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Abstract

It is well known that coincidence quasielastic (~e, e′N) reactions are not appropriate to analyze

effects linked to parity violation due the presence of the fifth electromagnetic (EM) response

RTL′

. Nevertheless, in this work we develop a fully relativistic approach to be applied to parity-

violating (PV) quasielastic (~e, e′N) processes. This is of importance as a preliminary step in the

subsequent study of inclusive quasielastic PV (~e, e′) reactions. Moreover, our present analysis

allows us to disentangle effects associated with the off-shell character of nucleons in nuclei, gauge

ambiguities and the role played by the lower components in the nucleon wave functions, i.e.,

dynamical relativistic effects. This study can help in getting clear information on PV effects.

Particular attention is paid to the relativistic plane-wave impulse approximation where the

explicit expressions for the PV single-nucleon responses are shown for the first time.
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I. INTRODUCTION

The electroweak structure of the nucleon can be parameterized in terms of nine form

factors, three for each flavor (u, d, s) corresponding to the electric (E), magnetic (M)

and axial-vector (A) sectors. The sole use of PV electron-proton (PVep) asymmetry

measurements does not allow one to extract the nine form factors of the nucleon.

On the contrary, the combination of parity-conserving (PC) cross sections and parity-

violating (PV) asymmetries in elastic and quasielastic (QE) electron scattering processes,

in addition to measurements of different observables from neutrino scattering and beta

decay, constitutes the general framework in which the determination of the form factors

of the nucleon should be accomplished.

PV electron scattering is a powerful tool to study the weak neutral current (WNC)

and it can provide useful information on the strange matrix elements (s̄γµs and s̄γµγ5s)

in nucleons and nuclei. Strange form factors contain new information (additional to the

electromagnetic (EM) ones) on the nucleon structure, and provide also strong constraints

to any microscopic model aiming to describe the nucleonic structure starting from

Quantum Chromodynamics (QCD).

It has been proven [1] that the PVep asymmetry is an excellent observable in order

to determine the vector strange form factors of the nucleon. However, this requires one

to have good knowledge of the remaining ingredients that enter in the description of the

asymmetry, in particular, the EM and axial-vector form factors and the WNC effective

weak coupling constants (that include radiative corrections). With regards to the EM

form factors, their general structure and behavior are well described. In the case of

the axial-vector form factor, most of the information we have comes from the analysis of

neutrino scattering experiments and beta-decay measurements. Although some discussion

has recently emerged on the value of the axial-vector mass due to the data taken by

the MiniBooNE collaboration [2, 3] (see also [4, 5] and references therein), the standard

parameterization of the axial-vector form factor is still accepted by the majority of the

scientific community. However, a serious problem which is not yet solved concerns the

treatment of radiative corrections. Authors in [6, 7] claim that radiative corrections are

very small for processes where only the weak coupling takes place. Hence, the description

of the axial-vector form factor at tree-level is expected to be a very good approximation
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in reactions that involve neutrinos/antineutrinos as probes. On the contrary, radiative

corrections in the axial-vector sector for PV electron scattering are very important (in

contrast to the purely vector current). This is one of the main sources of error for

the determination of the strange magnetic form factor through the analysis of PVep

asymmetry data. The strong correlation between the magnetic and electric strangeness

content in the nucleon (µs and ρs) leads the previous uncertainties to be propagated also

to the strange electric form factor. The main contribution in the axial-vector form factor

comes from the isovector (T = 1) channel; therefore, the evaluation and knowledge of

the isovector contribution to the axial nuclear response, RT=1
A , is of great importance in

order to interpret correctly the PV asymmetry. Nowadays it constitutes one of the main

challenges both experimentally and theoretically to the scientific community.

This work deals with the study of exclusive PV electron-nucleus scattering processes.

We restrict ourselves to the QE regime that corresponds to the electron being scattered

from a single nucleon that is subsequently ejected from the target nucleus and detected

in coincidence with the scattered electron. The analysis of exclusive (~e, e′N) processes

constitutes a preliminary step in the study of PV effects in inclusive (~e, e′) reactions. The

latter are of great relevance in order to get more insight into the weak structure of the

nucleon. In (~e, e′N) reactions the description of final-state interactions (FSI) between

the ejected nucleon and the residual nucleus leads to the appearance of the so-called

fifth EM response function RTL′

. This response only contributes if the helicity of the

incident electron is measured and, consequently, its contribution to the PV asymmetry is

different from zero. This result is of great importance because it might lead the exclusive

parity-violating quasielastic (PVQE) asymmetry to be irrelevant when attempting to get

information on the responses attached to the interference between EM and WNC currents

(henceforth simply denoted as PV responses). Note that the EM contributions are in

general several orders of magnitude larger than the interference ones. However, there are

some particular kinematics for which the contribution of the PV responses can be similar

or even larger than the purely EM one. Moreover, this study provides useful information

on the uncertainties linked to the treatment of the off-shell vertex and on the discrepancies

associated with the use of different nuclear models. These effects can be of importance

in the subsequent analysis of inclusive (~e, e′) processes where the fifth EM response does

not enter. Hence, the work presented here should be considered in concert with the
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study applied to inclusive QE electron scattering that is presented in an accompanying

paper [8]. Whereas here we emphasize the role played by dynamical relativistic effects,

gauge ambiguities and off-shell uncertainties in the exclusive PV responses, being aware of

the enormous difficulties in getting information on PV effects, in [8] the focus is placed on

the behavior of the inclusive PV responses and the asymmetry, and how they are affected

by the weak structure of the nucleon.

To conclude, we summarize in what follows how this paper is organized. In Sect. II

we introduce the general formalism needed to evaluate the exclusive cross section for

PVQE electron-nucleus scattering. We start by describing the kinematics and the

calculation of the differential cross section for the exclusive process. Then we present the

models and approximations employed to the description of the nuclear vertex. Special

emphasis is placed on the general formalism involved in the relativistic plane-wave impulse

approximation (see Sect. IIA). Section III presents the analysis of the results. The effects

in the PV responses due to the use of different prescriptions for the nuclear current and

the treatment of FSI are analyzed in Sects. IIIA 2 and IIIB, respectively. In Sect. III C

we study the helicity asymmetry linked to the exclusive process. There we study the

impact on the asymmetry due to FSI, relativistic dynamical effects, off-shell effects and

the particular description of the form factors of the nucleon. Finally, a brief summary

and our main conclusions are presented in Sect. IV.

II. FORMALISM FOR (~e, e′N) REACTIONS WITH PARITY VIOLATION

In this section we summarize the general formalism involved in the description of

(~e, e′N) reactions when the weak interaction is included in addition to the dominant

EM one. We use the Born approximation, that is, only one boson, photon for the EM

process and Z-boson for the weak interaction, is exchanged. A general representation of

the process is illustrated in Fig. 1. Here the incident electron, with four-momentum

Kµ
i = (εi,ki) and helicity h, is scattered through an angle θe to four-momentum

Kµ
f = (εf ,kf ). The nuclear target is characterized in the lab frame by P µ

A = (MA, 0)

and the residual system by P µ
B = (EB,pB). The four-momentum corresponding to the

ejected nucleon is denoted as P µ
N = (EN ,pN). Finally, the transferred four-momentum in

the process (carried by the photon or Z-boson) is given by Qµ = (ω,q).
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Detailed studies of the general kinematics involved in exclusive (e, e′N) reactions have

been presented in previous works [9, 10]. Here we simply recall the basic quantities of

interest for later discussion. The missing momentum pm is defined as pm ≡ −pB = pN−q.

