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Background: The linear response of the nucleus to an external field contains unique information about the
effective interaction, correlations governing the behavior of the many-body system, and properties of its excited
states. To characterize the response, it is useful to use its energy-weighted moments, or sum rules. By comparing
computed sum rules with experimental values, the information content of the response can be utilized in the
optimization process of the nuclear Hamiltonian or nuclear energy density functional (EDF). But the additional
information comes at a price: compared to the ground state, computation of excited states is more demanding.

Purpose: To establish an efficient framework to compute energy-weighted sum rules of the response that is
adaptable to the optimization of the nuclear EDF and large-scale surveys of collective strength, we have developed
a new technique within the complex-energy finite-amplitude method (FAM) based on the quasiparticle random-
phase approximation (QRPA).

Methods: To compute sum rules, we carry out contour integration of the response function in the complex-
energy plane. We benchmark our results against the conventional matrix formulation of the QRPA theory, the
Thouless theorem for the energy-weighted sum rule, and the dielectric theorem for the inverse energy-weighted
sum rule.

Results: We derive the sum-rule expressions from the contour integration of the complex-energy FAM. We
demonstrate that calculated sum-rule values agree with those obtained from the matrix formulation of the QRPA.
We also discuss the applicability of both the Thouless theorem about the energy-weighted sum rule and the
dielectric theorem for the inverse energy-weighted sum rule to nuclear density functional theory in cases when the
EDF is not based on a Hamiltonian.

Conclusions: The proposed sum-rule technique based on the complex-energy FAM is a tool of choice when
optimizing effective interactions or energy functionals. The method is very efficient and well-adaptable to parallel
computing. The FAM formulation is especially useful when standard theorems based on commutation relations
involving the nuclear Hamiltonian and external field cannot be used.

PACS numbers: 21.60.Jz, 21.10.Re, 23.20.Js, 24.30.Cz

I. INTRODUCTION

Atomic nuclei exhibit various kinds of collective exci-
tations, with characteristics considerably different from
simple nucleonic excitations [1, 2]. Among those, giant
resonances form a distinct class [3]. Although their exci-
tation energies are relatively high compared to the low-
energy collective modes, the main characteristics of giant
resonances are understood in terms of the superposition
of many nucleonic excitations. Experimentally, various
types of giant resonances have been seen. Examples are
shape vibrations, spin excitations, and charge-exchange
excitations of various multipolarity and isospin. These
modes carry rich information about basic nuclear prop-
erties.

There has been excellent progress in the modeling of
atomic nuclei using nuclear density functional theory
(DFT) [4]. State-of-the-art energy density functionals

(EDFs), optimized to various classes of data [5–9] en-
able a quantitative description of global nuclear proper-
ties throughout the nuclear landscape [10–12]. Ground-
state properties of nuclei, such as binding energies, charge
radii, effective single-particle energies of doubly-closed
shell nuclei, and basic parameters characterizing the nu-
clear matter equation of state, are typically used as em-
pirical inputs in EDF parameter optimization. However,
properties of excited states, such as giant resonances, are
seldom considered (see Refs. [5, 13–19] for representative
examples of work along those lines). This results in large
uncertainties of EDF parameters sensitive to, and gov-
erning, low- and high-frequency nuclear excitations. The
EDFs of the next generation are expected to overcome
this deficiency by including selected properties of the gi-
ant resonances into the pool of observables used in the
optimization.

To extract the information content of giant resonances,
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the sum rule technique [20–24] has been widely used.
For instance, mean giant resonance energies can be re-
lated to the ratio of the sum rules of different energy
moments [22, 25–28]. The inverse energy-weighted sum
rule provides information about the nuclear polarizabil-
ity, which is the fundamental quantity characterizing the
nuclear response. An important quantity, in the context
of studies of neutron-rich matter, is the electric dipole
polarizability, which is related to symmetry energy and
its density-dependence [29–31]. Various polarizabilities
carry information about instabilities in nuclear matter
[32–34]. In some cases, the Thouless theorem [35–37]
provides a simple way to access sum rules directly from
the Hartree-Fock-Bogoliubov (HFB) solution. Unfortu-
nately, the Thouless theorem applies to positive-odd en-
ergy moments, and simple expressions can be derived
only for simple operators (such as multipole moments).
Moreover, the theorem is justified only if a Hamilto-
nian representation of the interaction is available, which
is generally not the case for nuclear DFT where mod-
ern EDFs are usually not connected to an underlying
Hamiltonian, and often break local gauge invariance [38].
Therefore, an efficient technique to compute nuclear sum
rules, regardless of the form of the operator F̂ , is desired.

