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Abstract : 
We have measured the fission probabilities of 242Am, 243Cm and 244Cm induced by the transfer 
reactions 243Am(3He,4He), 243Am(3He,t) and 243Am(3He,d), respectively. The details of the 
experimental procedure and a rigorous uncertainty analysis, including a correlation matrix, are 
presented. For 243Cm our data show clear structures well below the fission threshold. To our 
knowledge, it is the first time that these structures have been observed for this nucleus. We 
have compared the measured fission probabilities to calculations based on the statistical 
model, to obtain information on the fission barriers of the produced fissioning nuclei. 

PACs: 25.85.Ge; 25.55.Hp; 24.60.Dr 
 

1. Introduction  

Fission probabilities are highly sensitive to fission-barrier properties and level densities at 
different deformations, and provide valuable information on these fundamental nuclear 
quantities. Transfer reactions with light projectiles have often been used in the past to induce 
fission, see e.g. [1-6]. The fission probabilities obtained in these measurements were 
frequently used to investigate the fission thresholds below the neutron separation energy (Sn) 
of even-even fissioning nuclei, which are not accessible in neutron-induced reactions, e.g. [7]. 
These studies were crucial for understanding the origin of the sub-barrier resonances observed 
in the fission probabilities [8]. These resonances arise from the coupling of the compound 
nuclear states in the first well to collective vibrations in the fission degree of freedom in the 
second potential well. The comparison of experimental fission probabilities with statistical 
model calculations [9] provided also indirect but compelling evidence that the first fission 
barrier is axially asymmetric for most of the actinide region, as predicted by theoretical 
calculations of the potential energy surface [10]. In addition, measurements of fission 
probabilities combined with fission-fragment angular distributions yield information on the 
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properties of the transition states at the two saddle points through which the nucleus may pass 
on its way to fission [11-14]. 
 
Another important advantage of transfer-induced fission is that it may enable the formation of 
very short-lived fissionable nuclei that cannot be produced in neutron-induced reactions 
because of the high radioactivity of the required targets. Britt and Cramer observed that 
fission probabilities obtained in transfer reactions were similar to fission probabilities deduced 
from neutron-induced measurements [15]. This lead to the development of the surrogate-
reaction method [16], an indirect technique to infer neutron-induced cross sections for 
unstable nuclei. In most applications of the surrogate method, the neutron-induced cross 
section is obtained by multiplying the measured decay probability with the calculated cross 
section for the formation of a compound nucleus via neutron absorption. This technique has 
recently received renewed attention and considerable effort has been made from both the 
experimental and theoretical sides to establish to which extent the surrogate method can be 
used to infer neutron-induced cross sections [17]. The spin J and parity π distributions 
populated in the neutron-induced and surrogate reactions can be very different. The impact of 
this spin-parity mismatch on the different types of cross sections that can be obtained with the 
surrogate-reaction method is an important subject that requires further experimental and 
theoretical investigations.  

In ref. [18] we used the 243Am(3He,4Hef)242Am, 243Am(3He,tf)243Cm and 243Am(3He,df)244Cm 
transfer reactions as surrogate reactions for the 241Am(n,f), 242Cm(n,f) and 243Cm(n,f) 
reactions, respectively. Our results are in very good agreement with the neutron-induced data, 
even at relatively low excitation energy. In the present work we give the details of the 
experimental setup and the data analysis procedure employed to derive the fission 
probabilities used in ref. [18]. The transfer reactions considered here have already been 
studied by Gavron et al. [9]. However, our measurements cover a broader range of excitation 
energies and we have carried out a thorough uncertainty analysis of the fission probabilities, 
paying special attention to parameter correlations and their effect on the final data 
uncertainties. In the last part of this work we compare our results to simplified statistical-
model calculations to extract fission barrier parameters.  

2. Experiment and data analysis 

When fission of a nucleus A is induced by a transfer reaction X(y,b)A, the fission probability 
Pf as a function of excitation energy E* can be obtained as:  

( *)( *)
( *) ( *)

b
A coinc

f b
sing f

N EP E
N E Eε

=
⋅

                                                        (1) 

where b
singN is the total number of detected ejectiles b, b

coincN  is the number of ejectiles b 

detected in coincidence with a fission fragment and fε  is the fission-detection efficiency. In 

the absence of parasitic transfer reactions with the same ejectile b, the quantity /b
coinc fN ε  
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gives the number of compound nuclei A that have undergone fission amongst the number of 
formed compound nuclei b

singN .  

In a recent work [19], where fission was induced via multinucleon transfer between 12C and 
238U, a non negligible probability of exciting the carbon-like ejectiles was observed, that 
questioned the commonly used assumption that the excitation energy available in the transfer 
reaction is found only in the heavy reaction partner. In this work, we deal with 3He-induced 
transfer reactions where the ejectile can be a deuteron, a triton or an α particle, and the 
maximum total available excitation energy is essentially below 20 MeV. Deuterons and 
tritons have no bound excited states and will break up if excited, while the first excited state 
of 4He is located at 20.2 MeV. Therefore, all the detected ejectiles are in their ground state 
and all the excitation energy available in the reaction can safely be attributed to the fissioning 
nucleus A. The excitation energy can then be unambiguously determined from the measured 
kinetic energy Eb and emission angle θ of the ejectile, by applying energy and momentum 
conservation laws: 

 
( ) ( ) 2 cos

* A y y A b A b y b y b

A

M Q E M M E M M M M E E
E

M

θ− − − + +
=                       (2)                        

where the different Mi represent the masses of the nuclei involved in the reaction, Q is the Q-
value of the transfer reaction and Ey is the beam energy. Tritons and 3He break up at 
excitation energies of 6.2 and 5.5 MeV, respectively. In principle, the deuterons that result 
from the breakup may pollute the (3He,d) reaction. However, in the work by Gavron et al. [9] 
the fission probabilities of various nuclei formed both via (3He,d) and (3He,t) reactions were 
compared and found to be in good agreement, thus demonstrating that contamination due to 
3He or triton breakup can be disregarded. For these measurements, Gavron et al. used a beam 
energy of 25 MeV and a particle telescope placed at 120 degrees. Therefore, to avoid the 
possible background generated by 3He or triton breakup we have used in our measurement 
experimental conditions similar to Gavron et al. 

 
Figure 1:  (Color online) Schematic three-dimensional representation of the set-up for fission 
probability measurements.  
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The measurement was conducted at the Tandem accelerator of the IPN Orsay that delivered a 
3He beam of 24 MeV with an intensity of about 50 nAe. The 243Am (T1/2=7370 y) target, of 
approximately 150 µg/cm2 thickness, 99.85% (±0.01%) isotopic purity and 6 mm diameter, 
was prepared by electrodeposition by the Argonne National Laboratory. The 243Am layer was 
deposited on a 75 µg/cm2 natural carbon backing. The set-up used to determine the fission 
probabilities is shown in Fig. 1. Ejectiles were detected by two telescopes placed at 5 cm from 
the target and centered at 130o with respect to the beam axis. The telescopes had an aperture 
of 7 mm diameter leading to an angular uncertainty ∆θ of ±4o. The energy-loss ∆E was 
measured with a 150 µm thick Si detector and the residual energy E with a Si-Li detector of 5 
mm thickness. An Al foil of 29 µm was placed in front of the telescopes to stop fission 
fragments and α particles coming from the activity of the 243Am target. Fission fragments 
were detected in coincidence with the ejectiles with a fission-fragment multi-detector, 
consisting of 15 photovoltaic cells arranged in 5 units in a cylindrical geometry. Each unit 
was composed of 3 cells placed in a vertical row. For each unit, the center of the middle cell 
was in the horizontal reaction plane defined by the beam. Four units were located in forward 
direction covering an angular range from 14o to 125o. The fifth unit was positioned at 180o 
from the foremost unit. Each cell had an active area of 19.8 x 40.2 mm2. The radius of the 
cylinder supporting the cells was 5 cm. The beam was stopped in a Faraday cup connected to 
an integrator to measure the deposited charge. The amplified signals of the telescopes and the 
fission detectors were digitized with an ADC. All the detector signals were pulse-shaped into 
fast timing signals and sent to a TDC to measure the time differences between the telescopes 
and the fission detectors. The acquisition system was triggered by the ∆E-E coincidences of 
either one or the other telescope. 

Reaction Q-Value 
(MeV) E* of excited states (MeV) Energy of ejectiles emitted at 

130° (MeV) 

208Pb(3He,d)209Bi* -1.696 

0 21.41 
0.896 20.53 
1.608 19.83 
2.826 18.63 
3.119 18.34 
3.633 17.83 

208Pb(3He,4He)207Pb* +13.21 

0 35.54 
0.570 34.98 
0.898 34.66 
1.633 33.95 
2.340 33.26 
3.476 32.16 

Table 1: Kinetic energies of the ejectiles corresponding to the excited states of 209Bi and 207Pb 
used for the energy calibration of the telescopes.  