The magnitude pm = |pm| characterizes the split in momentum flow between the detected

nucleon and the unobserved daughter nucleus. Correspondingly, an excitation energy of

the residual system can be introduced: ε ≡ EB − E0
B with E0

B the total energy of the

residual nucleus in its ground state.

FIG. 1: (Color online) General scheme of the scattering process A(e, e′N)B. The scattering

frame is defined by {x̂, ŷ, ẑ}, whereas the hadronic reference system is given by {1̂, 2̂, 3̂}. Also

shown are the four-momenta and angular variables that enter in the description of the process.

The (~e, e′N) process is completely determined by six independent kinematical variables.

From these, the dependence on the electron scattering angle θe and the azimuthal angle

φN can be isolated by geometry. In contrast, the dependences on the four remaining

variables (denoted as dynamical variables) involve detailed aspects of the nuclear current

matrix elements. Notwithstanding, energy and momentum conservation can be used to

determine the allowed regions in the (ε−pm) plane (the interested reader can go to [11–13]

for details). Once the general kinematics have been set up, the general cross section in

the laboratory system can be written as [9, 13, 14],

dσ

dεfdΩfdΩN

=
K

8π2
f−1
rec

(
εf
εi

)[
1

Q4
ηµνW

µν +
−2

Q2M2
Z

Re
(
η̃µνW̃

µν
)]

, (1)
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where we have introduced the kinematical constant K ≡ MBMNpN
MA

and frec is the usual

recoil factor [13]. The purely EM and interference leptonic tensors are given by

ηµν = e2 (sµν + haµν) (2)

η̃µν =
eg

4 cos θW
[(aV − haA)sµν + (haV − aA)aµν ] (3)

with aV and aA the vector and axial-vector WNC electron couplings, h the electron helicity

and we have separated the overall tensor into its symmetric (sµν) and antisymmetric (aµν)

contributions:

sµν = Ki
µK

f
ν +Ki

νK
f
µ +

Q2

2
gµν , aµν = iǫµναβK

α
i K

β
f . (4)

The hadronic tensors contain all of the information on the nuclear structure, and they

are given as

W µν =
∑

IF

(Jµ
EM(q))∗Jν

EM(q) , W̃ µν =
∑

IF

(Jµ
EM(q))∗Jν

WNC(q) , (5)

in terms of the purely EM and WNC matrix elements:

Jµ
EM(q) = e〈N ;B|Ĵµ

EM |A〉 , Jµ
WNC(q) =

(
eg

cos θW

)
〈N ;B|Ĵµ

WNC|A〉 . (6)

The contraction of the leptonic and hadronic tensors can be expressed in terms of six

response functions that are given by taking the appropriate components of the hadronic

tensors (see [15] for details):

ηµνW
µν = e22v0

[
vLR

L + vTR
T + vTLR

TL + vTTR
TT + hvTL′RTL′

]
, (7)

where v0 = 4εiεf cos
2 θe

2
and the labels L and T refer to projections of the current matrix

elements longitudinal and transverse to the direction of the momentum carried by the

exchanged virtual boson. The terms vα denote the kinematical factors that depend only

on the leptonic tensors and whose explicit expressions are given in [15].

Likewise, the contraction of the γ − Z interference tensors can be written in the form

η̃µνW̃
µν =

−1

8m2

(
eg

cos θW

)2

2v0

[
(aV − haA)

(
vLR̃

L + vT R̃
T + vTLR̃

TL + vTT R̃
TT
)

+ (haV − aA)
(
vT ′R̃T ′

+ vTL′R̃TL′

)]
. (8)
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The general expression for the exclusive cross section in presence of the weak interaction

finally results:

dσ

dεfdΩfdΩN

= σMKf−1
rec

{
∑

α=L,T,TL,TT

vαR
α + hvTL′RTL′

−
A0

2

[
(aV − haA)

∑

α=L,T,TL,TT

vαR̃
α + (haV − aA)

∑

α′=T ′,TL′

vα′R̃α′

]}
, (9)

where we have introduced the Mott cross section σM =
4α2

Q4
ε2f cos

2(θe/2), and the term

A0 that scales the PV effects:

−
A0

2
≡

2Q2

e2M2
Z

(
g

4 cos θW

)2

. (10)

The evaluation of the EM and PV hadronic response functions (Rα, R̃α) requires the

knowledge of the corresponding nuclear tensors: W µν , W̃ µν . This implies a description

of the nuclear initial and final states and the many-body current operators. This is

a very complicated, almost unapproachable, problem unless specific approximations are

considered. In our case, we focus on the kinematical region close to the QE peak where the

impulse approximation (IA) constitutes an excellent description of the problem. Within

the IA the exchanged boson (photon and/or Z) interacts only with one nucleon that is

consequently ejected. Hence the scattering process is given simply as an incoherent sum

of single-nucleon scattering processes, i.e., the current is taken as a one-body operator

and one makes use of single-nucleon wave functions. In momentum space we may write

in general

Jµ ≡

∫
dp ΦF (p+ q)ĴµΦB(p) , (11)

where ΦB and ΦF are the bound and scattered nucleon wave functions, respectively, and

Ĵµ
N the one-body nucleon current operator.

Within the IA the virtual boson attaches to a single bound nucleon with four-

momentum P µ = (E,p) that is consequently ejected from the nucleus and interacts

with the residual nucleus. The asymptotic four-momentum of the nucleon is given by

P µ
N = (EN ,pN ), and the residual nucleus is characterized by P µ

B = (EB,pB).

In this work we use a fully relativistic calculation where the bound nucleon states

are given as self-consistent Dirac-Hartree solutions, derived within a relativistic mean

field (RMF) approach using a Lagrangian containing σ, ω, and ρ mesons [16]. The
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ejected nucleon state is described as a relativistic scattering wave function. Here different

options have been considered. First, the relativistic plane-wave impulse approximation

(RPWIA), namely, the use of relativistic plane-wave spinors, i.e., no interaction between

the outgoing nucleon and the residual nucleus is considered; second, the effects of FSI are

incorporated by solving the Dirac equation in the presence of relativistic optical energy-

dependent scalar and vector potentials. This constitutes the relativistic distorted-wave

impulse approximation (RDWIA). In this work we make use of the particular prescription

EDAI-O for the optical potential (see [17–20] for details).

Concerning the current operator, we use the relativistic free nucleon expressions for

the two usual prescriptions considered in the literature, i.e., CC1 and CC2 [21]:

• Electromagnetic Current Operator:

Ĵµ
EM

∣∣∣
CC1

= (F1 + F2)γ
µ −

F2

2MN
(P + PN)

µ , (12)

Ĵµ
EM

∣∣∣
CC2

= F1γ
µ + i

F2

2MN
σµνQν . (13)

• Vector Neutral Current:

Ĵµ
WNC,V

∣∣∣
CC1

= (F̃1 + F̃2)γ
µ −

F̃2

2MN

(P + PN)
µ , (14)

Ĵµ
WNC,V

∣∣∣
CC2

= F̃1γ
µ + i

F̃2

2MN

σµνQν . (15)

• Axial Neutral Current:

Ĵµ
WNC,A = Ge

Aγ
µγ5 +

G̃P

MN
Qµγ5 . (16)

We have introduced the “on-shell” four-momentum P
µ
= (E,p) with E =

√
p2 +M2

N

and p the bound nucleon momentum. Note that the two prescriptions, CC1 and CC2

are equivalent for free on-shell nucleons. However, the IA deals with off-shell bound

and ejected nucleons. Hence the two operators lead to different results. Moreover,

current conservation (EM and vector WNC contributions) is in general not fulfilled and

consequently uncertainties dealing with the particular gauge selected also emerge. Here

we consider three different options: i) no current conservation is imposed at all (Landau

gauge), ii) current conservation is imposed by eliminating the third component (Coulomb
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gauge), and iii) as in the previous case but eliminating the time component (Weyl gauge).