The direct evaluation of sum rules from self-consistent
QRPA matrix solutions is computationally demanding
because of configuration spaces involved. A recent for-
mulation of the sum rule in terms of QRPA matrices
enables the computation of sum rules without diagonal-
izing the QRPA matrix [27]. Nevertheless, this method
still requires knowledge of the QRPA matrix, which has
large dimensions, especially when spherical symmetry is
broken. Other recent developments include applications
of the Lanczos algorithm to RPA sum rules [39] and the
use of the Lorentz integral transform method and the
Lanczos technique [40].

The finite amplitude method [41], based on the linear-
response approach, significantly reduces the computa-
tional cost of the QRPA problem. The residual two-
body interaction is numerically computed from the finite-
amplitude nucleonic fields induced by an external po-
larizing field. The FAM has been recently imple-
mented to various self-consistent frameworks, including
three-dimensional HF [41], spherical HFB [42], axially-
deformed Skyrme-HFB [43–45], and relativistic mean-
field models [46, 47]. The FAM has been applied to
the description of giant resonances and low-energy dipole
strength [48, 49], the computation of the QRPA matrix
elements [50], and the description of discrete low-lying
QRPA modes by means of the contour integration tech-
nique in the complex energy plane [51].

The objective of this study is to propose an efficient
approach to sum rules by using the contour integration
technique of Ref. [51]. Because of its inherently paral-
lel structure, the new method is ideally suited for op-
timizations of next-generation nuclear EDFs, informed
by experimental data on multipole and charge-exchange
strength. This paper is organized as follows. Section II

summarizes the basic expressions. In Sec. III, we present
the formulation of the complex-energy FAM approach to
sum rules. Section IV contains numerical tests, bench-
marking examples, and applications to realistic cases.
The conclusions and outlook are given in Sec. V.

II. BASIC EXPRESSIONS

A. Sum rule

The ground-state (g.s.) strength function S(E) for a

one-body operator F̂ is defined as

S(E) ≡
∑
ν

δ(E − Eν)|〈ν|F̂ |0〉|2, (1)

where |0〉 and |ν〉 denote, respectively, the ground state
and excited state of the system with energies E0 and Eν .
The k-th moment of S(E),

mk(F̂ ) =

∫
(E − E0)kS(E) dE, (2)

is called the energy-weighted sum rule of order k. In
terms of the transition matrix elements of F̂ , it is given
by:

mk(F̂ ) ≡
∑
ν

(Eν − E0)k|〈ν|F̂ |0〉|2. (3)

As discussed in, e.g., Refs. [1, 2], certain sum rules are
independent of the specific many-body theory used to
describe the ground state and excited states. For exam-
ple, the nuclear shell model and QRPA frameworks have
been widely used to evaluate the sum rules. In QRPA,
the excitation energy Eν−E0 is replaced with the QRPA
frequency Ων , which is the eigenvalue of the matrix equa-
tion: (

A B
−B∗ −A∗

)(
Xν

Y ν

)
= Ων

(
Xν

Y ν

)
, (4)

where A and B are QRPA matrices. The QRPA equation
(4) has positive-energy solutions Ων > 0 (ν > 0) with
(Xν , Y ν), and mirror negative-energy solutions Ω−ν =
−Ων < 0 with (X−ν , Y −ν) = (Y ν∗, Xν∗). The positive
frequency solutions, being the physically relevant ones,
are used for the sum rule, and the summation in Eq. (3)
is, therefore, restricted to QRPA modes with ν > 0.