2.1. Energy calibration   

Because of the rapid increase of the fission probability with excitation energy at the fission 
threshold, it is extremely important to accurately calibrate in energy the particle telescopes. In 
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this work we consider kinetic energies ranging from 5 to 25 MeV for deuterons and tritons 
and from 17 to 37 MeV for alphas. Thus, the kinetic energies can be much higher than the 
kinetic energies of the alpha particles originating from a standard calibration source. 
Moreover, it is well known that the response of Si detectors to hydrogen isotopes differs from 
the response to alphas of the same kinetic energy [20]. For these reasons, in this work the 
telescopes were calibrated with known energy lines from chosen reactions on a lead target. 
We used a 208Pb target of 200 µg/cm2 and a 3He beam of 24 MeV to populate the first excited 
states of 209Bi and 207Pb via the transfer reactions 208Pb(3He,d) and 208Pb(3He,4He), 
respectively. For the energy calibration, the aperture of the Si telescopes was reduced to 2 mm 
to limit the kinematic spread. The telescopes provided the identification of the ejectiles as 
well as their scattering angles. This information, the Q-values of the transfer reactions used 
and the E* of the first excited states of 209Bi and 207Pb (which are known with high accuracy) 
were used to calculate the kinetic energy of the corresponding ejectiles. In this way we had a 
source of deuterons and alphas with very well defined kinetic energies in the range of interest 
for the present work. The excitation energy of the states considered for the calibration and the 
associated kinetic energies of the ejectiles detected at 130° are reported in Table 1. A 
conventional identification plot representing the energy loss vs. the residual energy in the 
telescope obtained after the interaction of a 3He beam on 208Pb is shown in Fig. 2. The lines 
correspond to different ejectiles and indicate the formation of a specific nucleus. The ground 
state and the first excited states of 209Bi and 207Pb can be clearly distinguished. The calibration 
coefficients obtained with the 208Pb(3He,d) reaction were used in the analysis of the 
243Am(3He,d) and the 243Am(3He,t) reactions. 

 
Fig. 2: Energy loss versus residual energy as measured in one of the Si telescopes for the 3He 
+ 208Pb reaction at 24 MeV beam energy. The ground state and first excited states of 209Bi and 
207Pb are indicated by arrows.  

2.2. Singles and coincidence spectra 
 

Fig. 3 shows the identification plot for the 3He + 243Am reaction at 24 MeV. By selecting one 
type (Z, A) of ejectile, for example 4He, the so-called "singles" spectrum Nsing(E*), can be 
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obtained. In this particular case, it represents the number of detected 242Am nuclei as a 
function of their excitation energy.  

 
Fig. 3: (Color online) Energy loss versus residual energy in one of the Si telescopes for the 
3He + 243Am reaction at 24 MeV. The ejectiles associated to the different Z lines are 
indicated.  
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Fig. 4: (Color online) Number of detected 4He (green triangles) ejectiles as a function of the 
excitation energy of 242Am after subtraction of events coming from reactions on the target 
backing. The 4He ejectiles stemming from reactions on target contaminants are present above 
12 MeV. The blue circles represent the singles spectrum Nsing(E*) after interpolation and the 
red squares the fission coincidence spectrum Ncoin(E*) for 242Am (see text).  

The singles spectrum is derived from the spectrum of 4He as a function of the excitation 
energy of 242Am represented by the triangles on Fig. 4. The broad peaks at the highest 
excitation energies in the 4He spectrum stem from transfer reactions on the 13C present in the 
carbon backing and on 16O, 19F and 35,37Cl impurities in the target. The background from 
reactions on the carbon support was measured separately with a carbon target with the same 



7 

 

characteristics as the target backing. It was subtracted from the singles spectrum after being 
properly normalized. The normalization factor was given by the ratio between the integrated 
beam intensities measured for the 243Am target and the separated C backing. In the excitation-
energy range considered here, the only contribution to the 4He spectrum due to the carbon 
backing comes from the interaction of the beam with 13C, which is present in a very small 
amount in the natural carbon backing. The spectrum resulting from the subtraction of these 
events is labeled as Ne-b in Fig. 4, and in this case is basically equivalent to the 4He spectrum 
before subtraction. The singles spectrum Nsing was obtained by interpolating the Ne-b spectrum 
under the remaining contaminant peaks (see circles in Fig. 4). This introduces an additional 
source of uncertainty that will be discussed in section 3.  

Fig. 5 shows the energy spectrum of fission fragments detected in coincidence with deuterons. 
The double-humped structure due to the different kinetic energies of the light and heavy 
fission fragments can be clearly distinguished. This spectrum was generated without applying 
any condition on the time difference between the telescope and the relevant solar cell. Still, 
the spectrum is not polluted by random coincidences with the alpha particles originating from 
the activity of the 243Am target.  
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Fig. 5: Energy spectrum of fission fragments detected in one solar cell in coincidence with 
deuterons detected in one telescope.  

Ejectile-fission coincidences, Ncoinc(E*), were determined by selecting those events for which 
the time difference between the telescope and the solar-cells signals was within a chosen 
coincidence window. The time spectra for the deuteron, triton and alpha-transfer channels and 
the applied time selections are shown in Fig. 6. The width and the double-humped structure of 
the coincidence peak reflect the time needed by the fragments to reach the fission detector 
plus the time to collect the charges produced at different positions in the photovoltaic cell. 
The number of random coincidences present in the time coincidence window is given by the 
integral of the dashed area shown in the upper panel of Fig. 6. This number was evaluated by 
determining the number of the random events per channel in the regions of the time spectrum 
outside the time selection. As seen from Fig. 6, the effect of random coincidences becomes 
noticeable only for the deuteron channel, however still remaining below 1% of the total 
number of coincidences. The coincidence spectrum Ncoinc(E*) representing the number of 
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detected 242Am nuclei which undergo fission is presented in Fig. 4 as empty squares. This 
spectrum has been corrected for random coincidences.  
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Fig. 6: (Color online) Time difference between one telescope and all the solar cells of the 
fission detector for the deuteron (a), triton (b) and 4He (c) transfer channels. The vertical lines 
indicate the selection of coincidence events. The shaded area represents the random 
coincidences included in this selection.  

2.3. Fission-detection efficiency 

As indicated in eq. (1), to calculate the fission probability the ratio between the Ncoinc and Nsing 
spectra needs to be corrected for the fission-detector efficiency εf(E*). The fission efficiency 
is given by the solid angle covered by the fission detector (the so-called geometrical 
efficiency) and the fission-fragment angular anisotropy. The fission-fragment angular 
anisotropy depends both on the angular momentum of the fissioning nucleus, and on the 
kinematic focussing due to the recoil energy of the fissioning nucleus. We developed a 
Monte-Carlo simulation to determine the fission-detection efficiency. The geometrical part of 
the simulation was validated by measuring the solid angle of our detector with a 252Cf source 
of known activity. The simulation gives a geometrical efficiency of (45.2 ± 1.5)%. The 
uncertainty is dominated by the uncertainties in the detector geometry. The segmentation of 
our fission detector in 15 cells, located at different positions, allowed us to measure the 
angular distribution of the fission fragments as a function of E*. To cumulate enough statistics 
the excitation-energy bin was chosen 210 keV wide. The left part of Fig. 7 shows an example 
of fission-fragment angular distribution for 243Cm at E*=7.5 MeV. The data were fitted with 
the function: 

 ba
d
dNW cmcmcm +⋅=
Ω

= )(cos)()( 2 θθθ                                                      (3) 

where θcm is the emission angle of the fission fragment in the centre of mass of the fissioning 
nucleus. 
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Fig. 7: (Color online) (a) Angular distribution of fission fragments for 243Cm at E*=7.5 MeV. 
The number of detected fission events divided by the solid angle subtended by the 
corresponding cell is shown as a function of the average emission angle of the fragments in 
the centre of mass of the fissioning nucleus. The full line represents the fit function according 

to eq. (3) with 0.17 1.471
)90(
)0( ±=+=
°
°

b
a

W
W and reduced chi-squared χ2=0.96. (b) Fission-detector 

efficiency as a function of E* of 243Cm. The shaded area corresponds to the geometrical 
efficiency of our fission detector including the corresponding uncertainty. The symbols 
represent the effective fission efficiency including the fission-fragment angular anisotropy 
and kinematic effects caused by the recoil energy of 243Cm.  

