parametrizations of the nu-
cleon interaction, which are usually denoted according
to their value of the incompressibility K of 180, 220, and
375 MeV. The last value is now considered as incompati-
ble with experimental data such as those extracted from
measurements of the giant monopole resonance. The
EOS with K = 180 MeV leads to a too low maximum
mass of neutron stars, which is not compatible with lat-
est astrophysical observations. Thus we only investigate
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FIG. 10: (Color online) EC for the alpha particle from the
original LS220 EOS [9] (open orange diamonds) and for a
modification of it for the conditions in the HIC experiment
(filled orange diamonds), where heavy nuclei are suppressed.
For the full orange squares in addition a correction for the
binding energy of the alpha particle was implemented.

the version with K=220 MeV, which we call LS220.
The LS EOS considers nucleons, alpha particles and

heavy nuclei in SNA as degrees of freedom. The latter
are described with a liquid-drop model. For the nucleons,
non-relativistic Fermi-Dirac statistics are used, for the al-
pha particle Maxwell-Boltzmann statistics and excluded
volume corrections. Excited states of alpha particles
are not considered. Heavy nuclei are also described by
Maxwell-Boltzmann statistics, however, with fixed mass
number in the translational energy.
The composition of matter in the LS220 model is

shown in Fig. 8 by the open orange diamonds. One has
a similar situation to that of the STOS EOS: there is a
huge fraction of very heavy nuclei, which cannot be pro-
duced in the HIC experiments we are considering. Thus
in a similar way to which we modified the STOS EOS,
we have modified the LS calculations to suppress heavy
nuclei. As before, this means one is left with the npα
model. In this case the LS model does not include any
Coulomb screening due to surrounding electrons.
The two cases are compared with the experimental

data in Fig. 10. The unmodified model agrees quite well,
however, this has to be seen as a coincidence. The sup-
pression of heavy nuclei, which cannot be formed in the
experiment, leads to too low values of Kα in the thus
modified EOS.
It is known in the literature [30], that the binding en-

ergy of the alpha particle is not correct in the original
LS model [9]. A value of 28.3 MeV is employed, which
is similar to recent experimental measurements. How-
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FIG. 11: (Color online) EC for the alpha particle from two
EOSs from G. Shen, one with NL3 interactions [31] (dark
orange squares) and one with FSUgold interactions [32] (violet
diamonds).

ever, in LS, all energies are measured with respect to
the neutron mass. Therefore the correct value should be
28.3 + 2(Mn −Mp) ≃ 30.886 MeV. The full squares in
Fig. 10 show the results of the npα EOS with the cor-
rected binding energy. It leads to a slight enhancement
of Kc[α] and thus a better agreement with the data. We
also note that the prediction of LS220 in this case is sim-
ilar to, though consistently below, that of STOS.

C. G. Shen et al.

The EOSs of G. Shen et al. are available for two dif-
ferent RMF interactions, NL3 [31] and FSUgold [32].
Because the FSUgold parametrization lead to a maxi-
mum neutron star mass of only 1.7 M⊙, an additional
phenomenological pressure contribution was introduced,
leading to a sufficiently high maximum mass of 2.1 M⊙.
This latter variant is called FSU2.1. Even though this
distinction is not relevant for the densities we are inter-
ested in, we will use FSU2.1 in the following, which we
abbreviate “SHO(FSU2.1)”. The EOS from Ref. [31] will
be abbreviated by “SHT(NL3)”.

The EOSs of G. Shen et al. are based on different un-
derlying physical descriptions in different regimes of den-
sity and temperature. At highest densities, there is uni-
form nuclear matter consisting of only nucleons which are
described by the corresponding RMF model and Fermi-
Dirac statistics. At intermediate densities, the RMF
model is used within Hartree calculations of non-uniform
matter, generating a representative heavy nucleus and

unbound nucleons, but no light nuclei. At lowest densi-
ties, a special form of the virial EOS is used which in-
cludes virial coefficients up to second order among nu-
cleons and alpha particles. Note that the virial EOS
is not using Fermi-Dirac statistics for the nucleons, but
only incorporates corrections for it as part of the virial
coefficients. Mass 2 and 3 nuclei are not included as
explicit degrees of freedom, but 8980 nuclei with mass
number A ≥ 12 are included. The contribution of heavy
nuclei in NSE is modeled as a non-interacting Maxwell-
Boltzmann gas without considering excluded volume ef-
fects. Coulomb screening is included for heavy nuclei,
but not for the alpha particles. Note that alpha particles
are only present in the virial part of the EOS, which is
completely independent of the RMF interactions.