In next sections we estimate and analyze the uncertainties introduced by these different

options in the PV responses and in the PVQE asymmetry.

A. Relativistic Plane-Wave Impulse Approximation (RPWIA)

In this section we present the response functions and cross section within the RPWIA,

namely, neglecting FSI between the outgoing nucleon and the residual nucleus. Although

this is an oversimplified description of the scattering process, it allows one to get analytical

expressions for the responses, hence providing significant insight into the specific behavior

of the various observables. A great advantage of the RPWIA is linked to the clear

separation between the contributions associated with the upper and lower components

in the relativistic bound nucleon wave functions. This is known as “relativistic dynamics”

or “spinor distortion” in contrast to the purely relativistic kinematical effects. In what

follows we briefly present the general procedure of the analysis. We follow closely our

previous studies in [9, 13, 22] and give all details in Appendix A.

The hadronic current in RPWIA is given in the general form:

Jµ = uN(pN , sN)Ĵ
µΦm

κ (p) , (17)

where u(pN , sN) is a Dirac free spinor describing the outgoing nucleon, whereas Φm
κ (p)

is the Fourier transform of the bound nucleon relativistic wave function evaluated with

the RMF model. This 4-component wave function can be expressed in terms of the free

Dirac spinors: u(p, 1/2), u(p,−1/2), v(p, 1/2) and v(p,−1/2). Proceeding this way,

one can identify the specific contributions associated with the upper (positive-energy)

and lower (negative-energy) components in the response functions and the cross section.

The general (non-trivial) procedure has been presented in [9] in the case of PC electron

scattering processes, namely, for EM response functions. In this section we extend the

analysis to the PV responses and obtain the final expressions that will be of interest for

the discussion of results in the next section. As already mentioned, all details on the

developments concerning the nucleonic tensors are given in Appendix A.
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The hadronic EM and interference WNC matrix elements in RPWIA result

Jµ
EM = e[u(pN , SN)Ĵ

µ
EM Φ

mj

k (p)] , (18)

Jµ
WNC =

(
g

4 cos θW

)
[u(pN , SN)Ĵ

µ
WNC Φ

mj

k (p)] . (19)

After laborious algebra (see Appendix A), the hadronic tensors can finally be written

in the form

W µν = e2
(
WµνNuu(p) + ZµνNvv(p) +N µνNuv(p)

)
, (20)

W̃ µν =

(
eg

4 cos θW

)(
W̃µνNuu(p) + Z̃µνNvv(p) + Ñ µνNuv(p)

)
, (21)

where in both tensors we have isolated the contribution coming from the positive-

energy components (denoted by the indices uu), the negative-energy (vv term) and the

interference ones (uv). Note that the three terms factorize into single-nucleon tensors

multiplied by functions associated with the upper (u) and lower (v) components in the

bound nucleon wave function in momentum space. These functions can be interpreted as

the positive-energy (Nuu), negative-energy (Nvv) and interference (Nuv) contributions to

the nucleon momentum distribution. The explicit expressions are given in Appendix A

(see also [9, 10] for more details).

With regards to the single-nucleon tensors, the ones corresponding to the purely

EM sector, Wµν , Zµν and N µν , have been analyzed in detail in [9] providing explicit

expressions for the two current operator prescriptions considered. The Lorentz invariant

EM amplitude is given by1

ηµνW
µν ∝ sµν [W

µνNuu(p) + ZµνNvv(p) +N µνNuv(p)] . (22)

By contrast with the EM case [9], the single-nucleon electroweak interference tensors,

W̃µν , Z̃µν and Ñ µν , present a rather more complex structure with its symmetrical

and antisymmetrical contributions not so clearly isolated (see Appendix A for explicit

expressions). However, since the purely vector component in the WNC (denoted by the

index V) leads to purely real tensors, whereas the axial term (denoted by A) gives purely

imaginary tensors, it can be easily proven that its contraction with the corresponding

1 Note that the fifth EM response, RTL
′

, does not enter in RPWIA.
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leptonic tensor can be written as

Re
[
η̃µνW̃

µν
]
∝ (aV − haA)sµν

(
W̃µν

V Nuu(p) + Z̃µν
V Nvv(p) + Ñ µν

V Nuv(p)
)

+ (haV − aA)aµν

(
W̃µν

A Nuu(p) + Z̃µν
A Nvv(p) + Ñ µν

A Nuv(p)
)
. (23)

Note that only the symmetric contribution in the vector-type single-nucleon tensors and

likewise, the antisymmetric axial-type tensor, contribute to the cross section and response

functions.

The hadronic responses in RPWIA in Eq. (9) are built directly from the corresponding

single-nucleon responses RK
x multiplied by the momentum distributions Nx with x =

uu, uv, vv. The differential cross section is finally given as

dσ

dεfdΩfdΩN
= σM

MBMNpN
MA frec

∑

x=uu,uv,vv

{
∑

α=L,T,TL,TT

vαR
α
xNx(p)

−
A0

2

[
(aV − haA)

∑

α=L,T,TL,TT

vαR̃
α
xNx(p) + (haV − aA)

∑

α′=T ′,TL′

vα′R̃α′

x Nx(p)

]}
.

(24)

In the next section we analyze the results obtained for the interference response

functions and PV asymmetry within RPWIA, taking the two prescriptions of the

current operator and the three gauges. These results are also compared with more

sophisticated calculations where FSI have been incorporated through the use of relativistic

complex optical potentials. We discuss whether the introduction of the exclusive helicity

asymmetry makes sense in getting information on PV effects, and analyze their limits of

applicability.

III. ANALYSIS OF THE RESULTS

In this section we present our results for the different exclusive observables: responses,

cross section and helicity asymmetry. Our interest is focused on the WNC interference

contributions and how these can alter the purely EM responses. It is well known that

the process (~e, e′N) is not well suited to studying PV effects because it is very hard to

devise an observable where the EM contributions, orders of magnitude larger than the PV

interference ones, could be almost cancelled out. In fact, this is the reason to introduce the
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helicity asymmetry in inclusive (~e, e′) processes. However, whereas the difference between

the (~e, e′) cross sections corresponding to opposed electron helicities is non-zero because of

the PV effects (for the EM interaction with parity conservation such a difference is strictly

zero), the situation is different for (~e, e′N) reactions. Here, the presence of FSI leads to

the appearance of the so-called fifth response that is also linked to the electron helicity.

This response is a purely EM contribution to the helicity asymmetry and hence makes it

very difficult to isolate contributions coming from PV effects. However, we are convinced

that the study of PV (~e, e′N) reactions might be of great interest as a preliminary step

in the subsequent study of inclusive processes. Moreover, off-shell and gauge ambiguities

in (~e, e′N) also have an impact on the inclusive responses and PV helicity that needs

to be carefully evaluated. Therefore, in this paper we focus on the interference (~e, e′N)

observables paying special attention to the contribution of the positive- and negative-

energy components in the nucleon wave functions, and to the effects introduced by a

proper description of the FSI between the outgoing nucleon and the residual nucleus.

The scattering reaction formalism is described fully relativistically, namely, not only are

the kinematics relativistic, but also the nuclear dynamics are described making use of the

relativistic Dirac equation in the presence of relativistic potentials.