The effective efficiency for each E* bin was calculated with the Monte-Carlo simulation 
including the experimental angular anisotropies in the centre of mass and kinematical effects. 
The right panel of Fig. 7 shows the effective efficiency as a function of excitation energy 
compared to the geometrical efficiency. Because of the high geometrical efficiency of our 
detector, the corrections on the final detector efficiency due to the fission-fragment angular 
anisotropy amount to 2-3 % at most and do not exceed the error due to the uncertainty in the 
geometry of the detector. Therefore, the uncertainty of the effective efficiency is dominated 
by the uncertainty in the detector geometry. We observed this low sensitivity to the angular 
anisotropy in all the reactions studied. For this reason, hereafter we consider that the effective 
efficiency is equal to the efficiency including kinematical effects and that the uncertainty in 
the effective efficiency is equal to the uncertainty in the detector geometry for all the 
reactions. 

3. Uncertainty analysis 

In this section we discuss how the uncertainties and the correlation matrix for the 
uncertainties of the measured data were obtained. The accurate determination of the 
uncertainties requires very detailed information on the experimental procedure that is best 
known by the experimentalists who performed the measurements. In the first part of this 
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section we will show that the variance of the measured probabilities can be strongly affected 
by the correlation between some of the quantities involved in the determination of the fission 
probability. Moreover, in this experiment the probabilities were measured at different energies 
with the same set-up. Thus, they are not completely independent, and the covariance between 
the fission probabilities at different energies should be determined. This will be discussed in 
the second part of this section. When data at different energies are partially correlated, there is 
a degree of “stiffness”, implying that the data at a given energy cannot be modified 
independently from the data at the other energies. The covariance matrix of experimental data 
represents a key piece of information for providing the evaluated covariance matrix [21], 
which can have a strong impact in applications like e.g. the simulation of critical assemblies.  

3.1. Variance of the fission probability measurements 

Because in this experiment we have used two telescopes, we have adopted an explicit notation 
for the lth fission probability Pf of nucleus A measured with the lth silicon telescope at 
energy *

iE :  

  
if

l
ising,

l
icoincl

ii
Al

f N
N

PEP
,

,*, )(
ε⋅

==      (4) 

 
The relative uncertainty on the fission probability is given by: 
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⋅
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       (5) 

where Var is the variance and Cov the covariance. As mentioned in section 2.3, the 
geometrical fission-fragment efficiency if ,ε was determined with a 252Cf source. Different 

supports were used for the source and the 243Am target. Therefore, in this experiment the 
efficiency measurement was completely independent of the measurement of ,

l
coinc iN  and sing,

l
iN  

and the two last covariance terms in eq. (5) can be disregarded. 

To assess the first covariance term );( ,
l

ising,
l

icoinc NNCov , we consider the number of singles 

events as the union of two elementary sets: the fission-fragment−ejectile coincidence set, 
associated to the random variable l

icoincN , , and the set of ejectiles in anticoincidence with a 

fission fragment associated to the random variable l
iacoincN , . It follows that: 

l
iacoinc

l
icoinc

l
ising, NNN ,, +=                                               (6) 
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Because in this experiment the solid angle of the particle telescopes was rather small, less 
than 1%, using eq. (6), fluctuations in Ncoinc will generally have no impact on Nacoinc (and vice 
versa), and ( ; )coinc acoincCov N N can be disregarded. Consequently, we have: 

i  l,       NVarNNCov then

i  l,        NNCov and

i  l,       NVarNNCovNNCov

l
icoinc

l
ising,

l
icoinc

l
iacoinc,

l
icoinc

l
icoinc

l
iacoinc

l
icoinc

l
ising,

l
icoinc

∀∀≈

∀∀≈

∀∀+=

)();(

0);(

)();();(

,,

,

,,,,

               (7) 

The linear interdependence between l
icoincN ,   and l

ising,N can be quantified with the correlation 

coefficient Corr, defined as the ratio of the covariance over the product of the standard 
deviations. This dimensionless quantity takes values within the interval [-1;1]:                        

Table 2: Relative statistical uncertainty of the fission probability with and without inclusion 
of the correlation between l

icoincN ,  and l
ising,N . The uncertainty in the 8th column includes only 

the two first terms of eq. (5) and the one in the 9th column includes the first two terms and the 
fourth term of eq. (5). The data correspond to the 243Am(3He,4He) reaction and telescope 1.  

Table 2 shows three examples that illustrate the influence of the term ( )l
ising,

l
icoinc NNCov ;,  on 

the relative statistical uncertainty on the fission probability. In the third and fourth lines the 
statistical relative uncertainty of the fission probability without inclusion of the covariance 
between l

icoincN ,  and l
ising,N  is over estimated by more than 30%. One can also notice that the 

correlation between l
icoincN ,  and l

ising,N increases with the square root of the fission probability.  

In the following, our goal is to assess the systematic uncertainties on l
ising,N associated to the 

contaminant corrections. As mentioned in section 2.2, l
ising,N is obtained by subtracting from 

the detected ejectiles lN ieje, the background generated by the ejectiles originating from transfer 

reactions on the C-backing l
back,iN  and on target contaminants l

cont,iN :  

l
cont,i

l
back,i

l
eje,i

l
g,i NNNN −−=sin                            (8) 

E* 

(MeV) 

1
,isingN  

 

( )
1

1

ising,

ising,

N
NVar

(%) 

 
 

1
,icoincN

 
 

 

( )
1

,

1
,

icoincN

icoincNVar

(%) 

)1;1
,( ising,NicoincNCorr

 
1

iP  

( )
statiP

iPVar
1

1

without 
)1;1

,( ising,NicoincNCorr

(%) 

( )
statiP

iPVar
1

1

with 
)1;1

,( ising,NicoincNCorr

(%) 
9.66 2464 2.01 645 3.94 0.51 0.58 4.42 3.38 

12.45 3459 1.70 1083 3.10 0.56 0.69 3.48 2.52 
14.60 2480 2.00 922 3.12 0.61 0.82 3.85 2.61 
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To simplify the notation we introduce the quantity e-b,i
lN , representing the number of ejectiles 

after subtraction of the contribution of the target-backing: 

l
back,i

l
eje,i

l
e-b,i NNN −=                                                             (9) 

,
l
eje iN and ,

l
back iN are uncorrelated because these two quantities were obtained in two separated 

measurements, and thus 0);( iback,, =ll
ieje NNCov  for all energies *

iE . Therefore, the uncertainty 

of e-b,i
lN  is: 

( ) ( ) ( )l
back,i

l
eje,i

l
e-b,i NVarNVarNVar +=                (10) 

The contaminant peaks are located at relatively high excitation energies, where the level 
density of the actinides investigated is very high and the corresponding singles spectrum 
should vary smoothly with E*. For this reason, we have assumed that the singles spectrum at 
the positions of the contaminant peaks is given by a smooth function exp(aE*+b), where the 
constants a and b are such that the singles spectrum is equal to ,

l
e b iN −  right before and after the 

contaminant peak. The lN ising, spectrum results from the union of the ,
l
e b iN −  spectrum before 

the contaminant peak and the smooth exponential function below the contaminant peak, see 
Fig. 4.  

From eq. (8) and eq. (9) we get the number of contaminant reactions l
icontN , as a function of the 

assumed singles spectrum lN ising, :  

( ) ( ) ( ) ( )ll
stat

lll
icont

lll
icont

NNCovNVarNVarNVar

NNN

ising,ib,-eising,ib,-e,
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;2 ⋅−+=

−=
   (11) 

where ( ) l
stat

l NNVar ising,ising, =  is the statistical variance of the number of assumed single 

events.  

In order to account for the strong interdependence between the singles and the contaminant 
spectra in this analysis, we assume a full correlation between lN ib,-e  and lN ising, : 
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Using eqs. (8), (11) and (12) it follows that: 
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The covariance term between lN ib,-e  and l
icontN , is included in the variance of l

icontN , . The first 

term of the second eq. (13) corresponds to the statistical uncertainty and the second one to the 
systematic uncertainty. We observe that the systematic uncertainty is zero if there is no 
contribution to the spectrum from the contaminants and it is positive if there are contaminants.  
The quantification of the systematic uncertainty in lN ising,  is needed to define the covariance 

matrix of the fission-probability measurements at different excitation energies (see section 
3.2). 

The corrections due to the target-backing and the contaminants were determined 
independently for each telescope. Therefore, the statistical and systematic variances for the lth 
fission-probability measurement are defined by the following equations: 
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    (14)     

   
The final value for the fission probability at excitation energy *

iE  is obtained from the 

weighted mean of the fission probabilities l
iP . In this experiment, the two measurements of the 

fission probability were simultaneously performed with the same target and the same fission 
detector. As a consequence, only the fission efficiency εf,i is common to both measurements 
and its uncertainty represents the covariance term between the two measurements ' and lPlP ii of 
the fission probability :  

( ) ( )
( )2,

2
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f

i

l
systcom

l
i Var

lP
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ε

ε
=

⎟
⎠
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⎝
⎛

∀

                                                                 (15) 

( )fVar ε  is the geometrical uncertainty on the fission efficiency where the index i has been 

omitted because the variance on the efficiency is independent of the excitation energy. 
Nevertheless, the fission efficiency depends on the excitation energy due to the kinematical 
corrections, as discussed in section 2.3. Eq. (15) corresponds to the common systematic 
uncertainty for the probability measurements performed at the same excitation energy with 
the two different telescopes. 