B. Finite amplitude method

The FAM is an efficient technique to obtain the re-
sponse function S(E) without explicitly computing the
A and B QRPA matrices in Eq. (4). For the details per-
taining to FAM, we refer the reader to, e.g., Ref. [42].

The complex response function for a given operator F̂
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at a given complex frequency ωγ = ω + iγ, found as a
solution of the FAM equations, is given as

S(F̂ , ωγ) = −
∑
ν>0

{
|〈ν|F̂ |0〉|2

Ων − ωγ
+
|〈0|F̂ |ν〉|2

Ων + ωγ

}
. (5)

The Lorentzian distribution of the strength function is
obtained by taking the imaginary part of S:

− 1

π
ImS(F̂ , ωγ)

=
γ

π

∑
ν>0

{
|〈ν|F̂ |0〉|2

(Ων − ω)2 + γ2
− |〈0|F̂ |ν〉|2

(Ων + ω)2 + γ2

}
. (6)

A contour integration along the path Cν , which encircles
a real energy pole Ων of the response function, gives the
QRPA transition strength to state |ν〉 [51]:

1

2πi

∮
Cν

S(F̂ , ωγ)dωγ = |〈ν|F̂ |0〉|2 (Ων > 0) , (7)

or, alternatively, along C−ν ,

1

2πi

∮
C−ν

S(F̂ , ωγ)dωγ =− |〈0|F̂ |ν〉|2

=− |〈ν|F̂ †|0〉|2 (Ω−ν < 0). (8)

For a small γ � ω, the relation 1/(ω + iγ) = P (1/ω) −
iπδ(ω) holds, and the sum rules can be formally calcu-
lated using

mk(F̂ ) = − 1

π
lim
γ→0

∫ ∞
0

ωkImS(F̂ , ω + iγ)dω . (9)

An approximate value of the sum rules can be found from
this expression from a finite value of γ [42, 43, 47, 49].
However, to guarantee sufficient numerical accuracy, a
very fine mesh would be required for the integration (9) to
take into account all the QRPA modes, whose locations
are not known beforehand.

III. SUM RULE EXPRESSIONS IN FAM

In this section we introduce the sum rule approach
based on the contour integration of the FAM. For sim-
plicity, we assume that the operator F̂ cannot excite spu-
rious modes, and all the QRPA energies Ων are non-zero.
We also assume that the HFB state is stable with respect
to small density variations, i.e., there are no imaginary-
frequency QRPA solutions. This guarantees that all the
QRPA poles Ων lie on the real axis. In the following, we
shall adopt the notation ω for a complex frequency.

The basic idea behind the FAM approach to sum rules
is to utilize the identity based on Cauchy’s integral the-
orem:∮

D

f(ω)S(F̂ , ω)dω =
∑
ν>0

f(Ων)|〈ν|F̂ |0〉|2, (10)

where the contour D encircles all the positive QRPA fre-
quencies Ων > 0, and excludes all the singularities of the
complex function f(ω). By setting f(ω) = ωk, we obtain

the expressions for the sum rule mk(F̂ ).

In the following, we assume the operator F̂ to be Her-
mitian for simplicity. In this case, positive and negative
energy solutions are associated with the same transition
strength:

|〈ν|F̂ |0〉|2 = |〈0|F̂ |ν〉|2 . (11)

The above equation does not hold when F̂ is not Hermi-
tian. However, Eq. (10) still can be used with an appro-
priately chosen contour D.

A. Laurent series of the FAM response function

By using the Laurent series expansion of (1− z)−1, we
can derive the expansion of the FAM response function.
The FAM response function has poles at ω = Ων and
−Ων . In the inner region below the lowest QRPA pole,
|ω| < minν>0 Ων , S(F̂ , ω) can be written as

S(F̂ , ω) = −2

∞∑
n=0

m−(2n+1)(F̂ )ω2n. (12)

One can see that odd-k sum rules can be simply related
to the expansion coefficients of (12). The same is true
in the outer region above the highest QRPA pole, |ω| >
maxν>0 Ων , where the response function can be expanded
as

S(F̂ , ω) = 2

∞∑
n=0

m2n+1(F̂ )