The compositions of the two EOSs of G. Shen are
shown in Fig. 8 by the dark orange and violet symbols.
Except for the point at highest densities, the two models
SHT(NL3) and SHO(FSU2.1) give very similar results.
This is because they are both in the virial EOS regime,
using an identical model description. For the last data
point, in both models we have Aheavy < 12 and slightly
different results for Xheavy. This is probably an indica-
tion for the onset of the transition to uniform matter or
the Hartree calculations. For all conditions, there is a
notable contribution of heavy nuclei on the order of 10%
which have A <

∼ 15. The nuclei which were found in the
unmodified HS model (see Fig. 5) had lower mass num-
bers. On the other hand, the alpha particle fraction is
increased in the EOS of G. Shen et al.

The heavy nuclei found in the EOS of G. Shen et al.
cannot be produced in the experiments. Furthermore,
Coulomb screening corrections are applied for their de-
scription. Unfortunately it would not be feasible for us
to repeat the calculations of G. Shen et al. to remove
these heavy nuclei and the Coulomb screening, necessary
to reproduce the conditions in HIC. However, note that
Coulomb screening is not applied for the alpha particle.
Thus there is at least no direct effect on Kc[α]. Even for
the HS model, where a direct correction from Coulomb
screening of the alpha particle was made, the effect was
not very strong, see Fig. 4. We expect it to be less for
the G. Shen EOS. Note that the compositions of G. Shen
EOSs are not dominated by heavy nuclei. Their abun-
dances are much less than in the unmodified HS, LS or
STOS models. Thus we do not expect that the suppres-
sion of Coulomb screening and heavy nuclei would have
a big effect and think that it is acceptable to apply the
unmodified EOSs of G. Shen et al. for the case of HIC.

In Fig. 11, we show the alpha particle equilibrium con-
stants for the two G. Shen EOSs. As for the composi-
tions, we also find for Kc[α] that they are very similar.
In general, apart from the two points at lowest densities,
both models give values for Kc[α] which are too high.
The results of the G. Shen EOSs are rather close to the
ideal gas values, and follow a similar trend. The differ-
ences from the ideal gas behavior are generated by the
experimentally derived virial coefficients. At highest den-
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sity, a sudden decrease ofKc[α] occurs, which is probably
due to the onset of the transition from the “virial regime”
to the intermediate density regime without alpha parti-
cles. Note that the tabulated EOSs of G. Shen et al.
are based on a smoothing and interpolation procedure
[31, 32], which could explain why the transition between
the two regimes is smoothed out and not abrupt.

D. gRDF

The generalized relativistic-density functional (gRDF)
was originally developed in Ref. [23] and further refined
in Ref. [33]. In this model, nucleons, light nuclei and
heavy nuclei are used as particle degrees of freedom, and
all of them are interacting with each other in a meson-
exchange based effective relativistic mean-field approach.
For the nucleons, Fermi-Dirac statistics are used, for the
nuclei Maxwell-Boltzmann. Nucleon-nucleon scattering
correlations are included as explicit degrees of freedom
and represented by temperature dependent effective res-
onances in the nucleon-nucleon scattering continuum. In
the calculation of the ECs their contributions are counted
as free protons and neutrons, because the nucleons in
these states are unbound.
In addition, medium dependent binding energy shifts

of nuclei are incorporated. These are either extracted
from quantum statistical calculations of G. Röpke [23]
for light nuclei, where further details will be given in
Sec. VE, or from Thomas-Fermi calculations for heavy
nuclei, not considered here. In comparison to Ref. [23],
here we use an updated parametrization of the bind-
ing energy shifts of light nuclei. Details of the new
parametrizations are given in Appendix A. In the cal-
culations presented in the present work, Coulomb shifts
and excited states are omitted and only neutrons, pro-
tons, deuterons, tritons, helions, and alpha particles are
considered as particle degrees of freedom.
Fig. 12 shows the results for the ECs in the gRDF

model for the conditions as discussed in Secs. II and IV.
The results are very sensitive to the choice of the den-
sity dependence of the mass shifts. For the densities and
temperatures of the experiment, the light clusters, in par-
ticular the deuterons, are unbound in the gRDF model
and thus the choice of the mass shifts for the unbound
clusters is a delicate problem. This will be further illus-
trated below in Sec. VE.
With the present energy-density functional, the gRDF

model gives very satisfactory results. The overall behav-
ior of all four ECs from the experiment is reproduced
very well, mostly within the error bars. At lowest densi-
ties there is the discrepancy which is seen in all models,
and which will be discussed further in Sec. VII. Only
for the deuterons some slightly stronger deviations are
found. Below nB ≃ 0.017 fm3, there is overprediction,
above under-prediction.
However, for the deuteron there is excellent agreement

for the point at lowest density, in contrast to the results

of the models discussed above. Interestingly, this point
is above the NSE value, which we want to comment on
briefly. The scattering state in the deuteron channel,
which is represented by an effective resonance, gives a
negative contribution to the total density. If there is an
increase of the continuum contribution also the bound
state contribution becomes larger while keeping the sum
nearly constant. Thus the ground state density can be
larger in the gRDF model than in the NSE calculation.
Note that this behavior depends on how the shift of the
continuum part is parametrized.