To obtain the mean value iP , the values of lPi  are weighted by the uncertainty:  
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where we have adopted the notation l
iw  for the weight associated to the lPi fission probability 

measurement. The final uncertainty on mean fission probability, iP , is given by the sum of 
the uncertainty of the weighted mean and the uncertainty in the fission efficiency. The latter is 
added only once because it is the common systematic uncertainty (eq.15) to the m telescopes 
(in our case m = 2):       
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3.2. Covariance of the fission-probability measurements at different excitation 
energies 

 
The second part of this section is devoted to the evaluation of the covariance term between 
two mean fission-probability measurements at excitation energies *

iE  and *
jE . The generalized 

perturbation theory [23] allows one to define the covariance term as the sum of the variances 
and covariances of all the measured quantities ka  (in our case ka represents Nsing, Ncoinc, etc.) 
weighted by the sensitivity ikS of the observable iP  to the quantity ka : 
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  (18) 

 
The sum runs over the p quantities needed to determine the mean fission probabilities iP  and 

jP . In ref. [22] we have performed a rigorous analysis to apply eq. (18) to our measurement. 

In this work, we present only the main results and we refer to [22] for the details on the 
derivation of the following eqs.  

In our experiment, the two telescopes were located at the same angle and at the same distance 
from the target. Therefore, the fission probabilities and statistical uncertainties obtained with 
the different telescopes have similar values. As shown in [22], in that case, from eqs. (16-18) 
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it follows that the absolute value of the sensitivity of iP  to a quantity ka  is constant for all 
the quantities and for all the lth measurements. That is:  

( )    ,   /1 lm
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l
i

i

i
ik ∀≈⋅=     (19) 

 
 

 lth measurement at energies *
iE  and *

jE  l’th measurement at energies *
iE  and *

jE  

ak 

k∈[1;p] 
l

icoincN ,

 

lN ising,

 

l
fiε  

l
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lN jsing,

 

l
fjε  

'
,

l
icoincN

 

'
ising,

lN

 

'l
fiε  

'
,

l
jcoincN

 

'
jsing,

lN

 

'l
fjε  

l
icoincN ,  Var Cov 0 0 0 0 0 0 0 0 0 0 

lN ising,
  Var 0 0 Cov 0 0 0 0 0 0 0 

l
fiε    Var 0 0 Cov 0 0 Cov 0 0 Cov 

l
jcoincN ,     Var Cov 0 0 0 0 0 0 0 

lN jsing,
     Var 0 0 0 0 0 0 0 

l
fjε       Var 0 0 Cov 0 0 Cov 

'
,

l
icoincN        Var Cov 0 0 0 0 

'
ising,

lN         Var 0 0 Cov 0 

'l
fiε          Var 0 0 Cov 

'
,

l
jcoincN           Var Cov 0 

'
jsing,

lN            Var 0 

'l
fjε             Var 

ikS  m/1   m/1−
 

m/1−
 

0 0 0 m/1  m/1−
 

m/1−
 

0 0 0 

jkS  0 0 0 m/1  m/1−
 

m/1−
 

0 0 0 m/1  m/1−
 

m/1−
 

 
Table 3: Representation of the variances and covariances of the parameters related to the lth 
and l’th measurements of the fission probability at two energies E*i and E*j. The table serves 
to visualize the correlated and independent measured quantities. The dashed areas indicate the 
correlated quantities at two energies *

iE  and *
jE  for each lth measurement and the white zone 

the correlated quantities for the two telescopes. Only the part above the diagonal is displayed. 
The two last lines give the sensitivity coefficients S defined in eq. (19). 

 



16 

 

The covariance term associated to the efficiency is: 

( ) ( ) ji,    ; ,, ∀= fjfif VarCov εεε       (20) 

Using the results of eq. (14), it can be shown that the covariance of the lth-probability 
measurements at different energies is given by [22]:  

( ) ( ) ( )
syst

l
jsyst

l
i

l
j

l
i PVarPVarPPCov ⋅=;                                (21) 

 
In Table 3, we present a synthetic comparison of the correlations of the ka  quantities involved 
in the mean fission-probability measurements. The data obtained with each telescope (i.e. the 
data associated to each lth measurement) are treated independently. Consequently, for the lth 
measurement, the covariance of two fission probabilities at the energies *

iE  and *
jE  is caused 

by the systematic corrections of the number of singles lN ising,  due to target contaminants and 

the common uncertainty in the fission efficiency. For two different fission-probability 
measurements l

iP
 and 'l

jP  at the energies *
iE  and *

jE , only the covariance term on the fission 

efficiency is present.  

Using eqs. (20) and (21), it can be shown [22] that the correlation between the mean values of 
the fission probabilities at two different energies is given by the mean correlation of the m 
measurements at the energies *

iE  and *
jE  with an additional contribution accounting for the 

uncertainty of the geometrical fission-fragment efficiency. This last uncertainty represents the 
common systematic uncertainty (eq. 15) between the thl and thl ' measurements: 
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4. Results 

Fig. 8 shows the fission probabilities of 242Am, 243Cm and 244Cm as a function of the 
compound-nucleus excitation energy and the associated correlation matrices. As described in 
the previous section, the fission probabilities were obtained as the weighted mean of the 
fission probabilities measured with the two telescopes. The displayed uncertainties were 
calculated according to eq. (17). The values of the fission probabilities and the uncertainties 
are listed in Appendix B. The E* range considered is limited by the density of target-
contaminant peaks in the singles spectrum. As discussed in sections 2 and 3, we assume that 
the singles spectrum can be interpolated with a smooth exponential function below the 
contaminant peaks. This assumption is quite reasonable for isolated peaks but becomes less 
correct as the contaminant peaks get close together. For 244Cm we present also results for 
excitation energies above 7.5 MeV where the density of target-contaminant peaks becomes 
significant. The right panels of Fig. 8 show that the correlation between the fission 
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probabilities at different excitation energies increases with excitation energy and reaches up to 
90 % at 12 MeV for 244Cm. This increase in the correlation is due to the increase of the 
intensity of the contaminant peaks with excitation energy, which leads to an enhancement of 
the systematic error accounting for the uncertainty in the subtraction procedure, see eq. (13). 

Our results for the three fission probabilities are compared to the ones by Gavron et al. [9], 
obtained using the same transfer reactions. Note that the data by Gavron et al. were published 
in the figures of ref. [9] without specific error bars. Ref. [9] only mentions an estimated 
uncertainty of about 10% for all the data. For 244Cm our data cover the onset of fission in the 
excitation-energy region below the neutron separation energy, which is not accessible in 
neutron-induced measurements. Our results show that the fission probability first increases 
rather steeply with E* and, as expected, starts to decrease exactly at Sn, due to the opening of 
the neutron emission channel. However, in the data by Gavron et al., this drop appears at an 
excitation energy lower than Sn. Moreover, our results are below those of Gavron et al. 
between 9 and 12 MeV. These differences could be due to the presence of tungsten in the 
target used by Gavron et al. [9], which pollutes the singles spectrum down to very low 
excitation energies and might have not been properly corrected. Our results for 244Cm are also 
compared to the data by Back et al. [7]. There is a fair agreement between the two data sets at 
the lowest excitation energies. However, above 5.8 MeV the results by Back et al. are well 
below our data, even though the trends are similar. Back et al. used the same transfer reaction 
and the same beam energy as in this work but the ejectiles were detected at 90 degrees with 
respect to the beam axis. One possible explanation for the observed differences might be that 
at 90 degrees the contaminant peaks due to light target impurities pollute the singles spectrum 
down to relative low energies. 

For 243Cm, we obtain a slope for the fission threshold that is larger than the one obtained by 
Gavron et al. An argument to support our results is that the neutron-induced cross section 
242Cm(n, f), obtained by multiplying our fission probability of 243Cm with the calculated 
compound-nucleus formation cross section, follows well the general trend of the data by 
Vorotnikov et al. [26], see Fig. 7 in ref. [18]. Note that the neutron-induced compound-
nucleus formation cross section of 243Cm close to the fission threshold is nearly constant and 
is equivalent to a simple scaling of the fission probability.  