All results presented in the next sections correspond to (q, ω)-constant kinematics

(sometimes also referred as quasi-perpendicular kinematics). We have selected the energy

transfer to correspond almost to the QE peak value, where one expects the validity of

the impulse approximation to be highest. The value of the transfer momentum is fixed to

q = 500 MeV/c (ω = 132 MeV) and results are presented versus the missing momentum

pm, which in this section is written p for simplicity. Finally, in most of the cases we

have chosen the azimuthal angle φN equal to zero. Only when discussing the helicity

asymmetry do we analyze the effects linked to a selection of various φN -values.

A. Relativistic Plane-Wave Impulse Approximation (RPWIA)

We start our study with the simple RPWIA case. The general formalism for the

PV responses has been presented in the previous section with explicit expressions given

in Appendix A. Our discussion follows closely the analysis presented in [9, 22] for the

case of purely EM unpolarized and polarized responses. We show results for the six
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interference responses. First we restrict our attention to the separate uu, uv and vv

single-nucleon responses Rα
x analyzing off-shell and gauge ambiguities in addition to the

particular contribution of each component: positive-energy, negative-energy and the uv

interference term. Then we present results for the nuclear/hadronic responses.

1. PV single-nucleon responses

Figures 2 and 3 show the PV single-nucleon responses. Let us start our discussion with

the case of the purely transverse channel (Fig. 2). Here, the responses depend only on the

particular current operator selected, CC1 vs CC2, but not on the gauge. Moreover, the

current operator does not introduce significant effects in the uu contributions (left panels).

On the contrary, the interference uv and, particularly, the negative-energy vv terms are

strongly affected by the current operator leading the CC1 prescription to the largest

contribution (in absolute value). Therefore, one concludes that relativistic dynamical

effects do depend very much on the particular choice of the current operator.

The purely longitudinal and interference longitudinal-transverse single-nucleon re-

sponses are shown in Fig. 3. In this case, the presence of the longitudinal channel leads to

differences when comparing various gauges in addition to the particular current operator

selected. Concerning the effects introduced by the operator, these are rather similar to

the ones already observed for the purely transverse responses (see previous figure). Hence

we restrict our attention to the ambiguities that emerge from the particular “gauge” con-

sidered: Landau (NCC1 & NCC2), Coulomb (CC1(0) & CC2(0)) and Weyl (CC1(3) &

CC2(3)). As observed, results for Coulomb and Landau gauges are very similar in all

cases no matter which specific current operator is selected. On the contrary, results cor-

responding to the Weyl gauge (CC1(3)/CC2(3)) lead to very significant differences even

in the case of the purely positive-energy contribution uu.

Summarizing, the “off-shell” effects observed in the PV single-nucleon responses are

very similar to the ones already presented for the purely EM responses [9]. Since such

effects are directly linked to the vector part, ∼ γµ, in the current, the general arguments

already presented in [9] also apply here. First the discrepancy between CC1 and CC2

results are larger for the uv terms, and particularly, for the vv terms. On the contrary, the

uu contributions show a very mild dependence on the current operator selected (see [9]
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FIG. 2: Transverse single-nucleon responses: T (upper panels), TT (middle) and T ′ (bottom).

The separate projection components are shown: uu (left panels), uv (central) and vv (right).

Results are presented for the CC1 (thin lines) and CC2 (thick) current operators.

for an explanation of these effects). Second the results corresponding to Landau and

Coulomb gauges are always similar, whereas those obtained with the Weyl gauge depart

significantly. This behavior can be understood by taking the difference between the

longitudinal current matrix elements, JL = J0 − ω
q
J3, evaluated within the different

gauges (see [9] for details).
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FIG. 3: (Color online) As for Fig. 2, except that now the results are for the longitudinal

responses: L (upper panels), interference TL (middle) and TL′ (bottom). Again the two currents

have been selected, CC1 (thin lines) and CC2 (thick), and the three gauges: Landau (solid lines),

Coulomb (dashed) and Weyl (dot-dashed).

2. PV hadronic responses

In this section we present and analyze the PV hadronic responses corresponding to the

case of protons in the 1p1/2-shell for
16O (Figs. 4 and 5). As already shown, these responses
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are given as products of the single-nucleon responses and the corresponding momentum

distribution components: Nuu, Nuv and Nvv. In Fig. 4 we evaluate the effects associated

with the choice of the current operator and the gauge. These results are consistent with the

previous studies applied to the EM responses. Note that the largest discrepancies emerge

with the Weyl gauge. On the contrary, Landau and Coulomb gauges lead to rather similar

results. It is important to point out the extremely different behavior shown by the results
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FIG. 4: (Color online) Hadronic response functions for a proton in the 1p1/2-shell in
16O. The

labels of the various curves are as in Fig. 3.

obtained with the Weyl gauge: CC1(3) and CC2(3). Note the discrepancy between the

CC1(3) longitudinal response and the remaining ones. This result can be ascribed to

the magnitude of the single-nucleon component R̃L
vv (see Fig. 3), that is dominant for all

momenta considered.

In what follows we restrict our attention to the Landau gauge, i.e., NCC1 and NCC2

prescriptions. Results are similar within the Coulomb gauge, whereas Weyl ones are

dismissed because they fail in describing cross sections and polarization ratios data for

different kinematics [23].

In Fig. 5 we show the PV hadronic responses isolating the specific contributions given

by the components uu, uv and vv. As shown, the vv term (green dot-dashed line) is
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negligible in most of the cases. This is a consequence of the value of the momentum

distribution Nvv: one order (several) of magnitude smaller than Nuv (Nuu) (see [9]). On

the contrary, the particular contribution of the interference uv component (red dashed

line) depends on the specific response considered and the off-shell prescriptions selected.

As already commented on, the use of the CC1 operator tends to maximize the role played

by the interference uv terms. In particular, it is noteworthy to point out the significant uv

contribution in the responses: R̃TL, R̃TL′

and R̃TT . Notice that such contribution is even

bigger than the purely uu term in the case of the CC1 current and the responses R̃TL and

R̃TT (upper central panels). Although not shown, similar results and comments apply

to the case of a neutron in the p1/2-shell being emitted from the nucleus. This outcome

differs from the one pertained to the EM responses where the longitudinal contribution

(related with the electric charge) is very small in the neutron responses.

For completeness, we also present in Fig. 6 the PV hadronic responses corresponding

to a 1p3/2-shell proton in 16O. Comparing these results with the previous ones, i.e., proton

in the 1p1/2-shell (Fig. 5), one observes the significant reduction in the effects associated

with the uv (and vv) components. This can be easily explained taking into account the

different role played by the lower components of the bound nucleon wave function for

different spin-orbit parner shells. In fact, for the jack-knifed states (p1/2) the amplitudes

of the negative-energy projections are much larger than those for the stretched states

(p3/2). This is due to the different quantum number ℓ of the lower components in the two

kinds of states: ℓ = 0 (ℓ = 2) for p1/2 (p3/2) states (see [10]).

B. Final-State Interactions (FSI)

In this section we analyze the effects introduced by the description of the FSI between

the ejected nucleon and the residual nucleus. Results for the PV exclusive responses

are shown in Fig. 7. As already mentioned in previous sections, in this work FSI are

accounted for by solving the Dirac equation in the presence of complex phenomenological

optical potentials fitted to elastic nucleon scattering data. In particular, here we restrict

ourselves to the use of the energy-dependent A-independent EDAI-O potential. The use

of other potentials does not modify the main conclusions. The kinematics have been fixed

as in the previous figures, namely, the transfer momentum is fixed to q = 500 MeV/c
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FIG. 5: (Color online) Energy projection contributions to the hadronic response functions for

1p1/2-shell in
16O: uu (blue dotted line), uv (red dashed) and vv (green dot-dashed). The total

responses are represented by the solid black lines. The six top panels correspond to results

obtained with the Landau gauge and CC1 current operator, whereas the bottom ones refer to

the CC2 current.
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FIG. 6: (Color online) As for Fig. 5, but now for a proton in the 1p3/2-shell in
16O.
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and the energy transfer is chosen to be in the maximum of the QE peak, ω = 132 MeV.