E. QS

To treat the contributions of cluster interactions in the
EOS, instead of the semi-empirical excluded volume con-
cept as used, e.g., in the HS EOS, a microscopic treat-
ment can be given, starting from a systematic quantum
statistical (QS) approach, see Refs. [34–36]. Effects of the
nuclear medium on the cluster under consideration such
as self-energy shifts and Pauli blocking are taken into ac-
count, leading, e.g., to the merging of bound states with
the continuum of scattering states at increasing density
(the so-called Mott effect).
The QS model is described in detail in Refs. [37, 38]. It

is based on the thermodynamic Green-function method
and uses an effective nucleon-nucleon interaction. Start-
ing from exact expressions for the spectral function,
a cluster decomposition of the self-energy can be per-
formed. The total baryon density is decomposed into
contributions of different clusters (nuclei) which are
obtained from an effective wave equation containing
medium effects, see Appendix B. In particular, self-
energy and Pauli blocking appear as leading terms of in-
teraction with the surrounding medium. This way, single
nucleon states and cluster states become quasiparticles,
with medium dependent energies and medium-modified
wave functions.
The medium modifications of the clusters can be de-

termined from the in-medium Schrödinger equation, see
Eq. (B1) in Appendix B. The binding-energy shift
∆Equ

i (P;T, nB, Y
tot
p ) of each cluster i (depending on T ,

nB, Y
tot
p , and c.o.m. momentum P) with respect to

the energy in the vacuum, contains the self-energy shift
∆ESE

i , the Coulomb shift ∆ECoulomb
i (in SN matter), and

the Pauli blocking shift ∆EPauli
i . The latter is relevant for

the decrease of the binding energy of nuclei with increas-
ing density and determines the Mott densities, where the
clusters dissolve. Approximations for the cluster forma-
tion in the medium have been worked out in Refs. [34–
36, 39]. Here we use the recent parametrization of the
shifts of the in-medium binding energies from Ref. [38].
The nucleon self-energies in the QS model are evaluated
with the RMF model DD2 [23], and the quasiparticle
shifts of light clusters d, t, h, α are calculated within a
variational approach [37, 38].
An important issue is the inclusion of excited states.
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FIG. 12: (Color online) EC for (a) alpha particles, (b) deuterons, (c) helions, and (d) tritons from the gRDF model (cyan
circles).

This is not a problem at low densities for the ideal gas
NSE model and the HS approach as long as excited bound
states (nuclei) are considered. However, the scattering
states are essential to obtain the correct second virial
coefficient. The QS approach gives the Beth-Uhlenbeck
formula in the low density limit, but gives also a gen-
eralized Beth-Uhlenbeck formula which takes in-medium
effects into account [40]. The virial EOS of G. Shen et al.
[31, 32] uses also the correct second virial coefficient so
that the chemical constants are reduced, but mean-field
effects are not included consistently so that the results
for the chemical constants remain near to the values of
the ideal NSE case. An attempt to construct an EOS
which treats simultaneously the virial coefficient and the

mean-field contributions has been performed in Ref. [33].
We present results which are derived from a general-

ized Beth-Uhlenbeck approach [40] and the cluster-virial
expansion [39]. Virial contributions are of relevance for
the deuteron yields when the temperature is large com-
pared with the binding energy. Therefore, the values for
Kc[d] depend strongly on the approximation for the sec-
ond virial coefficient, i.e. the treatment of the continuum
correlations. Similar to the bound states, the medium
modification of the continuum contributions depend on
the c.o.m. momentum P. In extension of Ref. [41] where
only the medium modifications at P = 0 have been con-
sidered, expressions for finite P are given in App. B.
With respect to HIC, the fate of the continuum states is
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FIG. 13: (Color online) EC for (a) alpha particles, (b) deuterons, (c) helions, and (d) tritons from the quantum statistical (QS)
model (brown stars).

not obvious. The freeze-out approach which we are con-
sidering cannot follow the real time evolution of correla-
tions in the continuum. Thus the question arises whether
the continuum states are contributing to the yields of
clusters or to the single nucleon yields? We separated
the mean-field contributions of the continuum states and
considered only the residual part of the continuum cor-
relations in the respective channel i, contributing to the
cluster yields.