Our results for 242Am agree within the error bars with those by Gavron et al. Our data extend 
to the second chance fission, where a fraction of the fission events arise from the fission of 
241Am.  Above 7 MeV the data by Back et al. [24], obtained with the 241Am(d,p) reaction, are 
about two times lower than our results. According to [25], the (d,p) reaction is problematic 
because the proton singles spectrum can be polluted by protons originating from the breakup 
of the projectile. This leads to an overestimation of the single events and to fission 
probabilities that are systematically too low. In [25], an empirical correction to account for 
deuteron-breakup effects was applied to the data by Back et al. [24]. However, the 
comparison of the corrected probability with our data and the one by Gavron et al. shows that 
this correction is still not sufficient. 
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Fig. 8: (Color online) Fission probabilities of the 244Cm* (a), 243Cm* (b) and 242Am* (c)  
as a function of excitation energy compared to the results by Gavron et al. [9] and by Back et 
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al. [7, 24, 25]. The dashed line in the upmost left panel represents the E* above which the 
singles spectrum is significantly polluted by reactions on target contaminants. The neutron 
separation energy Sn of each nucleus is indicated by the arrows. (d-e-f) Associated correlation 
matrices (see section 3.2).  

4.1. Sub-threshold structures in 243Cm 

Contrary to the data of Gavron et al. and Back et al., our data cover energies well below the 
fission threshold, see Fig. 8. Interestingly, our results for 243Cm present three clear resonances 
below the fission threshold. Some sub-threshold structures are also present for 244Cm, but they 
are much less intense than those observed for 243Cm. No significant structure below the 
fission threshold is observed for 242Am. One could argue that the lower intensity of the sub-
threshold structures in 244Cm is due to the normalization to a larger number of singles events. 
However, a closer look at the Ncoinc(E*) spectra (after subtraction of random coincidences, see 
section 2.2) of 243Cm and 244Cm revealed that the number of fission events at excitation 
energies below the fission threshold is much lower for 244Cm than for 243Cm. More precisely, 
the number of sub-threshold fission events of 244Cm represents only 0.01% of the total 
number of fission coincidences, whereas in the case of 243Cm it represents 0.16%, which 
explains the difference in intensity between the sub-threshold peaks of both nuclei.  

The details of the subtraction of random-coincidences in the sub-threshold excitation-energy 
region of 243Cm are illustrated in Fig. 9. The (red) dashed histograms represent the spectra that 
result from selecting the events in the time-coincidence window (Fig. 6) for each telescope. 
We subtracted from these spectra the spectra of random coincidences, which are given by the 
ejectile spectrum Neje (see eq. 8) normalized to the total number of random coincidences. 
Because of the very low number of random coincidences, the difference between the 
coincidence spectra before and after the subtraction of random coincidences is hardly 
appreciable. Fig. 9 shows that the random-coincidences spectra of both telescopes (blue full 
lines) do not show any significant structure that could explain the observed resonances.   
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Fig. 9: (Color online) Number of fission-fragment-triton coincidences before (red dashed 
line) and after (black full line) subtraction of random coincidences. The spectrum of ejectiles 
Neje is represented by the dashed-dotted lines and the random-coincidences spectrum by the 
blue full lines.   
 
As discussed in section 3, the final fission probability is the weighted mean of the 
probabilities obtained with the two telescopes. When determining the average probability the 
structures below 2.7 MeV vanish because their positions in the two telescopes are different. 
However, the positions of the structures above 2.7 MeV are very similar in both telescopes 
and lead to an average fission probability significantly above zero, as seen on the left part of 
Fig. 10. Unfortunately, the statistics at such low excitation energies is too low and the fission 
fragment anisotropy cannot be measured. Therefore, to calculate the fission probability we 
used the same fission-detection efficiency as for the higher excitation energies. However, we 
recall that, due to the large solid angle of our fission detector, the influence of the angular 
anisotropy on the effective efficiency is relatively weak. Moreover, one would need effective 
efficiencies greatly above 100% to make the structures disappear.  
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Fig. 10: (Color online) Fission probability of 243Cm obtained with the 243Am(3He,t) reaction 
as a function of excitation energy in the proximity of the fission threshold. On the left we 
show the results obtained with the telescopes placed at 130 degrees (a) and on the right with 
the telescopes placed at 90 degrees (b) with respect to the beam axis. The neutron separation 
energy Sn is indicated.  

We performed a test experiment with the same setup but the telescopes placed at 90 degrees. 
The right part of Fig. 10 illustrates the average fission probability obtained with the two 
telescopes located at 90 degrees. It shows clear structures at excitation energies that are very 
close to the positions of the sub-threshold structures observed with the telescopes placed at 
130 degrees, although there are some differences in the shape. In particular, the data at 90 
degrees do not show a double-peak structure between 4 and 5 MeV. The presence of peaks 
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below the fission threshold at nearly the same positions for both detection angles supports the 
hypothesis that these structures come from fission events in 243Cm. Indeed, if the peaks were 
due to non-corrected random coincidences with some light or medium-mass contaminants, 
their positions would considerably vary when changing the telescope angle from 130 to 90 
degrees.  

To our knowledge, it is the first time that sub-threshold structures have been observed for 
243Cm. The presence of these resonances was a rather unexpected result of this experiment, 
whose main objective was the determination of fission probabilities at the fission threshold 
and above.  

5. Statistical-model calculations 

The aim of this section is to extract information on fission barriers by comparing our data to 
statistical-model calculations. In this theoretical analysis we will not consider directly the 
resonances observed for 243Cm because our experimental conditions (excitation-energy bin of 
210 keV and limited statistics) are not well adapted to provide the required precision for a 
quantitative analysis.  

5.1. Description of the model 

We assume that the considered transfer reactions lead to the formation of a compound 
nucleus. The decay can then be described with the statistical model, which takes into account 
the competition between the different decay modes: gamma emission, neutron emission and 
fission. We also assume a double-humped fission barrier. As we have not observed any 
relevant structure for 244Cm and 241Am and we do not treat the structures observed for 243Cm, 
the average fission probability is computed in the complete damping limit [7]. In this limit, 
the energy from the pure fission motion is redistributed into internal excitations in the second 
well and statistical equilibrium can be assumed. This means that resonant barrier penetration 
is neglected and the transmission through the two barriers can be treated independently, i.e. 
the fission process can be viewed as the crossing of the inner barrier (A) followed by the 
crossing of the outer barrier (B). At the corresponding saddle-point deformations (βA and βB), 
the barrier shapes are approximated by inverted parabolas, which define the barrier heights 
and curvatures of the inner (EA, ħωA) and outer (EB, ħωB) barrier.  

Within the frame of the statistical model, the average fission probability may be written as: 

 ( *) ( *, , ) ( *, , )f
f

J i
i

N
P E E J f E J

Nπ

α π π< >=∑ ∑
                              (23) 

where: 

-α(E*, J, π) is the average probability for populating a compound state  of  angular 
momentum J and parity  π. This distribution is normalized so that ( , , ) 1

J

E J
π

α π =∑ . 



22 

 

- f

i
i

N
N∑

is the average fission probability of a compound state Jπ at E*. Ni is the effective 

number of open decay channels which are populated by gamma emission (i = g), neutron 
emission (i = n) and fission (i = f). This quantity is related to the average decay width 

( *, , )i E J πΓ  and level spacing ( *, , )gsD E J π  of the compound nucleus at the ground-state 

deformation by the relation: 
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-f(E*, J, π) is a level-width fluctuation factor which takes into account that we have replaced 
in eq. (23) the average expression  by the average of its terms: 
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. This factor has been calculated using the approach 

proposed in ref. [24]. In the present work, the fluctuation factor reduces the calculated fission 
probabilities by at most 10%. 

For fission, the number of open channels is given by the number of transition states on top of 
the barriers x (= A or B) weighted with the corresponding barrier transmission coefficient:
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Here, the summation accounts for discrete transition states on top of the barrier at energy πK
iE  

and the integral for transition states in the continuum. The discrete transition states are 
characterized by the quantum number K, that results from the projection of J on the symmetry 
axis. ε and iρ are the kinetic energy in the fission degree of freedom and the level density of 
compound states (Jπ) at the top of the barrier of height Ei, respectively.  

After the penetration of barrier EA, the excited nucleus can decay by neutron emission, gamma 
emission, penetration of the first barrier, or penetration of the second barrier which leads to 
fission [7]. Our calculations show that, due to the relatively modest excitation energies 
considered (maximum E* ≈ 15 MeV), neutron and gamma emission from compound states in 
the super-deformed well between the two barriers can be neglected. In this case, the effective 
number of fission channels on top of the double-humped fission barrier is: 
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We consider that neutron emission does not modify the deformation of the compound nucleus 
and that it occurs from the first well of nucleus A to the first well of nucleus A-1. Under these 
conditions, the number of open channels for neutron emission is given by:  
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Both, the discrete and the continuous levels (E’, J’, π’) of the residual nucleus have been 
considered. Ed is the excitation energy in the residual nucleus where the continuum 
starts. ( , , ( 1) )l

fδ π π −  is the parity-conservation factor. ( )j
l nT E  is the transmission coefficient for 

emission of a neutron with kinetic energy En = E* − Sn – E’, orbital angular momentum l and 
channel spin j =l + s (s being the intrinsic spin of the neutron). The transmission coefficients 
have been calculated with a Lane-consistent semi-microscopic [27] deformed [28] optical 
model potential, built using deformed radial nuclear densities calculated in the Hartree–Fock–
Bogoliubov framework with the Gogny D1S interaction [29]. In this work, the structure of the 
discrete states of the relevant residual nuclei has been taken from [30-32]. When the 
experimental information was scarce (e.g. for 242Cm), levels were generated by assuming the 
same structure as in neighboring nuclei.  

