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Abstract

Quarkonium at finite temperature is described as an open quantum system whose dynamics are

determined by a potential VR(x) and drag coefficient η, using a path integral with a non-local term.

Path-integral Monte Carlo calculations determine the Euclidean Green function for this system to

an accuracy greater than one part in a thousand and the maximum entropy method is used to

determine the spectral function; challenges facing any kind of deconvolution are discussed in detail

with the aim of developing intuition for when deconvolution is possible. Significant changes to

the quarkonium spectral function in the 1S channel are found, suggesting that any description

of quarkonium at finite temperature, using a potential, must also carefully consider the effect of

dissipation.
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I. INTRODUCTION

At both zero temperature and above deconfinement, quarkonium is an ideal probe of

QCD. At zero temperature its mass M � ΛQCD suggests the effective field theory approach

of NRQCD [1], where the heavy quark mass is integrated out. In effect, the heavy quark mass

sets the momentum scale of QCD for states using this description, allowing perturbative re-

sults to work well. The situation becomes more complicated at finite temperatures. NRQCD

can be extended to finite temperature and used to examine the break-up of quarkonium [2].

An alternative point of entry is to treat quarkonium above deconfinement as an open

quantum system (OQS)[4]. This departs from any attempt to describe quarkonium with

perturbation theory, and the parameters describing quarkonium have to be determined sep-

arately, either in calculations based on first principles or from experimental measurements.

However, this description has the strength of being independent of some of the scale hier-

archies. One would suspect that the OQS approach is at its most useful for charmonium

and highly excited states of bottomonium, where the binding energy is small and the con-

fining term of the Cornell potential is important for describing the spectrum of states at

zero temperature. Perhaps the greatest strength of the OQS approach is that the approach

to thermalized yields of quarkonium is completely natural, which is not necessarily the case

for some potential models. Since the first, simplest descriptions of quarkonium in this way,

the treatment of heavy quarks at finite temperature has developed significantly, thanks the

work of several authors [5–7].

This paper describes the numerical determination of the spectral function for an open

quantum system, which has the potential term and the diffusion coefficient matched to

quarkonium at the temperatures reached in heavy-ion collisions. The procedures used can

be generalized for different densities of states for the thermal bath, for different couplings,

and for non-trivial correlations of the bath’s force on the heavy quark and the anti-quark.

In Section II, the path-integral Monte Carlo algorithm for this open quantum system is

described. In Section III, intuition is developed for when phenomenologically significant de-

convolution of spectral functions is possible, with this having some implications for results

using lattice QCD calculations; and finally, the maximum entropy method is used to de-

convolve the results from Section II into quarkonium spectral functions, and the non-trivial

relationship between diffusion and the destruction of the J/ψ state can be determined. In
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this way, the often competing effects of drag and momentum diffusion on J/ψ survival rates

can be simultaneously considered, as was done in [8, 9].

While this procedure may seem cumbersome, it is in fact relatively cheap computationally.

The most costly step is the calculation of the correlation functions to sufficient accuracy so

that deconvolution yields significant results; work on high-order estimates of the action in

Equation 4 can speed this computation significantly as it has for simple actions.

II. EUCLIDEAN CURRENT-CURRENT CORRELATORS AND DISSIPATIVE

EFFECTS

Much of the groundwork towards examining open quantum systems with path integrals

was already done by Feynman and Hibbs when they considered influence functionals [10];

Caldeira and Leggett used path integrals to describe a system with a specific thermal bath

[11] while Grabert, Schramm, and Ingold generalized Caldeira and Leggett’s results [12]. In

[4], these techniques were applied to imaginary-time Green functions. To review: one starts

with the action for a heavy degree of freedom with position x interacting with a light degree

of freedom described by R. This light degree of freedom is often a collective mode of a gas

or of condensed matter, and not just a value for position. The action for this system, using

a harmonic approximation and minimal coupling, is

S =

∫ τ

0

dτ
′
[

1

2
Mẋ2 + V (x) +

1

2
mṘ2 +

1

2
mω2R2 − CxR

]
gives the influence functional

〈xf , τ |xi, 0〉red =

∫
Dx exp

(
−
∫ τ

0

dτ
′
[

1

2
Mẋ2 + V (x)

− C2

2mω sinh(ωτ)
x(τ

′
) cosh(ω(τ − τ ′))