A particular problem is the effect of cluster formation
in the medium so that one has to go beyond the mean
field approach, for instance considering the cluster mean-
field approximation [34, 39]. In principle, the systematic
inclusion of correlations in nuclear matter should include

the self-consistent treatment of cluster formation in the
self-energy as well as in the Pauli blocking term. For ex-
ample, a systematic approach should also be able to de-
scribe alpha-particle matter. For discussion see Ref. [41]
where an approximate approach is given. For the present
calculation of the composition of nuclear matter, we con-
sidered a correlated medium as described in App. B.

The results of the QS model are presented in Fig. 13,
whereas the following particles were included as degrees
of freedom in the calculations: n, p, d, t, h, and α. Over-
all, the QS model shows excellent agreement with the
experimental data. The calculated QS values for the
chemical constants are somewhat lower than the exper-
imental ones, but we mention already that the results
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depend on the approximations performed, in particular
the treatment of continuum correlations. We want to
emphasize again that the QS model is the only approach
currently available, which is able to predict the suppres-
sion of light nuclei at high densities on a microscopic ba-
sis of a quantum-statistical description. Thus the found
agreement is quite remarkable.

VI. CONSTRAINING SN EOS

Fig. 14 shows the ECs of all the different models which
were introduced above and prepared for the comparison.
The only additional model is SFHo from Ref. [42], which
is based on the HS model, but employs a nucleon-nucleon
interaction different from HS(DD2). We have selected
this model as another interesting case from the various
HS models available in the literature [5], because its nu-
clear matter properties are in agreement with various ex-
perimental and theoretical constraints, as are those for
the HS(DD2) EOS. However, this model is constructed
such that certain radius measurements of neutron stars
were reproduced. It gives more compact neutron stars
than the other models considered here. This can be seen
as the main characteristic of SFHo. In Fig. 14, the SFHo
model leads to very similar results as HS(DD2), and is
mostly within the experimental error bars.
If we compare all the considered EOS, there is an ob-

vious distinction between two groups of models: in the
first group, there are npα-models (LS220 and STOS) and
models which do not include other light nuclei than al-
pha particles as explicit degrees of freedom (SHT(NL3),
SHO(FSU2.1)). As before, we have put the data points
for the ECs of nuclei which are not included in these
models onto the x-axis. Strictly speaking, such models
assume that the corresponding Kc[i] are zero. In the
second group, there are models with n, p, d, t, h, α com-
position (HS(DD2), SFHo, gRDF, and QS), i.e., models
that include all nuclei observed in the experiment.
We can compare Kc[α] for all the models. If we con-

sider the overall range of the theoretical predictions we
observe a convergence at low densities, approaching the
ideal gas values. This is different from what was reported
in Ref. [7] (cf. Sec. IVA). However, the experimental
points do not follow this trend: they cross the ideal gas
values around 0.005 fm−3 and are above for lower densi-
ties. This also holds for Kc[d], Kc[h], and Kc[t], but for
the alpha particle it is most pronounced. The points at
low densities occur at very late stages of the HIC where
the system has expanded already significantly. Contam-
ination by particle emission from sources other than the
coalescing low density gas is the most likely explanation
for this. Separation of such contributions is more difficult
for late stage lower momenta particles.
In Fig. 15 we present the ECs as a function of the

extracted temperatures. The ideal gas results K id
c are

shown by solid lines, to illustrate that these are known
functions which solely depend on temperature. The un-

certainty of the temperature determination appears to
be more significant than the uncertainty of the density
determination, cf. Fig. 14. In Fig. 15, more of the theo-
retical data points fall into the constraint region. In this
representation, the lowest temperature data points are
also closer to the ideal gas results. Despite the different
trend of experiment and theory which remains, the ECs
from almost all theoretical models are within, or at least
close to the experimental constraint at low temperatures.

We emphasize that, since in the ideal case, the ECs are
independent of density and only a function of tempera-
ture (see Sec. III), this representation of the data is per-
haps more useful than the one of Fig. 14 for low densities
and temperatures. For low densities and temperatures,
where the ideal case is approached, the extracted density
and its uncertainty is almost irrelevant for the ECs. It is
gratifying to see, that there is consistency between the-
ory and experiment at lowest temperatures, if the data
is presented in this way. At high temperatures, the the-
oretical models span a broad range of different values for
Kc[α], and the experiment shows unambiguously, that
the simple NSE of ideal gases is ruled out.