We assume that gamma emission takes place between two states in the first well of the 
compound nucleus and that only electric dipole transitions (E1) contribute to the γ-decay 
channel. According to the Weisskopf strong coupling model, the average number of open 
channels that proceed through γ-decay from initial compound states (Jπ) at excitation energy 
E* is:  

 
*1

3

1 0

( *) ( , , ) ( * )
EJ

J
g

J J
N E C E J E E dEπ ρ π

+

′′= −

′′ ′′ ′′ ′′= ⋅ − ⋅ − ⋅∑ ∫                               (27) 

The summation runs over the continuous final states ( E′′ , J ′′ , π ′′ = −π) of the residual 
nucleus after emission of a γ-ray of energy Eγ=E*−E′′ only because the contribution from 
discrete final states is negligible. The constant C is adjusted to reproduce the experimental 
neutron-induced average γ-decay width at the neutron binding energy (Sn) of the relevant 
compound nuclei [33]. This normalization implies the assumption that the γ-decay widths are 
independent of spin and parity, which appears to be reasonable for the heavy nuclei studied in 
this work [7, 24]. We have also considered a more sophisticated description for the gamma-
strength function based on a Lorentzian [34] but this has essentially no impact on our results.  

5.1.1. Level densities 

As discussed above, the fission probability depends strongly on the nuclear level densities  
ρ(E*, J, π) at different elongations of the fissioning nucleus (ground state, first and second 
barriers), as well as on those of the residual nuclei after neutron emission. The level densities 
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used in this work can be represented as the product of the intrinsic level density and the 
density of collective excitations. The intrinsic level density ρint has been calculated with the 
phenomenological version of the Generalised Superfluid model of Ignatyuk. A detailed 
description of this model can be found in [35].  

In this model, the most important parameter is the level-density parameter, whose dependence 
on shell effects and E* above the critical pairing energy is given by: 

 ( *, , ) ( , ) 1 ( *)
*
Sa E N Z a N Z f E

E
Δ⎛ ⎞= +⎜ ⎟

⎝ ⎠
%                                    (28) 

with 
 

 ( *) 1 exp( *)f E Eγ= − −                                                  (29) 

and  

 
1
30.4Aγ

−
=                                                           (30) 

 
Here, ∆S is the ground-state shell correction, defined as the difference between the 
experimental nuclear mass and the liquid drop mass calculated at the corresponding 
deformation. a%  is the asymptotic value of the level density parameter at high excitation 
energy. For the ground-state deformation, this asymptotic level density parameter takes the 
form [35]: 

 
2
30.073 0.115a A A= +%                                                (31) 

Contrary to a%  at ground state deformations, the magnitude of a%  at larger deformations has 
not been constrained with experimental data. In addition, there are large uncertainties in the 
theoretical predictions for the surface and volume coefficients needed to quantify the variation 
of the level density parameter with deformation. For this reason, in this work we have treated 
the asymptotic values of the level density parameters at the barriers, Aa%  and Ba% , as free 
parameters.  

We consider that only rotational states contribute to the density of collective states. Following 
the prescription of Bohr and Mottelson [36], the rotational states for a prolate axially 
symmetric deformation have been built on each intrinsic level described above. Assuming that 
the rotational energies are small compared to the total excitation energy, the level density 
takes the form: 

( ) ∑
−= ⊥

−+−−≈
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JK
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KJJ
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E8

CJE ]
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)1(
*)(2
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1,, 2

2

2
||

2

|| σσσπ
ρπρ                  (32) 

where the factor 1/2 accounts for the assumption of equal number of levels with positive and 
negative parity. ||σ and ⊥σ represent the deformation-dependent spin cutoff factors, which are 
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closely related to the nucleus moment of inertia parallel and perpendicular to the nuclear 
symmetry axis. The relevant moment of inertia at the ground state and at the inner- and outer-
barrier deformations have been computed from the set of prolate deformations calculated by 
Howard and Möller [37]. The density of rotational states is known to vary with deformation. 
It is now well established that the breakdown of various symmetries leads to a significant 
enhancement of the level densities at the barrier deformations [36]. The factor Ccoll takes 
different values depending on the deformation. For deformations with axial asymmetry 

*)(8 || ECcoll σπ=  and for axial symmetric but reflection asymmetric shapes Ccoll = 2 [38].  

5.1.2. Discrete transition states 

For the nuclei of interest in this work, the information on the properties of the transition states 
at the barriers is very scarce. Fission-probability measurements combined with measurements 
of fission-fragment angular distributions can provide the angular momentum J and its 
projection K of the transition states. Unfortunately, such measurements were not performed in 
the past for the relevant nuclei here. Note that the angular distributions that we measure are 
not adapted to extract precise information on the transition states due to the large angular 
uncertainty of our data of approximately ∆θ ≈ 30° and to the limited statistics. Our 
measurements can only be used to confirm the low sensitivity of the fission efficiency of our 
detector to the fission-fragment angular anisotropy.  

244Cm 243Cm 242Am 241Am 
Inner Barrier Outer Barrier Inner Barrier Outer Barrier Inner Barrier Outer Barrier Inner Barrier Outer Barrier

Kπ E Kπ E Kπ E Kπ E Kπ E Kπ E Kπ E Kπ E 
0+ 
2+ 
0- 

0 
0.2 
0.4 

0+ 
0- 
2+ 

0 
0.25 
0.5 

1/2+ 
5/2+ 
1/2- 
3/2- 

0 
0.08 
0.05 
0.1 

1/2+ 
3/2+ 
5/2+

0 
0.08 
0.02

1- 
0- 
5- 
6- 
1- 
3- 
2- 

0 
0.044 
0.049 
0.170 
0.220 
0.242 
0.288

1- 
0- 
5 
6- 
1- 
3- 
2- 

0 
0.044 
0.049 
0.170 
0.220 
0.242 
0.288

5/2- 
3/2+ 
1/2+ 

0 
0.02 
0.04 

5/2- 
3/2+ 
1/2+ 

0 
0.02 
0.04 

Table 4:  Spectrum of discrete transition states used in this work. Given is the energy in MeV 
of the transition states above the corresponding fission barrier. 

Gavron et al. [9] used the calculated spectrum of transition states of 240Pu, which they took 
from [25], for all the nuclei they investigated. For odd-odd nuclei no discrete transition states 
were considered. The situation is somewhat less complicated for even-even nuclei, because 
one can make a reasonable guess of the properties of the transition states at the barriers from 
the evolution with deformation of the low-lying rotational and vibrational states from the 
ground state. The spectra of transition states used in this work for 243, 244Cm and 241,242Am are 
given in Table 4. The energies of the states were slightly tuned to best reproduce the data. The 
inclusion of additional states did not have any impact on the results of the calculations. The 
energies of the transition states for 244Cm at the first barrier are very close to the ones used in 
[7], which were considered the same for the inner and outer barriers. Our spectra are in 
general good agreement with the generic recommended values given by RIPL3 [33]. There 
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are only significant differences in the energies of the 1/2- state at the inner barrier and of the 
5/2+ state at the outer barrier of the even-odd 243Cm, and in the spectrum at the inner barrier of 
241Am. 

Each of these transition states is the band head of a rotational band with the rotational 

parameter  
xℑ2

2h , ℑbeing the moment of inertia at each barrier. We have taken  
Aℑ2

2h = 7 keV 

and  
Bℑ2

2h = 5 keV [25]. Axial symmetry breaking induces (2J + 1) rotational levels for each 

value of the total angular momentum J. Levels of opposite parity (but equal energy) are added 
to the intrinsic levels in order to account for reflection asymmetry. In this way, a set of 
discrete transition states was built up to the pairing gap: 2∆ for 244Cm and ∆ for 243Cm and 
241Am, where we have assumed 12

A
Δ = . Beyond the pairing gap, the continuous level 

density described in the previous section was assumed for both nuclei.  