Coplanar kinematics, i.e., φN = 0, have been selected.

All results presented in Fig. 7 correspond to the case of a proton being ejected from the

1p1/2-shell in
16O. In the six upper panels we compare the results evaluated in the RPWIA

limit (green lines) with the ones obtained by including FSI (blue lines). As observed, in

most of the cases FSI lead to a significant reduction in the magnitude of the corresponding

response, being larger for the longitudinal-transverse interference responses: R̃TL and R̃TL′

(they are reduced by a factor of two). A particular comment applies to R̃TT : FSI effects

completely modify the behavior shown by the response, even changing the global sign

(from negative RPWIA values to positive RDWIA ones). However, note the smallness

of R̃TT (likewise for R̃L) whose contribution is negligible compared with the remaining

responses. Hence it is not strange that this response shows a very high sensitivity to FSI

and its particular description. Finally, concerning the differences ascribed to the use of a

particular current operator, i.e., CC1 vs CC2, the results in Fig. 7 show a similar behavior

for the two approaches, viz. RPWIA and RDWIA.

To conclude, we analyze the so-called dynamical relativistic effects, that is, relativistic

effects associated with the description of the nucleon wave functions. We compare our

fully relativistic RDWIA results with those obtained by projecting out the negative-energy

components in both the bound and scattered nucleon wave functions. This is equivalent

to the uu, uv and vv decomposition shown for the RPWIA case in the previous section.

Here we apply the study to the distorted calculation. In the six bottom panels in Fig. 7 we

compare the RDWIA results with the positive-energy projected ones. The latter approach

is simply known as effective momentum approximation (EMA) (see [23–27] for details on

how the EMA approach is defined). As expected, the differences introduced by the choice

of the current operator and/or gauge are much smaller within the EMA limit. Note that

EMA does not incorporate contributions linked to the uv or vv terms; hence the difference

in the responses come solely from the “off-shell” nucleon effects. This behavior, shown in

Fig. 7 for the PV responses, was already observed for the purely EM ones [9].
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FIG. 7: (Color online) PV hadronic responses for a proton in the 1p1/2-shell in
16O. In the upper

panels results in RPWIA (green lines) are compared with the RDWIA ones using the EDAI-O

optical potential (blue). The bottom panels present RDWIA-EDAI-O results (green) compared

with the ones evaluated with the effective momentum approximation (EMA) (red). See text for

details.
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C. Exclusive Helicity Asymmetry

We can introduce an asymmetry for the exclusive process A(~e, e′N)B, defined as the

ratio between the difference and the sum of exclusive cross sections evaluated for positive

and negative electron helicity, respectively. This is given as

Aexcl =
σ+ − σ−

σ+ + σ−
, (25)

where σ+/− represents the differential cross section corresponding to positive/negative

incident electron helicity (24). However, there exists a crucial difference between the

above asymmetry defined for (~e, e′N) processes and the corresponding one constructed

for inclusive (~e, e′) reactions (likewise, for elastic PV electron scattering on the proton).

Whereas for (~e, e′) and elastic PV ep scattering the asymmetry is only different from

zero because of the role played by the weak interaction, in the case of (~e, e′N) processes

the purely EM interaction also gives a contribution to σ+ − σ− through the fifth EM

response function (see discussion of the previous figures). Therefore, the exclusive

helicity asymmetry introduced in this section is not, in principle, a good observable to

analyze effects linked to the weak interaction; the purely EM one dominates by orders

of magnitude. On the contrary, this observable is particularly suited to study FSI. In

what follows we discuss in detail these results analyzing under which conditions both the

purely EM and the WNC interference contributions give similar results. In other words,

we discuss the limits under which the study of PV responses makes sense for A(~e, e′N)B

reactions.

From the general expression for the cross section in Eq. (9) we can isolate in the helicity

asymmetry in Eq. (25) its purely EM contribution, AEM
excl , and the one associated with the

presence of the weak interaction, AWNC
excl :

Aexcl(θe, q, ω, Em, φN , p) = AEM
excl(θe, q, ω, Em, φN , p) +AWNC

excl (θe, q, ω, Em, φN , p) . (26)

Here we express the explicit dependence of the asymmetry with all the kinematical

variables. In terms of the nuclear response functions, the interference AWNC
excl term can be

written in the form:

AWNC
excl =

A0

2G2

[
aA

(
vLR̃

L + vT R̃
T + vTT R̃

TT + vTLR̃
TL
)

− aV

(
vT ′R̃T ′

+ vTL′R̃TL′

)]
, (27)
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where we have introduced the function G2 ≈ vLR
L + vTR

T + vTTR
TT + vTLR

TL 2.

The purely EM contribution, AEM
excl , is simply given by the fifth response function RTL′

:

AEM
excl =

vTL′RTL′

G2
. (28)

Note that RTL′

only enters when FSI are incorporated in the analysis (RTL′

= 0 in

RPWIA). Moreover, the dependence on the azimuthal angle φN is simply given through

sinφN , i.e., in the limit of coplanar kinematics, φN = 0o, 180o, the helicity asymmetry

being different from zero is solely due to the weak interaction.

In what follows we present a brief analysis of the helicity asymmetry showing the

results obtained for different kinematics and evaluating the role of FSI. We also analyze

the effects associated with the lower components in the relativistic wave functions and

with the particular choice of the nucleon current operator. Our interest is to determine

under which conditions the “exclusive” helicity asymmetry can be appropriate to get

information on the PV response functions

1. Coplanar kinematics: φN = 0

For coplanar kinematics the helicity asymmetry reduces to Aexcl = AWNC
excl . In Fig. 8

we present the asymmetry corresponding to the case of protons in the 1p1/2-shell in
16O.

As in previous sections, the kinematics have been fixed to q = 500 MeV, ω = 132 MeV,

φN = 0 and two values for the scattering angle: θe = 15o (forward scattering; left panels),

and θe = 140o (backward angles; right panels). The top (bottom) panels show results for

the Landau gauge and the CC1 (CC2) current.

RPWIA results are shown with black lines (fully relativistic responses) and blue lines

(positive-energy projection). The comparison between the two approaches clearly shows

the role played by the lower components in the bound nucleon wave function. In the

region of the missing momentum where the responses attain their maximum values, i.e.,

50 < p < 200 MeV, the asymmetry does show a tiny sensitivity with the momentum,

leading both approaches, RPWIA and projected, to rather similar results. On the

contrary, for higher values, p ≥ 250 MeV, the relative contribution of the lower (negative-

2 We have neglected in G2 the very small contribution given by the PV responses.
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FIG. 8: (Color online) Asymmetry Aexcl for the case of a proton in the 1p1/2-shell in
16O. The

kinematics are fixed to q = 0.5 GeV/c and ω = 0.132 GeV, and two values for the scattering

angle have been selected: θe = 15o (forward scattering, left panels) and θe = 140o (backward,

right panels). Coplanar kinematics are used, i.e., φN = 0o. The top (bottom) panels refer to

results evaluated with the NCC1 (NCC2) prescriptions. In each case we compare the asymmetry

corresponding to the RPWIA, RPWIA-uu, RDWIA and EMA approaches. FSI have been

evaluated using the EDAIO potential.

energy) components starts to increase, causing significant departures in the various curves.