Next we have a closer look atKc[α]. LS220, SHT(NL3)
and SHO(FSU2.1) show the largest deviations compared
to the experiment. For LS220 the apparent underpro-
duction of alpha particles can be related to the too at-
tractive nucleon interactions at subsaturation densities
reported in the literature, see [5, 43, 44]. Furthermore, if
we compare with the results of Fig. 6 for different compo-
sitions of the HS EOS, the too low values of Kc[α] could
possibly be improved by considering light clusters other
than alpha particles. This reduces the partial densities
of unbound nucleons, leading to less attractive mean-field
effects, which results in an increase of Kc[α].

In the regime of interest, in the SHT(NL3) and
SHO(FSU2.1) EOS, interactions are only incorporated
via the virial coefficients, and thus there is no suppres-
sion of light clusters at high densities. Mean-field interac-
tions of nucleons that are usually fitted to the saturation
point of nuclear matter and to properties of finite nuclei
are not incorporated. This explains the overprediction of
alpha particles. On the other hand we want to remind
the reader, that these are the only two EOS where we
could not implement the constraint Z ≤ 2, see Sec. VC.
As another aspect, the second virial coefficient deduced
from nucleon-nucleon scattering which is used in these
models, has contributions from two-nucleon bound and
continuum states. Here, these states are not treated as
explicit degrees of freedom, but are attributed to the free
nucleon fraction. This treatment represents a lower limit
for Kc[α]. The remaining five models STOS, QS, gRDF,
HS(DD2), and SFHo, are mostly within the error band of
Kc[α]. STOS is at the lower limit, HS(DD2) and SFHo
at the upper. The gRDF and QS models are almost on
top of the experimental values.

Next we discuss the ECs of deuterons, tritons and he-
lions in more detail. As is clear from the exploration
in Sec. IVD, their measurements represent important
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FIG. 14: (Color online) ECs for (a) alpha particles, (b) deuterons, (c) helions, and (d) tritons from experiments (black diamonds)
in comparison with those of various theoretical models, which are all adapted for the conditions in HIC, as far as possible. The
ECs of nuclei which are not included in a model are put on the x-axis.

complementary information, which should not be disre-
garded. The neglect of these degrees of freedom also
affects the EC of alpha particles. By construction, the
first group of models cannot explain this experimental
data. It is very satisfactory to see, that all of the models
from the second group give results within or close to the
experimental ranges.

VII. SUMMARY & CONCLUSIONS

In this article we investigated cluster formation and
medium modifications in warm nuclear matter at sub-

saturation densities. We constrained a selection of differ-
ent SN EOS models by comparing their predictions with
measurements of equilibrium constants (ECs) in HIC, in
a similar way as was done in Ref. [7] but with an exten-
sion to a larger number of light cluster species. Thereby
we concentrated on the aspects which were not discussed
in full detail in Ref. [7] and took into account systematic
differences between low density matter in SN and in HIC.

First of all we pointed out that the ECs are only in-
dependent of composition, density and asymmetry for
ideal Maxwell-Boltzmann gases without interactions. In
this case they are only a function of temperature. As
soon as interactions and/or Fermi-Dirac or Bose-Einstein
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FIG. 15: (Color online) This figure shows the main results of our investigation: EC for (a) alpha particles, (b) deuterons,
(c) helions, and (d) tritons as a function of temperature. The grey band is the experimental uncertainty for the temperature
determination. Experimental data (black diamonds) is compared with various different theoretical models, which are all adapted
for the conditions in HIC, as far as possible. The ECs of nuclei which are not included in a model are put on the x-axis. The
black lines show the ECs of the ideal gas model, which are solely a function of temperature.

statistics are included, a dependence on composition and
density arises. Deviations of ECs from the ideal values
measure the strength of interactions. Thus ECs repre-
sent very useful and instructive quantities. Furthermore,
some of the systematic uncertainties are reduced when
one uses ECs instead of particle yields or mass fractions.
As was illustrated for the HS model, ECs depend on

the asymmetry of the system, or, equivalently, the total
proton fraction Y tot

p . Therefore we chose Y tot
p = 0.41 for

all theoretical calculations throughout the paper, corre-
sponding to the value extracted from the experiments for
the emitting source. In SN matter, for which the thermo-

dynamic system size can be considered as infinite, arbi-
trarily heavy nuclei can be formed. In HIC, one has finite
size and time limitations. Here we considered Z ≤ 2 as a
constraint for the nuclei which can be formed in the ex-
periment, and applied it in the various theoretical models
(where possible). We also removed Coulomb correction
for electron screening, which is only relevant for SN mat-
ter where a background of electrons is present to maintain
electric charge neutrality. For some of the models these
modifications lead to better agreement with experiment
(e.g. HS(DD2)), for others it got worse (e.g. LS220).
In Ref. [7], only the EC of the alpha particle was con-
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sidered for the comparison with EOS predictions. Here
we used the full experimental data set, which also in-
cludes measurements of the ECs of deuterons, tritons,
and helions. Some of the considered models do not in-
clude these nuclei as explicit degrees of freedom (LS220,
STOS, SHT(NL3), SHO(FSU2.1)). Such models can ob-
viously not explain the measured ECs of these particles.
Even though this is a trivial result, the comparison with
the full experimental data set gives a more complete pic-
ture of the characteristics of the various models.