5.1.3. Determination of α(E*, J, π) 

While it is possible to calculate the angular-momentum and parity distributions populated in 
neutron-induced reactions using optical potentials, this is by far not the case when the 
compound nucleus is formed in a transfer reaction (see [17]). Transfer reactions populate 
single-particle states, such as single neutron states in the (d,p) reactions, single proton states in 
the (3He,d) reaction and single neutron-hole states in the (3He,4He) reactions. This quite 
simple picture is valid at low excitation energies, and has been extensively used in the past in 
nuclear-structure studies. However, in the excitation-energy region of interest in this work 
(E*>Sn), these single-particle states are strongly mixed with the highly dense and complex 
compound-nuclear states, whose decay is described by the statistical model. In other words, 
the strength of the particular single-particle states populated by the direct reaction “spreads 
out” over a large number of compound levels [39]. Therefore, one can imagine the reactions 
studied in this work as two-step processes where the single particle states initially populated 
by the transfer reactions readily mix with the continuum of compound levels that have the 
same quantum numbers (Jπ), leading eventually to the formation of a compound nucleus. It is 
difficult to theoretically estimate how the initial single-particle states are fragmented into the 
complex many-body states in the continuum and usually different approximations are used 
[40, 41]. Similarly to [7], in this work we assume that the angular-momentum distribution α is 
independent of E*, and that the spreading width is directly proportional to the density ρ of 
compound-nuclear levels with Jπ: 

 ( , ) ( , ) ( , )J Q J Jα π π ρ π=                                             (33) 

where Q(J, π) gives the probability of feeding the single-particle level Jπ by the transfer 
reaction. The final spin J is given by: 

 jIslIJ
rrrrrr

+=++=                                                  (34) 
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where I is the target spin,  l is the orbital angular momentum transferred in the reaction and s 
is the intrinsic spin of the transferred particles. l and s combine to give the channel spin j. For 
a given J we have: 

 
| | | |

( ) ( , , ( 1) )( , ) ( , )
lj sJ I

I s

j J I l j s l

lJ J
N

σ δ π πα π ρ π
++

= − = −

−= ∑ ∑                               (35)  

where σ(l) is the reaction cross section (dimensionless) as a function of transferred orbital 
angular momentum l. In the above eq., the double summation takes into account all possible 
ways to generate J from j + I and all possible ways to generate j from l + s. The number of 
these couplings is given by:  

| | | |

1
j sJ I

l
j J I l j s

N
++

= − = −

= ∑ ∑                                                            (36) 

The quantity σ(l) is not known for the reactions of interest in this work. Instead of using 
orbital angular-momentum distributions of arbitrary shapes, we have used the neutron-
induced distributions σn(l) populated at different neutron energies En. The latter distributions 
can be calculated with the transmission coefficients ( )j

l nT E  used to determine the number of 
open channels for neutron emission. Figure 11 shows the calculated distributions at different 
neutron energies for 242Am. The distributions for 243Cm and 244Cm are very similar. In this 
way, we investigated the influence of very different angular-momentum distributions on the 
properties of the fission barriers. 
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Fig. 11: (Color online) Calculated neutron-induced orbital angular-momentum distributions 
σn(En, l) populated in the reaction n + 241Am at different incident neutron energies, En.  

5.2. Comparison between theory and experiment 
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Calculated fission probabilities from the model described above have been compared to the 
fission probabilities measured in this work to deduce the heights and curvatures of the inner 
and outer barriers, which were treated as adjustable parameters. We assume that the inner 
barrier (EA) is axially asymmetric, while the outer one (EB) is axially symmetric but reflection 
asymmetric [42]. Calculations were also performed assuming an axial symmetric shape at the 
inner barrier, but in this case it was not possible to fit the data for 243Cm and 242Am.  

As mentioned before, for 244Cm the region above approximately 7.5 MeV suffers from the 
presence of target contaminants and the shape of the fission probability depends on the 
assumption made for the shape of the singles spectrum below the contaminant peaks. 
Therefore, we have performed two separated fits, one including only the data below 7.5 MeV 
and the other considering all the available data.  

5.2.1. Sensitivity of the fission-barrier parameters to the transferred angular-
momentum distribution 

For 244Cm, the calculated fission probabilities were rather insensitive to the angular-
momentum distribution except for the region between the neutron separation energy and 
about 8 MeV. This region is very sensitive to the shape of the neutron-emission probability. 
When the transferred angular momentum is low, neutron emission to the low-lying states of 
243Cm is favored and the neutron-emission probability sets in rather steeply. This leads to a 
strong decrease of the fission probability, that we do not observe in our data. This is 
astonishing, given the good agreement between our results for the 243Cm(n,f) and the neutron-
induced data in the vicinity of Sn, see ref. [18]. The reason for this discrepancy may be some 
deficiency in the experimental data (including the most recent neutron-induced data) or/and a 
poor knowledge of the structure of 243Cm at the lowest energies. The best fit to the data below 
7.5 MeV and to the ensemble of data was obtained with the distribution σn(En=30 MeV, l) 
with <l> ≈ 7.6. The different fits give fairly similar results for EA and the two barrier 
curvatures, with differences below 200 keV. The second barrier shows a stronger sensitivity 
to the transferred angular momentum and we find a difference of about 300 keV between the 
fits.  

Similarly to the 244Cm case, we could not reproduce the experimental data in the vicinity of 
the fission threshold of 243Cm using the transferred angular-momentum distributions with the 
lowest spins corresponding to En ≤ 1 MeV. This may be due to the lack of knowledge on the 
properties of the low-lying states in the even-even 242Cm. We recall that for 242Cm the 
structure information is very scarce and we have assumed the levels of neighboring nuclei. In 
addition, one should also keep in mind that the complete damping limit is not the appropriate 
frame to treat this nucleus, which presents clear structures at low excitation energies. We 
found better agreement with the data when considering the distributions σn(En>10 MeV, l). 
The best agreement was found for σn(En=15 MeV, l) with <l> ≈ 5.6, but there are relatively 
small differences between the calculations using the distributions corresponding to σn(En>10 
MeV, l). The calculations with σn(En>10 MeV, l) gave results for EA, EB and ħωA that agree 
within less than 100 keV. Yet, the differences for ħωB reach 300 keV. 
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The calculations for 242Am are less sensitive to the transferred angular momentum than the 
calculations for 243Cm and 244Cm. Above approximately E* = 7.5 MeV we found essentially 
no difference between the fission probabilities calculated with the different σn(En, l) 
distributions for 242Am. The calculation with the orbital angular momentum distribution at En 
= 1 MeV (corresponding to E* = 6.5 MeV and to <l> ≈ 1.6) gave a slightly better agreement 
with the experimental data. We observed a very weak sensitivity of the fission barrier heights 
to the shape of σn(En, l). A maximum difference of 50 keV was found between the inner 
barrier height deduced with σn(En=1 MeV, l) and σn(En=30 MeV, l). The fluctuations 
associated to the outer barrier height and the curvatures were within 200 keV.  

5.2.2. Results 

The best fits to the data are shown in Fig. 12. For 244Cm we show the calculation assuming 
axial symmetry at the inner barrier and the calculation assuming axial asymmetry with the 
angular-momentum distribution corresponding to <l> ≈ 7.6. The two fits, including only the 
data below 7.5 MeV and all the available data, show a similar agreement with the data. Only 
the fit considering all the available data is plotted in Fig. 12a. We find an overall good 
agreement between calculations and experimental data for the three nuclei. The values of the 
barrier parameters from the best fits (those with the minimum χ2 deviation) are listed in Table 
5.  

We have made a considerable effort to estimate the uncertainty of the 6 fit parameters (the 4 
barrier parameters and the 2 asymptotic level-density parameters) in a rigorous way. For each 
fissioning nucleus we performed one million of calculations with values for the 6 parameters 
that were randomly and independently sampled from uniform probability distributions. The 
uncertainty tabulated in Table 5 corresponds to half of the total range spanned by the values 
of the parameters for which χ2 ≤ 2

minχ + D. The quantity D has been determined according to 
the procedure described by Avni [43]: 

Probability[χ2(q fit parameters) ≤ D] = CL                               (37) 

where CL is the confidence level. That is, D(CL, q) is the χ2 value that one finds from the 
table of a χ2 distribution with q degrees of freedom. In our case we have q = 6 parameters and 
we have chosen CL = 99%, therefore D(CL=0.99, q=6) = 16.8. In other words, the range of 
parameter values for which χ2 ≤ 2

minχ + 16.8 includes the true values of the parameters with 
99% probability. We have tested this criterion following the procedure of Avni [43], i.e. by 
simulating a number of experimental fission-probability measurements with known input 
values of the barrier and level-density parameters. In 99 % of the cases the interval defined by 
the values of the fitted parameters with the uncertainty limits given by the condition χ2 
≤ 2

minχ + 16.8 included the input values. 

The uncertainties of the barrier parameters given in Table 5 show that our data for 244Cm 
mainly constrain the height of the outer barrier. For this nucleus we obtain a smaller 
difference between the two barrier heights (under the assumption of axial asymmetry). The 
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results obtained when only the data below 7.5 MeV are fitted agree within the uncertainties 
with the results obtained fitting the whole range of excitation energy. 