This result applies for both of the scattering angles selected.

Concerning the effects linked to the choice of the current operator, i.e., NCC1 vs

NCC2, the differences are negligible within the projected-energy approach. However, these

discrepancies get higher when the contribution coming from the lower-energy components

is included. This is particularly true for large missing momenta and it is basically given

by the interference uv terms. Notice that the discrepancy between the curves can reach a

factor ∼ 4 in the case of forward kinematics, and ∼ 2 at backward. Moreover, the lower

components are responsible of the oscillating behavior shown by the asymmetry.

Figure 8 also contains the results obtained with FSI. Here we distinguish the fully

relativistic distorted (RDWIA) calculation (red lines) from the effective momentum
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approximation (EMA) (green lines), i.e., projecting over positive-energy components both

the bound and the scattered nucleon wave functions. From the comparison between

RPWIA, RDWIA and EMA results we observe that at p ∼ 0.1 MeV (maxima in the

responses) the three approaches lead to very similar results. Although not shown, this

comment also applies to results obtained with other gauges. To conclude, let us note the

important role played by FSI and its dependence on the particular description used to

describe such effects: see the comparison between RDWIA and EMA. The most sensitive

region occurs at high missing momenta (the region where the responses, and likewise the

cross section, are very small).

The general conclusions reached from results in Fig. 8 can be extended to other values

of the transferred momentum and energy close to the QE peak.

2. Non-coplanar kinematics: φN 6= 0

As already mentioned in previous sections, the so-called fifth, purely EM response RTL′

only enters in the analysis of (~e, e′N) reactions when FSI are incorporated. Moreover, this

response contributes only for non-coplanar kinematics because its dependence with the

azimuthal angle is simply given through sinφN . The determination of the fifth response is

also linked to the measurement of the incident electron helicity. Therefore, its contribution

to the helicity asymmetry can be very relevant, particularly, much more important than

the contribution coming from the PV responses.

This problem is considered in the discussion that follows. We consider different

kinematical regimes and analyze the impact that the fifth EM response may have in

the asymmetry, comparing its particular contribution with the one ascribed to the PV

responses. The purely EM responses, included RTL′

, are several orders of magnitude

bigger than the PV ones. Hence we have considered specific situations, very close to the

strictly coplanar kinematics, where both the purely EM and the WNC sectors may lead to

similar contributions to the helicity asymmetry. The interest in this study is to determine

what level of precision should be required on the azimuthal angle φN in order to isolate in

the asymmetry the particular contribution associated with the PV responses. To simplify

the discussion, in what follows all results have been obtained with the prescription NCC2.

Similar conclusions are drawn from the use of NCC1.
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In the top panels of Fig. 9 we show Aexcl (black solid line) at φN = 0.01o and the

separate contributions: AEM
excl (red dashed-dotted line) and AWNC

excl (blue dashed line).

This situation is rather close to coplanar kinematics and, as shown in the figure, the

purely EM contribution clearly dominates both at forward (left panel) and backward

(right) kinematics. The bottom panels show the results corresponding to an even smaller

azimuthal angle, φN = 0.001o. In this case, because of the sin φN dependence in the fifth

response, the PV contribution is dominant, and here the purely EM one is roughly one

order of magnitude smaller. It is interesting to point out that, contrary to AEM
excl , the

interference contribution AWNC
excl does not show sensitivity with φN (in the case of very

small φN -values). On the other hand, AEM
excl presents a much stronger sensitivity with the

missing momentum, being responsible of the general “oscillating” behavior shown by the

helicity asymmetry.

From this general analysis one concludes that the measurement of the “exclusive”

helicity asymmetry cannot provide information on the PV responses unless the kinematics

can be fixed with an azimuthal angle of the order of one thousandth of degree or less.

In any other situation, the asymmetry only shows effects associated with the purely EM

responses.

IV. SUMMARY AND CONCLUSIONS

In this work we have studied PV effects in exclusive A(~e, e′N)B processes in the

QE regime. Our main interest has been to explore new observables that may allow

us to get new information on the nucleon structure. In particular, PVQE reactions on

complex nuclei can provide information on the WNC form factors that complements the

one obtained from other processes such as elastic scattering off protons, elastic and QE

electron scattering off helium [28, 29] and deuterium [30], neutrino scattering, etc.

In this paper we have focused on the exclusive scattering process, A(~e, e′N)B, in which

both the scattered electron and the ejected nucleon are detected in coincidence. Although

being aware of the sifnificant difficulties in getting information on PV responses due to the

presence of the so-called fifth EM response function, its general study can be considered

as a first step in the analysis of PVQE inclusive (~e, e′) processes. Moreover, it can also

provide additional information associated with the off-shell properties of the nucleons
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FIG. 9: (Color online) Exclusive helicity asymmetry for the p1/2-shell (protons) in 16O.

Results correspond to RDWIA and NCC2 prescription. The azimuthal angle has been fixed

to φN = 0.01o (top panels) and φN = 0.001o (bottom). Forward and backward kinematics have

been explored in the left and right panels, respectively.

and dynamical relativistic effects, that can be of great interest in the discussion of PV

(~e, e′) observables. Therefore, in Sect. II we presented in detail the kinematics and general

formalism needed to compute the exclusive differential cross section and its decomposition

into response functions. This section also contains a careful discussion of the impulse

approximation (IA) and the particular models we have considered. Finally, a complete

analytical calculation of the PV nuclear tensors (likewise for the responses) within the

relativistic plane-wave impulse approximation (RPWIA) is presented in Sect. IIA.

In Sect. III the results corresponding to the exclusive observables are presented and

analyzed. First, off-shell effects in the interference responses are considered within the
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framework of the RPWIA. The single-nucleon interference responses are evaluated by

isolating the different energy-projection contributions: uu, uv and vv. Moreover, the

two usual prescriptions for the nucleon (vector) current, i.e., CC1 and CC2, have been

used, and for the longitudinal channel, results are shown for the three gauges: Landau,

Coulomb and Weyl. This analysis has been extended to the hadronic responses that are

given as the product of the single-nucleon responses and the momentum distributions of

the nucleon. Most of our conclusions concerning off-shell effects are consistent with those

reported in [9] for the EM responses. We may summarize our main findings as follows:

• The use of the CC1 current tends to magnify relativistic dynamical effects, i.e.,

the contribution linked to the lower components in the nucleon wave function.

Differences between CC1 and CC2 results come from the vv and, particularly, from

the uv contributions. Notice that the momentum distribution Nvv is several orders

of magnitude smaller than Nuv.

• Responses evaluated with the Landau and Coulomb gauges are very similar. On

the contrary, the Weyl gauge leads to very significant differences that, for some

kinematics, are not consistent with data for the EM responses. Therefore, most of

the results shown in this work correspond to the Landau gauge.

We have analyzed the effects introduced by final-state interactions (FSI) in the PV

responses and have computed the helicity asymmetry associated with the exclusive

process. The analysis of the weak interaction through PV electron scattering requires

observables whose existence should be unequivocally linked to such interactions. This

is the case of the helicity asymmetry defined for elastic PV electron-proton scattering

as well as for QE (~e, e′) reactions. However, the situation is more delicate in the case of

coincidence (~e, e′N) processes. Here FSI give rise to the so-called fifth EM response, RTL′

,

that enters in the analysis of the process when the incident electron helicity is measured.