We found that all theoretical models approach the ideal
gas values at lowest densities. This is the expected be-
havior, because there interactions become weak. Here
we corrected some unexpected deviations which were re-
ported in Ref. [7]. Furthermore, at such conditions a
representation of the ECs as a function of temperature
is of interest because in the ideal NSE model they are
solely functions of T . When we present the ECs as a
function of the extracted temperature rather than den-
sity, we also achieve approximate consistency between
experiment, the theoretical predictions and the ideal gas
values at lowest densities, within or at least close to the
experimental error bars.

In contrast, at highest densities, the experiment shows
unambiguously that an ideal gas description is ruled out,
and that interactions have to be taken into account. Re-
garding the EC Kc[α] of the alpha particle (which is
included in all of the considered models), the LS220,
SHO(FSU2.1), and SHT(NL3) show the largest devia-
tions. In LS220, an underestimation is observed, which
we relate to missing other light nuclei and/or too attrac-
tive nucleon interactions. For the considered tempera-
tures and densities, SHO(FSU2.1) and SHT(NL3) only
include the second-order virial coefficients for nucleons
and alpha particles in order to account for their inter-
action. This results in an overprediction of Kc[α]. A
better agreement could possibly be achieved, if higher-
order virial coefficients or additional light clusters in the
virial EoS description were included. The former aspect
could lead to more binding among the nucleons as it is
observed for the mean-field interactions that are fitted
to properties of finite nuclei. Furthermore, the virial
EOS has no mechanism of cluster suppression at high-
est densities, which could also be a contribution to the
observed differences. An essential progress is the gener-
alized Beth-Uhlenbeck formula [40] which includes also
mean-field contributions in a systematic way.

Four of the models which we considered (QS, gRDF,
HS(DD2), SFHo) are fully compatible with the experi-
mental data, or show at least only minor deviations from
the experiment. From the comparison with the mod-
els that fail to explain the full experimental data set,
we can identify the following three ingredients that seem
to be necessary for the description of clusterized nuclear
matter at the densities and temperatures of interest: (i)
consideration of all relevant particle degrees of freedom
(ii) mean-field effects of the unbound nucleons (iii) a sup-
pression mechanism for bound clusters at high densities.

Regarding (iii), we compared two different approaches:
the classical or phenomenological excluded volume ap-
proach (HS(DD2), SFHo) and quasi-particle self-energy
shifts based on a quantum mechanical description (QS,
gRDF). Only in the latter approaches is there a com-
petition between repulsive Pauli blocking and attractive
cluster mean-field. In principle, the excluded volume con-
cept can be considered as a simple approximation to a
full QS treatment similar to the Van der Waals EOS, c.f.
Ref. [45]. Unfortunately, the experimental data are not
accurate enough to draw firm conclusions about the dif-
ferences of these approaches, even though they show some
senstivity to the parametrization of the self-energy shifts.
The major uncertainty in the present investigation does
not originate from the experiment itself, but from the
density and temperature extraction from the expanding
source. For a more refined answer, probably “densitome-
ters” and “thermometers” have to be used, which include
interactions and medium effects in a consistent manner.

Obviously, the quantum mechanical description of
medium effects allows insights which cannot be achieved
with phenomenological approaches. For example the role
of continuum correlations and how they are modified by
the medium can be addressed. From a more fundamental
point of view, there is no basic definition that distinguishs
the contribution of bound states and of the continuum.
Whereas this subdivision is irrelevant for the EOS, it
is not clear what happens with the contributions of the
continuum in the HIC experiments. For gRDF we have
assumed that continuum correlations decay into unbound
nucleons, simply because they are not bound. In the QS
approach, we have separated the mean-field part, and
considered only the remaining residual part contribut-
ing to the cluster yields. A satisfactory answer can be
found only within a non-equilibrium approach to HIC.
Transport calculations with cluster formation (see e.g.,
Refs. [46–48] and references given therein) could help to
clarify this interesting issue how continuum correlations
evolve in the expanding system of a HIC, and whether
they decay into unbound nucleons or transform into a
bound state.