The uncertainties given in Table 5 for 243Cm, 242Am and 241Am show that our data well 
constrain the height and the curvature of the first fission barrier, while they weakly constrain 
the barrier parameters of the second barrier. For these nuclei our data require a first barrier 
that is significantly higher than the second barrier. In this situation, the height of the first 
barrier dominates the onset of the fission probability, because <Nf,A> << 1, see eq. (25). Only 
at higher excitation energies there is some influence of the second barrier, which remains 
anyhow rather weak, due to the significant difference between the two barrier heights.  

In Table 5 our results are compared to the ones by Back et al., Gavron et al. and to the 
empirical systematics by Bjornholm and Lynn [42] and RIPL3 [33]. The values for ħωA and 
for EB by Gavron et al. are in parenthesis because they “should be regarded with extreme 
caution”, as stated by the authors themselves. Our results for the first barrier of 244Cm, using 
the assumption that the inner barrier is axial asymmetric, are in good agreement with the ones 
of Gavron et al. The differences between our data and that of Gavron et al. at the highest 
excitation energies (see Fig. 8) are not relevant for the determination of EA because EA is 
mainly determined by the probability at the fission threshold. Our value for the first barrier of 
244Cm is also in good agreement with the one by Back et al., despite the important differences 
between fission probabilities on which the two analyses are based. Obviously, if we would fit 
our model calculations to the data by Back et al. we would obtain a higher inner barrier. The 
reason for the good agreement in the barrier values might be that Back et al. did not consider 
collective enhancement in the level density, which results in a significant increase of the level 
density. We may speculate that, with a much higher level density, Back et al. would have 
obtained a significantly higher barrier. Our results for EA assuming axial asymmetric shapes 
are in good agreement with the recommended values by RIPL3, whereas our results assuming 
axial symmetry are in agreement with the systematics by Bjornholm and Lynn. The 
calculations assuming axial asymmetric shapes at EA give a value for EB that is higher than the 
value given by RIPL3.  

For 243Cm, our results (see Fig.12b) for EA agree within the uncertainties with the results by 
Gavron et al. They observed that for this nucleus EA was particularly sensitive to the used 
level-density description, leading to the large uncertainty of 500 keV given in Table 5. Note 
that the model calculation by Gavron et al. did not fit well the data in the excitation-energy 
region around 7 MeV. Our results for EA and ħωx are in good agreement with Bjornholm and 
Lynn, but our value for EA is somewhat higher than the value given in RIPL3.  
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Fig. 12: (Color online) Experimental fission probabilities (full circles) compared to statistical-
model calculations, see text for details.  

Fissioning 
nucleus 

Reference 
EA  

[MeV] 
ħωA 

[MeV] 
EB 

[MeV] 
ħωB 

[MeV] 

244Cm 
(Sn=6.8 
MeV) 

This work 
(Fit to data E*< 7.5 

MeV) 
6.25±0.40 0.8±0.3 5.6±0.2 0.40±0.15

This work 
(Fit to all the data) 

5.70±0.55 1.10±0.45 5.85±0.20 0.75±0.20

This work  
(EA axial 

symmetric) 
5.90±0.14 0.80±0.15 4.0 ± 0.7 1.0±0.4 

Gavron et al.[9] 6.2±0.2 (0.9) (4.6) - 
Back et al. [7] 6.12±0.2 0.90±0.10 <4.9 - 
Bjornholm and 

Lynn [39] 5.8±0.2 1.04 4.3±0.3 0.60 

RIPL3 [30] 6.18 0.9 5.10 0.6 

243Cm 
(Sn=5.7MeV) 

This work 6.6±0.1 0.71±0.13 5.42±0.85 1±0.5 
Gavron et al. [9] 5.95±0.50 (0.6) (5.5) - 
Bjornholm and 

Lynn [39] 6.4±0.3 0.80 - 0.52 

RIPL3 [30] 6.33 0.7 5.4 0.5 

242Am 
(Sn=5.5 
MeV) 

This work 6.4±0.1 0. 60±0.13 5.8±0.7 0.7±0.3 
Gavron et al. [9] 6.4±0.2 (0.38) (5.05) - 
Back et al. [25] 

    (d,p) corrected 6.38±0.20 0.50±0.10 - - 

Back et al. [24]  6.35±0.15 0.6±0.15 - - 
Bjornholm and 

Lynn [39] 6.5±.0.2 0.65 5.4±0.3 0.45 

RIPL3[30] 6.32 0.60 5.78 0.40 

241Am 
(Sn=6.6 
MeV) 

This work 
(from second-

chance fission of 
242Am) 

6.6±0.13 0.7±0.2 4.6±0.7 0.6±0.3 

Gavron et al. [9] 6.0±0.2 (0.55) (5.1) - 
Back et al.  [25]  6.0±0.2 0.8±0.1 - - 
Bjornholm and 

Lynn [39] 6.0±0.2 0.8 5.1±0.3 0.52 

RIPL3[30] 6.0 0.8 5.35 0.5 
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Table 5: Fission-barrier parameters obtained in this work compared to the values from other 
fission-probability analysis and empirical systematics. The values by Gavron et al. in 
parentheses are subject to important uncertainties, according to the authors. 

 

The value of EA obtained for 242Am (see Fig.12c) agrees well with the result by Gavron et al. 
We find also very good agreement with the results by Back et al., despite the significant lower 
fission probabilities, in particular for the uncorrected data [24].  This may be due to the fact 
that in [24] additional information on shape isomer half lives and isomeric ratios was used to 
constrain the barrier parameters and curvatures. Our results are also in good agreement with 
Bjornholm and Lynn and RIPL3. For 241Am our result for EA is somewhat higher than the 
other published values.  

Table 6 shows the values of xa% / na%  that best reproduced the data, where xa%  is the asymptotic 

level density parameter at the fission barrier and na%  at the ground state of the corresponding 
residual nucleus after neutron emission (whose value follows from eq. 31). Our results are 
affected by rather large uncertainties and agree within the error bars with the starting values 
recommended by RIPL3 (between 1.05 and 1.07) [33]. 
 

Fissioning 
Nucleus 

A

n

a
a
%

%
 B

n

a
a
%

%
 

244Cm 0.95±0.30  1.18±0.06 
243Cm 1.19±0.16 1.08±0.24 

242Am, 241Am 1.16±0.50 1.26±0.10 

Table 6: Values of the asymptotic level density parameters at the barriers used in this work. 
The values for 244Cm correspond to the fit to the ensemble of data.  

6. Conclusion 

We have measured the fission probabilities of 242Am, 243Cm and 244Cm induced by few-
nucleon transfer reactions between a 3He beam and a 243Am target. The details of the 
experimental set-up and the data analysis have been described. We have presented a detailed 
uncertainty analysis. To our knowledge, it is the first time that such a rigorous uncertainty 
study has been performed on transfer-induced fission probabilities. This analysis shows that 
the covariance between the single and coincidence events has a significant impact on the final 
uncertainty of the fission probability. We have also carefully investigated the correlation 
between the experimental data at different excitation energies. This correlation is caused by 
the fission-detection efficiency, which is given by the solid angle of the fission-detector and is 
constant for all excitation energies, and by the target-contaminant subtraction. The increase of 
the correlation with excitation energy is due to the target-contaminant subtraction. 

We have compared our fission probabilities to those by Gavron et al. [9], obtained using the 
same transfer reactions and similar experimental conditions. For 242Am we find good 
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agreement, however, there are significant differences at the fission thresholds of 243Cm and 
244Cm and above 7.5 MeV for 244Cm. The uncertainties of our data are generally much lower 
than the ones of previous measurements by Gavron et al. [9] and Back et al. [7, 24, 25]. 
Therefore, our data can be used to provide additional constraints on the barrier parameters and 
level densities of the nuclei investigated. We have observed clear sub-threshold structures for 
243Cm. It would be desirable to perform dedicated experiments to investigate these structures 
with sufficient statistics, at different detection angles of the ejectile and in combination with 
measurements of the fission-fragment angular distributions.  

We have extracted information on the properties of the fission barriers and the level-density 
parameters of the investigated nuclei by comparing our results to statistical-model 
calculations. Our model is based on the simple assumption of a double-humped barrier in the 
complete damping limit. We have determined the uncertainties of the parameters in a rigorous 
way. These uncertainties show that our data provide a significant constrain on the parameters 
of the first barrier of 243Cm, 242Am and 241Am, which have been determined with an 
uncertainty of less than 200 keV. The other barrier parameters of 243Cm, 242Am and 241Am, 
and the ensemble of barrier parameters of  244Cm and  are affected by larger uncertainties. Our 
results are in general good agreement with the barrier parameters reported in literature. The 
experimental data are well reproduced using asymptotic level-density parameters at the 
barriers xa%  that agree within rather large error bars with the values recommended in RIPL3 
[33]. 
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