∫ τ
′

0

ds x(s) cosh(ωs)

])
. (1)

after finding 〈xf , Rf |xi, Ri〉 and integrating over Ri and Rf . When there are mul-

tiple light degrees of freedom, the final term in the integral becomes the sum∑
i

C2
i

2miωi sinh(ωiτ)
x(τ

′
) cosh(ωi(τ − τ

′
))
∫ τ ′

0
ds x(s) cosh(ωis). The system becomes dissipative

in the limit of an infinite number of light degrees of freedom of masses mi and frequencies
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ωi: the density of states

C2(ω)ρD(ω) =


2mηω2

π
if ω < Ω

0 if ω > Ω
(2)

in the limit Ω→∞ was examined in [11] and found to lead to a path integral which yields

the Langevin equation in the classical, high-temperature limit. Performing the integral over

these states in Equation 1 leads to the integral∫ Ω

0

dω

∫ τ

0

du

∫ τ

0

dv x(u)x(v)
ω cosh(ω(τ − u)) cosh(ωv)

sinh(ωτ)
θ(u− v)

=
Ω

2

∫ τ

0

du(x(u))2 −
∫ Ω

0

dω

ω sinh(ωτ)

∫ τ

0

du

∫ u

0

dv ẋ(u)ẋ(v) sinh(ω(τ − u)) sinh(ωv),

which forces a renormalization of V (x), and gives the imaginary-time Green function for

this system:

Gred(xf , xi, τ) =

∫
Dx exp

(
−
∫ τ

0

du

[
1

2
Mẋ(u)2 + VR(x(u))− η

2π

∫ u

0

dv ẋ(u)ẋ(v) log

[
sin(π

2
u−v
τ

)

sin(π
2
u+v
τ

)

]])
.

Note that only the potential is renormalized, and that the final term introduced by the

integration over the bath of particles is translationally invariant, meaning that no finite,

x-dependent term has been added to the path integral. This imaginary-time Green function

can be made periodic in τ with period β using the method of images to make a quantity

related to results from finite-temperature lattice calculations.

For a general potential, numerical methods for determining this path integral must be

developed. Path-integral Monte Carlo techniques have been developed for condensed matter

systems; Ceperley reviewed these methods as they concern liquid helium [13]. For quarko-

nium, a relatively simple algorithm is used: the path is discretized to 211 + 1 equally-spaced

times, and free-particle paths are sampled using the bisection method. These paths are

reweighted according to the expression above. The double integral in the exponential poses

some problems because it is improper; both the “square” and “triangular” regions in the

double integral must have their measures determined analytically so that sufficient precision

may be achieved.
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The results for G(τ) have been calculated for the Cornell-like potential

V (r) =


−1.5αs

rmin
+ 0.5σrmin + (0.5αs

rmin
+ 0.5σrmin) r2

r2min

if r < rmin,

−αs/r + σr if r > rmin

(3)

with rmin chosen to be small, 0.4 GeV−1 (here, all units are in GeV), αs = 0.499, and

σ = 0.16 GeV2. The purpose of using this piecewise function is to simplify dealing with

the divergence of the Cornell potential as r → 0. The drag coefficients η =0, 0.0729 GeV,

and 0.1458 GeV were used, corresponding to the spatial diffusion coefficients 2πDc = ∞,

5, and 2.5, respectively, at T = 285 MeV. The results for these values were shown in [4];

here, in Figure 1, we show results for the same values but for a large range in τ , which is

necessary for extracting the spectral function. We should also note that some degrees of

freedom of the heavy quark are not represented in this path integral, namely, spin and color.

The potential term is therefore the thermal average of this quantity over spin and color

states. In [6], Lindblad equations describing the evolution of color singlet and octet states

are determined for heavy quarkonium, starting from perturbative QCD for heavy quarks.

Our path integral, on the other hand, requires color-averaged potentials as an input for the

path integral Monte Carlo calculations.