The supernova EOS is a wide field of research where
many different aspects of nuclear physics come together.
The discussion presented here deals only with one par-
ticular but nevertheless important aspect, the formation
of light clusters. In supernova matter, heavy nuclei can
also be formed and have to be considered in a realistic
description, especially for the early phase of the super-
nova collapse. The experimental results which we use do
not allow to constrain the medium effects on the com-
ponent of heavy nuclei. These carry uncertainties in the
theoretical predictions [26, 49] similarly large as for light
nuclei, which are, however, of different nature.

Note also that our selection of EOSs for clusterized
nuclear matter is by far not complete. Other interesting
approaches are for example the statistical multifragmen-
tation model SMM [50, 51] which is well established for
the analysis of multifragmentation experiments, but also
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available in the form of a tabulated SN EOS [52]. The
EOS of Furusawa et al. [28] uses Pauli-blocking shifts and
excluded volume effects together to dissolve light clusters
at high densities. Variations of the gRDF model can be
found in Refs. [53, 54]. There are also the statistical mod-
els Ref. [55, 56] which have some aspects in common with
the HS model. For the virial EOS, there are extensions
available which take into account nuclei with A = 2 and
3 [1, 2]. It would be interesting to repeat our compar-
ison with these models, to validate or refine our main
conclusions.
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Appendix A: New parametrization of binding

energy shifts in the gRDF EOS

The calculations of G. Röpke [23] suggest a more or less
linear dependence on the effective density for the binding
energy shifts of light nuclei. Thus linear functions are
assumed in gRDF as long as the ground states of the
clusters are still bound. For higher densities a stronger
increase of the shifts is used in order to suppress them
there. The binding energy shift of a light cluster i with
Zi protons and Ni neutrons is explicitly given by

∆Bi(n
tot
p , ntot

n , T ) = −fi(ñi, n
(d)
i ) δBi(T ) n

(d)
i (A1)

with temperature dependent quantities δBi(T ), which
are identical to those in Ref. [23], and shift functions
fi. They depend on the effective density

ñi =
2

Zi +Ni

[

Zin
tot
p +Nin

tot
n

]

(A2)

and the dissociation density

n
(d)
i =

B0
i

δBi(T )
(A3)

with saturation density nsat of the DD2 parametrization
and the experimental vacuum binding energy B0

i . The
quantities ntot

p and ntot
n are the total proton and neutron

densities, respectively, including nucleons that are free

or bound in nuclei. Introducing x = ñi/n
(d)
i and y =

nsat/n
(d)
i , the shift function reads

fi =

{

x if x ≤ 1

x+ (x−1)3(y−1)
3(y−x) if x > 1 ∧ x < y

. (A4)

In the previous parametrization given in Ref. [23], fi =
x + x2/2 is used throughout. For x → y the binding

energy shift diverges and for ñi ≥ n
(d)
i the cluster does

not appear any more.

Appendix B: QS approach to the contribution of the

continuum to the EOS

A systematic approach to the EOS can be given by a
Green functions approach [34–36], and different approx-
imations can be performed for the spectral function and
the self energy, in particular the cluster decomposition
and the quasiparticle concept, see Ref. [41] and further
references given there. We give here some forthcoming
results used in the present work.

For the A-nucleon cluster, the in-medium Schrödinger
equation

[E1(1;T, µn, µp) + · · ·+ E1(A;T, µn, µp)− EAν(P ;T, µn, µp)]ψAνP (1 . . . A)

+
∑

1′...A′

∑

i<j

[1− n(i;T, µn, µp)− n(j;T, µn, µp)]V (ij, i′j′)
∏

k 6=i,j

δkk′ψAνP (1
′ . . . A′) = 0 (B1)

is derived from the Green function approach. This
equation contains the effects of the medium in the
single-nucleon quasiparticle shift ∆ESE

τ1 (p1;T, µn, µp) =

E1(1;T, µn, µp) − (h̄2p21/2m) as well as in the Pauli
blocking terms given by the occupation numbers
n(1;T, µn, µp) in the phase space of single-nucleon states
|1〉. Thus, two effects have to be considered, the quasi-
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particle energy shift and the Pauli blocking.
The single nucleon quasiparticle shifts is approxi-

mated, for instance by appropriate parametrizations of
the RMF such as DD2 [23]. The self-energy and Pauli
blocking shifts for the light elements are obtained from
the in-medium Schrödingier equation (B1). Explicit ex-
pressions that approximatively describe the shift of the
light element quasiparticles (A ≤ 4) are given in [38].
The summation over the internal quantum number in-

cludes the continuum contribution vc. They give a con-
tribution to the EOS, as clearly shown by the Beth-
Uhlenbeck formula for the second virial coefficient. We
will not discuss here the different ways to introduce it
into the EOS, see [33, 40, 41, 57], but only underline
that it is relevant for the contributions of the two-nucleon
(deuteron) system because of the small binding energy

Bd = −E
(0)
d = 2.225 MeV which is of the order (or

smaller) compared with T . For the stronger bound clus-
ters (t, h, α), the continuum states are of less relevance.