Moreover, its angular dependence is given through sinφN , and hence it only appears for

out-of-plane (non-coplanar) kinematics. This means that, unless the angle φN is very

close to 0 or π (to an accuracy higher than one thousandth of a degree), the helicity

asymmetry is completely dominated by the EM interaction; hence, barring such extreme

circumstances, it cannot provide information on the PV responses associated with the

weak interaction.
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Appendix A: Relativistic Plane-Wave Impulse Approximation (RPWIA)

In this appendix we show in detail the calculation of the hadronic tensors and responses

that enter in the analysis of (~e, e′N) reactions within the Relativistic Plane-Wave Impulse

Approximation (RPWIA). The general procedure was originally developed in [9] in the

case of unpolarized EM responses, and later extended to the study of EM polarized

observables [13, 22]. Here we follow a similar procedure and we apply the general

formalism to the analysis of PV electron scattering. We isolate the contribution ascribed

to the positive- and negative-energy components in the bound nucleon wave function and

show results for the two usual prescriptions of the current operator: CC1 and CC2.

Within RPWIA the hadronic tensors can be given in the general form:

W µν =
∑

I

∑

F

[
Jµ
EM

]∗[
Jν
EM

]

= e2
∑

mj

∑

sN

[
u(pN , sN)Ĵ

µ
EM Φ

mj

k (p)
]∗[

u(pN , sN)Ĵ
ν
EM Φ

mj

k (p)
]

(A1)

W̃ µν =
∑

I

∑

F

[
Jµ
EM

]∗[
Jν
WNC

]

=
eg

4 cos θW

∑

mj

∑

sN

[
u(pN , sN)Ĵ

µ
EM Φ

mj

k (p)
]∗[

u(pN , sN)Ĵ
ν
WNC Φ

mj

k (p)
]
. (A2)

The current matrix elements can be decomposed by using the completness relation:

(Jµ)u =
∑

S

u(pN , sN)Ĵ
µu(p, S)

[
u(p, S)Φ

mj

k (p)
]
, (A3)

(Jµ)v =
∑

S

u(pN , sN)Ĵ
µv(p, S)

[
v(p, S)Φ

mj

k (p)
]
, (A4)
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where the first term, labelled with the index u, comes from the coupling of the bound

nucleon wave function with the positive-energy Dirac spinors u(p, S), and the second one,

v, is linked to the negative-energy Dirac spinors v(p, S).

Proceeding in this way the purely EM and PV hadronic tensors can be separated

into three terms: W µν = W µν
P + W µν

C + W µν
N , where W µν

P (W µν
N ) is the contribution

from positive-energy (negative-energy) projections only, while W µν
C is a crossed term

containing products of both positive- and negative-energy projections. Following the

general arguments presented in [9] and introducing the functions associated with the

upper/lower components in the bound nucleon wave function in momentum space:

αk(p) = gk(p)−
p

E +MN

Skfk(p) , (A5)

βk(p) =
p

E +MN

gk(p)− Skfk(p) , (A6)

we can finally express the different contributions to the hadronic tensors in the form:

W µν
P = e2

E +MN

MN

|αk(p)|2

16π︸ ︷︷ ︸
Nuu(p)

∑

sNs

[
u(pN , sN)Ĵ

µ
EMu(p, S)

]∗[
u(pN , sN)Ĵ

ν
EMu(p, S)

]

︸ ︷︷ ︸
Wµν

= e2Nuu(p) W
µν , (A7)

W µν
N = e2

E +MN

MN

|βk(p)|
2

16π︸ ︷︷ ︸
Nvv(p)

∑

sNs

[
u(pN , sN)Ĵ

µ
EMv(p, S)

]∗[
u(pN , sN)Ĵ

ν
EMv(p, S)

]

︸ ︷︷ ︸
Zµν

= e2Nvv(p) Z
µν , (A8)

W µν
C = e2

Nuv(p)︷ ︸︸ ︷(
−
E +MN

MN

)
αk(p)βk(p)

8π

∑

ss′

1

2

{
〈s′|

σ · p

p
|s〉

×
∑

sN

[[
u(pN , sN)Ĵ

µ
EMu(p, S)

]∗[
u(pN , sN)Ĵ

ν
EMv(p, S ′)

]

+
[
u(pN , sN)Ĵ

µ
EMv(p, S)

]∗[
u(pN , sN)Ĵ

ν
EMu(p, S ′)

]]}

= e2Nuv(p) N
µν . (A9)
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A similar decomposition holds for the WNC hadronic tensor:

W̃ µν
P =

(
eg

4 cos θW

)
Nuu(p) W̃

µν (A10)

W̃ µν
N =

(
eg

4 cos θW

)
Nvv(p) Z̃

µν (A11)

W̃ µν
C =

(
eg

4 cos θW

)
Nuv(p) Ñ

µν , (A12)

where the single-nucleon tensors W̃µν , Z̃µν and Ñ µν are defined in a similar way to the

purely EM ones (Wµν , Zµν , N µν) given in Eqs. (A7), (A8), (A9), but inter-changing one

of the purely EM nucleon current matrix element with the corresponding WNC one.

In what follows we evaluate the explicit expressions for the PV single-nucleon

tensors. We consider both CC1 and CC2 prescriptions for the vector part in the weak

current. The purely EM tensors have been already presented in previous work [9], hence

here we restrict our attention to the WNC tensors. To simplify the analysis we separate

the positive, negative and crossed contributions.

1. Positive-energy tensor: uu contribution

In this case the interference single-nucleon tensor is given by the following trace:

W̃µν =
[
W̃µν

V + W̃µν
A

]

=
1

4M2
N

Tr
[
Ĵµ
EM( 6PN +MN )

(
Ĵν
WNC,V + Ĵν

WNC,A

)
( 6P +MN)

]
. (A13)

The following expressions are obtained for the two prescriptions of the vector term in the

weak current:

• CC1 Vector contribution:

W̃µν
V = S̃µν

V,uu =
1

M2
N

{
(F1 + F2)(F̃1 + F̃2)

(
P

µ
P ν
N + P

ν
P µ
N +

Q
2

2
gµν

)

+
1

2

[
F2F̃2

(
1−

Q
2

4M2
N

)
− F2(F̃1 + F̃2)− F̃2(F1 + F2)

]
CµCν

}
. (A14)

• CC2 Vector contribution: Contrary to the previous case, here the tensor has

both symmetric and antisymmetric parts:

W̃µν
V = S̃µν

V,uu + Ãµν
V,uu . (A15)
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The symmetric tensor is

S̃µν
V,uu =

1

M2
N

{
F1F̃1

[
P

µ
P ν
N + P

ν
P µ
N +

Q
2

2
gµν

]
+

F1F̃2 + F2F̃1

2
gµνQ ·Q

−

(
F1F̃2

4

(
Q

µ
Qν +Q

ν
Qµ
)
+

F2F̃1

4

(
Q

ν
Qµ +Q

µ
Qν
)
)

+
F2F̃2

4M2
N

[
PN ·Q(P

ν
Qµ + P

µ
Qν) + P ·Q(P µ

NQ
ν + P ν

NQ
µ)

− Q2(P µ
NP

ν
+ P ν

NP
µ
)−QµQν

(
2M2

N −
Q

2

2

)

+ gµν

(
Q2

(
2M2

N −
Q

2

2

)
− 2(PN ·Q)(P ·Q)

)]}
, (A16)

and the antisymmetric one is

Ãµν
V,uu = −

(
F1F̃2

4

(
Q

µ
Qν −Q

ν
Qµ
)
+

F2F̃1

4

(
Q

ν
Qµ −Q

µ
Qν
)
)

. (A17)

• CC1 Axial contribution:

W̃µν
A = Ãµν

A,uu =
i

M2
N

(F1 + F2)G
e
A ǫµναβP αPN,β . (A18)

• CC2 Axial contribution: Again symmetric and antisymmetric parts contribute

to the whole single-nucleon tensor:

W̃µν
A = S̃µν

A,uu + Ãµν
A,uu (A19)

with

S̃µν
A,uu =

i

M2
N

{
F2

4M2
N

G̃p

(
Qνǫµαβδ +Qµǫναβδ

)
P αPN,βQδ

}
. (A20)

Ãµν
A,uu =

i

M2
N

{
ǫµναβGe

A

[
F2

2
(PN + P )αQβ + F1PαPN,β

]

+
F2

4M2
N

G̃p

(
Qνǫµαβδ −Qµǫναβδ

)
PαPN,βQδ

}
. (A21)
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2. Negative-energy tensor: vv contribution

In this case the general expression for the single-nucleon tensor in terms of traces reads:

Z̃µν =
1

4M2
N

Tr
[
Ĵµ
EM( 6PN +MN )Ĵ

ν
WNC( 6P −MN )

]
. (A22)

The following explicit expressions are obtained:

• CC1 Vector contribution It presents symmetric and antisymmetric terms,

Z̃µν
V = S̃µν

V,vv + Ãµν
V,vv (A23)

with

S̃µν
V,vv =

1

M2
N

{
(F1 + F2)(F̃1 + F̃2)

(
P

µ
P ν
N + P

ν
P µ
N −

(P + PN)
2

2
gµν
)

−
F2F̃2

8M2
N

Q
2
(P + PN)

µ(P + PN)
ν

+
F̃2(F1 + F2) + F2(F̃1 + F̃2)

2
(P µ

NP
ν
N − P

µ
P

ν
)

}
, (A24)

Ãµν
V,vv =

1

M2
N

{
F̃2F1 − F2F̃1

2

(
P µ
NP

ν
− P ν

NP
µ)
}
. (A25)

• CC2 Vector contribution In this case the symmetric and antisymmetric parts of

the tensor are

S̃µν
V,vv =

1

M2
N

{
F1F̃1

(
P

µ
P ν
N + P

ν
P µ
N −

(P + PN)
2

2
gµν
)

+
F1F̃2 + F2F̃1

4

(
Qµ(P + PN)

ν +Qν(P + PN)
µ − 2Q · (P + PN)g

µν
)

+
F2F̃2

4M2
N

[
PN ·Q(P

µ
Qν + P

ν
Qµ) + P ·Q(P µ

NQ
ν + P ν

NQ
µ) +

Q
2

2
QµQν

− Q2(P µ
NP

ν
+ P ν

NP
µ
)− gµν

(
Q

2
Q2

2
+ 2(PN ·Q)(P ·Q)

)]}
, (A26)

Ãµν
V,vv =

1

M2
N

{
F1F̃2 − F2F̃1

4

(
Qµ(P + PN)

ν −Qν(P + PN)
µ
)
}
. (A27)
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• CC1 Axial contribution Here the result coincides with the expression already

obtained for the CC1 axial contribution in the case of the purely positive-energy

tensor in Eq. (A18).

• CC2 Axial contribution Its symmetric and antisymmetric parts, Z̃µν
A = S̃µν

A,vv +

Ãµν
A,vv, are given by

S̃µν
A,vv =

i

M2
N

{
F2G̃p

4M2
N

(Qνǫµαβδ +Qµǫναβδ)PαPN,βQδ

}
, (A28)

Ãµν
A,vv =

i

M2
N

{
ǫµναβGe

A

[
F2

2
(P − PN)αQβ + F1P αPN,β

]

+
F2G̃p

4M2
N

(Qνǫµαβδ −Qµǫναβδ)P αPN,βQδ

}
. (A29)

3. Crossed tensor: uv contribution

The non-diagonal spin single-nucleon tensor N µν that enters in the evaluation of the

crossed uv hadronic tensor can be written in terms of a diagonal tensor constructed

from spinors quantized with respect to a spin axis pointing along a generic direction,

Rµν(θR, φR). This is the spin precession technique that has presented in detail in [9, 31].

Here we simply summarize the main results applied specifically to the case of the PV

response functions.

In general we can write

N µν = Rµν(0, 0) cos θ +
(
Rµν(

π

2
, 0) cosφ+Rµν(

π

2
,
π

2
) sinφN

)
sin θ , (A30)

where θ, φN are the angles defining the direction of the bound nucleon momentum p and

the tensor Rµν is given in the general form

Rµν(θR, φR) =
1

4MN
Tr
[
6SLĴ

µ
EM( 6PN +MN)Ĵ

ν
WNC

]
(A31)

with Ĵµ
EM (Ĵµ

WNC) the purely EM (WNC) current operators. Isolating the vector and

axial contributions in the WNC operator, and after some algebra, the following results

are obtained for the two prescriptions of the vector current:
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a. Vector interference contribution

• CC1 prescription: The single-nucleon tensor has symmetric and antisymmetric

parts,

R̃µν
V = S̃µν

V,uv + Ãµν
V,uv (A32)

with

S̃µν
V,uv =

1

MN

{
(F1 + F2)(F̃1 + F̃2)

(
Sµ
LP

ν
N + Sν

LP
µ
N − (PN · SL)g

µν

)

+
F2F̃2

4M2
N

(PN · SL)(P + PN)
µ(P + PN)

ν

−
F2(F̃1 + F̃2) + F̃2(F1 + F2)

4

(
(P + PN )

µSν
L + (P + PN)

νSµ
L

)
}
,

(A33)

and

Ãµν
V,uv =

1

MN

{
−
F2(F̃1 + F̃2)− F̃2(F1 + F2)

4

(
(P + PN)

µSν
L − (P + PN)

νSµ
L

)
}
.

(A34)

• CC2 prescription: Likewise, the symmetric and antisymmetric parts result:

S̃µν
V,uv =

1

MN

{
F1F̃1

(
Sµ
LP

ν
N + Sν

LP
µ
N − (PN · SL)g

µν

)

−
F1F̃2 + F̃1F2

2
(Q · SL)g

µν +
F1F̃2 + F2F̃1

4
(QµSν

L +QνSµ
L)

+
F2F̃2

4M2
N

[
PN ·Q(Sµ

LQ
ν + Sν

LQ
µ) + SL ·Q(P µ

NQ
ν + P ν

NQ
µ)

− Q2(P µ
NS

ν
L + P ν

NS
µ
L)− (PN · SL)Q

µQν

+ gµν
(
Q2PN · SL − 2(PN ·Q)(SL ·Q)

)]
}
, (A35)

and

Ãµν
V,uv =

1

MN

{
F1F̃2 − F2F̃1

4
(QµSν

L −QνSµ
L)

}
. (A36)
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b. Axial interference

In this case the expressions for the tensor can be cast as follows:

• CC1 prescription

R̃µν
A = Ãµν

A,uv = −
i

MN
(F1 + F2)G

e
Aǫ

µναβPN,αSL,β (A37)

• CC2 prescription: The symmetric term is

Ãµν
A,uv = −

i

MN

{
Ge

Aǫ
µναβ

(
F1PN,α +

F2

2
Qα

)
SL,β

−
F2G̃P

4M2
N

(
Qνǫµαβδ +Qµǫναβδ

)
QαPN,βSL,δ

}
, (A38)

and the antisymmetric one

S̃µν
A,uv = −

i

MN

{
−
F2G̃P

4M2
N

(
Qνǫµαβδ −Qµǫναβδ

)
QαPN,βSL,δ

}
. (A39)
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