III. THE QUARKONIUM SPECTRAL FUNCTION AND THE CHALLENGES

FACING DECONVOLUTION

The imaginary-time Green function is related to the spectral function ρ = −Im{GR}

through a Laplace transform:

G(τ) =

∫
exp(−ωτ)ρ(ω)dω; (4)

similarly, the imaginary-time finite-temperature Green function is this Laplace transform

made periodic through the method of images:

G(τ, β) =

∫
cosh(ω(τ − β/2))

sinh(ωβ/2)
ρ(ω)dω. (5)

Complex analysis helps here: the Fourier transforms of the various Green functions are con-

veniently related to each other; as a function of complex ω, causality translates to analyticity
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FIG. 1 (Color Online): From [4], G(τ) with and without dissipative effects.

of GR in the upper-half plane; and the relation between GR and GA in ω is a generalization

of the fluctuation-dissipation theorem [14].

Unfortunately, when working with numerical results and not analytic expressions forG(τ),

these results are not helpful. The reason for this is simple: significantly different spectral

functions often differ by very little in their Laplace transforms. This is not obvious to

theorists who work with analytic results so it is necessary to illustrate this with an example:

consider two spectral functions, ρ1 and ρ2, plotted in Figure 2. The widths differ by a factor

of five, from 0.01 GeV for ρ1 to 0.05 GeV for ρ2. This changes the lifetime of the state from

∼ 20 fm/c to ∼ 4 fm/c. The lifetime of the state represented by ρ1 is long compared with

the timescales of the heavy-ion collisions at RHIC and the LHC; it represents a state whose

yields would be largely unaffected, while the state represented by ρ2 would be significantly

suppressed.

Lattice QCD calculations of quarkonium correlation functions have determined G(τ, β)

for temperatures between Tc = 175 MeV and 2Tc, by determining the correlation functions

of composite operators

G(τ, β) =

∫
d3x 〈Jµ(x, τ)Jµ(x, τ)〉 , (6)

where Jµ = ψ̄Γµψ and Γµ = γµ, γ4γµ. This function corresponds to the transform of the

6



 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0.2  0.25  0.3  0.35  0.4  0.45  0.5  0.55  0.6
 [GeV]

 = 0.01, m = 0.35
 = 0.05, m = 0.357023

FIG. 2 (Color Online): The spectral functions ρ1 (with width σ = 0.01 GeV) and ρ2 (with width

σ = 0.05 GeV).

spectral function shown in Equation 5. For β = (1.5Tc)
−1, this transform of ρ1 and ρ2 can

be computed; Figure 3 shows the relative difference ∆G/G ≡ (G2 −G1)/G2 for values of τ

from zero to 0.5β.

The relative difference has a maximum of about one part in a thousand. If the full range

for τ were equally sensitive to changes in this bound state, this would suggest that three

results for G(τ, β), equally spaced on this range, would need an accuracy of a few parts in

ten thousand to determine which spectral function fits the results best. Constraining the

spectral function in the vector channel with sum rules is not likely to help much because

they provide only a few constraints to a continuous function.

Lattice QCD calculations at specific temperatures are performed on periodic lattices and

are used to determine finite-temperature Green functions as in Equation 5, not 4. However,

if another calculation can determine imaginary-time Green functions as in Equation 4 at

large τ , it will be sensitive mostly on the shape of the ground state and the resulting G1 and

G2 should differ by a greater relative ∆G. We take advantage of this fact by calculating this

Green function for a dissipative system over the range shown in Figure 4. Here, |∆G|/G has

a maximum of about 1%, suggesting that numerical deconvolution will be less daunting.
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FIG. 3 (Color Online): The relative difference ∆G/G = (G2(τ, β) − G1(τ, β))/G2(τ, β) between
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FIG. 4 (Color Online): G1(τ), G2(τ), and |∆G|/G, plotted together.
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If G(τ) is determined with sufficient accuracy, deconvolution can be attempted. Again,

the inverse Laplace transform is analytically easy but numerically non-trivial. Working with

tens of data points for G(τ), no matter the accuracy, underdetermine any reasonable dis-

cretization of the spectral function. Consider χ2-minimization in this situation: the spectral

function is discretized into ∼ 1000 points and ∼ 10 data points are fitted, unnaturally small

values of χ2 can be achieved. The result for ρ(ω) usually appears choppy in this situation.