In addition to Ref. [41] where only the medium mod-
ified continuum states with P = 0 have been consid-
ered, we consider the residual continuum contributions
as function of P . Like the in-medium shift of the bind-
ing energy, the medium modification of scattering states
is strongly depending on P because the Pauli blocking
changes quickly with the c.o.m. momentum P . At high
values of P the Pauli blocking and correspondingly the
reduction of the contributions of the clusters becomes
inactive.

Using the same method given in [41] for P = 0, i.e.
scaling the reduction of the binding energy with increas-
ing nB with the known value for nMott

c (P, T, Yp), we find
for arbitrary P the partial densities nc(T, nB, Yp). Ex-
emplarily we give the expression for the alpha particle

nα(T, nB, Yp) = gα

∫

dP
1

2π2
P 2e(−2En(P/4,T,nB ,Yp)−2Ep(P/4,T,nB ,Yp)+2µn+2µp)/T

×
[

(e(Bα−∆Eα(P,T,nB ,Yp))/T − 1)Θ(Bα −∆Eα(P, T, nB, Yp)) + vα(P, T, nB, Yp)

+(e(Bα′−∆Eα(P,T,nB ,Yp))/T − 1)Θ(Bα′ −∆Eα(P, T, nB, Yp)) + vα(P, T, nB, Yp)
]

, (B2)

where Bα = −E
(0)
α ≃ 28.3 MeV is the binding energy of the ground state and Bα′ ≃ 8.1 MeV of the excited state.

gα = 1 is the spin degeneracy factor. Analogue expressions hold for nd, nt, and nh but with only one bound state

E
(0)
i . The residual contribution of the continuum correlations is approximated as

vi(P, T, nB, Yp) ≈

{

1.24 +

[

1

v(0)(T )
− 1.24

]

eγi(P,T,nB ,Yp)nB/Teff (T,nB)

}−1

, (B3)

with

γd(P, T, nB, Yp) = 1873.24 exp
[

−P 2fm2/(1.84632 + 0.161695TMeV−1 + 0.17266P 2fm2)
]

MeV fm3,

γt(P, T, nB, Yp) = 2773.22 exp
[

−P 2fm2/(4.66711 + 0.3037TMeV−1 + 0.1439P 2fm2)
]

MeV fm3,

γh(P, T, nB, Yp) = 2843.52 exp
[

−P 2fm2/(4.67929 + 0.284855TMeV−1 + 0.14037P 2fm2)
]

MeV fm3,

γα(P, T, nB, Yp) = 3268.84 exp
[

−P 2fm2/(9.75141 + 0.692198TMeV−1 + 0.243567P 2fm2)
]

MeV fm3 , (B4)

and

Teff(T, nB) = 5.5MeV + 0.5T + 60nBMeV fm3 . (B5)

The residual virial coefficient at zero density [41] coin-
cides well with the empirical data for the full virial coef-
ficient given in Ref. [58],

v(0)(T ) = 0.30857 + 0.65327 e−0.102424T/MeV (B6)

The residual contributions of the continuum avoid dou-
ble counting because the mean-field energies arises from
the interaction of continuum states. The problem is that
the RMF approach is introduced semi-empirically by fit-

ting data in the region of saturation density. More con-
sistent would be a readjustment of the parameter values,
e.g., with microscopic Dirac-Brueckner calculations.

The self-consistent treatment of correlations in the
medium demands further work, beyond the introduction
of an effective chemical potential and effective temper-
ature to calculate the Pauli blocking. The systematic
inclusion of correlations in nuclear matter should include
also the self-consistent treatment of cluster formation in
the self-energy as well as in the Pauli blocking term. For
discussion see Ref. [41] where an approximate approach
is given.
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[3] K. Sumiyoshi and G. Röpke, Phys. Rev. C 77, 055804
(2008).

[4] M. Hempel, T. Fischer, J. Schaffner-Bielich, and
M. Liebendörfer, Astrophys. J. 748, 70 (2012).

[5] T. Fischer, M. Hempel, I. Sagert, Y. Suwa, and
J. Schaffner-Bielich, Eur. Phys. J. A 50, 46 (2014).
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chanics of Nonequilibrium Processes, vol. 1 (Akademie-
Verlag, Berlin, 1996).

[47] D. Zubarev, V. Morozov, and G. Röpke, Statistical Me-
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