The principle of maximum entropy suggests that the best fit for ρ(ω) is not the fit with

the smallest χ2, but the fit with a reasonable value for χ2 but is also constrained by the

information entropy

I =
∑
i

[ρi log (ρi/σi)− (ρi − σi)] , (7)

where ρi are the discretized values for ρ(ω) and σi are the priors for ρi. This constraint on

the χ2-minimization is often cast in terms of Bayesian principles, but it can also be thought

of as an assumption of smoothness for the deconvolved function, far less controversial in

physical situations. The sum of χ2 and I define the energy function to be minimized:

E(ρi) = χ2(ρi) + αI. (8)

The coefficient α determines the relative importance of χ2 and I in the minimization; it is

often chosen to make χ2 roughly equal the number of data points. Gallicchio and Berne

point out that the best value for α can also be determined with Bayesian logic [15]. Our

choices for α will be based simply on whether or not they yield reasonable values for χ2.

A suitable algorithm for the minimization of this function is simulated annealing: 1.)

random steps are considered in the space of values for ρi, , changing the value of E from

Ei to Ef , 2.) any step that decreases E is taken while any step increasing E is taken with

probability P = exp(−(Ef − Ei)/T ), T being a temperature chosen to be large initially,

and 3.) the process is repeated with T lowered until a minimum temperature T is reached.

When a function is multi-modal as is possibly the case, simulated annealing is far more

likely to be successful at finding absolute minima than the biconjugate gradient method, or

any other slope-following method.

At this point, a test of this method of deconvolution would be useful. We can test this by

going in the opposite direction: starting with a given spectral function, finding its Laplace

transform (with random Gaussian error added), and deconvolving with the maximum en-
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α=0.01 α=0.1 α=1

1st peak 17.15% 14.84% 3.58%

2nd peak 22.85% 10.29% 4.65%

TABLE I: The discrepency between the true spectral function and the results of deconvolution

shown in Fig. 5.

tropy method. The spectral function

σ(ω) = 1.2(e−
(ω−0.33)2

2∗0.01742 − e−
(ω+0.33)2

2∗0.01742 )

+ 0.2(e−
(ω−1)2

2∗0.1082 − e−
(ω+1)2

2∗0.1082 )
(9)

mimics the form that we expect for the quarkonium spectral function at finite temperature.

The data set

G(τi) =

∫
σ(ω)e−ωτdω + ∆Gi (10)

contains 15 points ranging from τ = 0.5 GeV−1 and τ = 9.6 GeV−1, and ∆Gi is random

Gaussian noise with standard deviation 10−6 GeV. In Figure 5, the results of the maximum

entropy method with different values of α are compared to the original spectral function.

In Table 1, the error in the widths of the peaks in the spectral function are shown for the

different values of α, showing agreement within a few percent when α = 1.

The results from applying the maximum entropy method to the results for the quarkonium

Green functions are shown in Figure 6. It has resolved what should be a Dirac delta function

in the spectral function without dissipation down to a width of 0.25 GeV. The spatial

diffusion coefficient 2πTD = 5 corresponds with an increase of the width to 1 GeV, signifying

the state having a lifetime of 0.197 fm/c. The results of the simulated annealing for 2πTD=∞

with different α values can be seen in Figure 7. It is observed that the results are not sensitive

to the value of α over a considerable range.

We end this section by noting the physics behind the changes of the spectral function in

Figure 6. First, the centroid of the ground state peak is shifted to high ω with increasing

η. This suggests that the mean radius of the ground state increases, under the influence of

momentum transfer from the medium. This could honestly have been seen rather quickly,

by examining the slope of G(τ) in Figure 1. A far less trivial result from the maximum

entropy method is the increasing width of the ground state peak, indicating a decrease of
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FIG. 5 (Color Online): The spectral functions deconvolved from the test data by using different

values of α. The corresponding values of χ2 are shown in the legend.
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FIG. 6 (Color Online): The spectral functions deconvolved from the results in Figure 1. The

corresponding values of χ2 are shown in the legend.
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the lifetime of the ground state.

IV. SUMMARY

Deconvolution of spectral functions was examined with an emphasis on the building of

intuition for quarkonium near Tc. Results from a treatment of quarkonium above deconfine-

ment as an open quantum system yielded a set of spectral functions showing the effect of

increasing η, and these results were found to be robust for a range of values in α.

While this paper dug very deeply into the issues related to deconvolution, more work

is required. In particular, only flat priors were used here; the role of the prior must be

examined carefully. Finally, temperature-dependent potentials will be used in future work,

making possible strong statements about quarkonium spectral functions including multiple

temperature-dependent effects.
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