ω2n+2
. (13)

The expansions (12) and (13) are generalizations of
expansions proposed in Ref. [23] to the full complex en-
ergy plane. We note that the inverse energy-weighted
sum rule (k = −1) is found by setting ω = 0 in
Eq. (12). This should be done with care, however. If
spurious modes are present, they would produce a zero-
frequency pole resulting in numerical instabilities near
or at the pole. If we choose the semicircle A1 (counter-
clockwise) and A2 (clockwise) with the radii satisfying
0 < RA2

< minν>0 Ων and RA1
> maxν>0 Ων , as in

Fig. 1, we can apply the series (12) and (13) along the
integration path. The odd-k sum rules are then given as:

mk(F̂ ) =


1

2πi

∫
A1

ωkS(F̂ , ω)dω (k > 0, odd),

1

2πi

∫
A2

ωkS(F̂ , ω)dω (k < 0, odd).
(14)

To evaluate even-k sum rules, we need to connect A1

and A2 to enclose the positive-energy poles. To this end,
we consider contour D of Fig. 1 composed of semicircles
A1, A2 connected by straight segments I1 and I2 on the
imaginary axis.
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QRPA poles
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FIG. 1. (Color online) The contour D (oriented counterclock-
wise) in the complex-ω plane used to evaluate sum rules. The
contour consists of two semicircles A1 and A2 (of radii RA1

and RA2 , respectively) and two segments I1 and I2 on the
imaginary axis. The positive QRPA poles are all located be-
tween RA2 and RA1 .

In summary, regardless of the moment k, the sum rule
is given by the integration along D:

mk(F̂ ) =
1

2πi

∮
D

ωkS(F̂ , ω)dω =
∑
ν>0

Ωkν |〈ν|F̂ |0〉|2.

(15)

However, for certain moments k, some parts of path D
do not contribute to the sum rule. For odd values of k,
the contributions from I1 and I2 cancel each other. Fur-
thermore, for negative k, application of Jordan’s lemma,
together with a limit of RA1

→∞, allows for the removal
of the contribution from A1. For positive k, there is no
pole at ω = 0, and the limit RA2

→ 0 can be taken.
Table I lists the portions of the contour D required for
each k. Furthermore, for even k, the contributions from
I1 and I2 are identical. Similar contours were considered
in Ref. [52–54] to compute energy-weighted sum rules.

TABLE I. Portions of the contour D required for comput-
ing various sum rules mk. For sum rules with even k, the
contributions from I1 and I2 are identical.

k Required portions of D
negative, even A2, I1, I2 (RA1 →∞)
negative, odd A2 (RA1 →∞)
0 A1, A2, I1, I2
positive, odd A1 (RA2 → 0)
positive, even A1, I1, I2 (RA2 → 0)

IV. RESULTS

A. Numerical checks and benchmarking against
MQRPA

To check the FAM approach to sum rules, following
Refs. [43, 51] we consider the oblate configuration of
24Mg computed with the SLy4 [55] Skyrme EDF. The
HFB calculations were carried out with the DFT solver
HFBTHO [56] in a model space of five harmonic os-
cillator shells by employing a volume pairing with the
strength of V0 = −125.20 MeV fm3 and a 60 MeV quasi-
particle energy cutoff. The resulting oblate minimum of
24Mg has nonzero pairing in protons and neutrons. The
small single-particle model space employed makes it pos-
sible to benchmark FAM results against the matrix for-
mulation of QRPA (MQRPA) [57] without any further
truncation. To compute spatial integrals we used Gauss-
Hermite (NGH = 30), Gauss-Laguerre (NGL = 30), and
Gauss-Legendre (NLeg = 30) quadratures. The finite-
amplitude expansion parameter η was set to be 10−7,
and the convergence criterion of the FAM was set such
that the change of the individual FAM amplitudes from
the previous iteration should be less than 10−5. This
convergence criterion is chosen to be consistent with the
accuracy obtained with a given value of η, as discussed
in Ref. [43]. The integration along semicircles A1 and A2

was discretized with NA1
and NA2

points, respectively.
In addition, the integration along I1 was discretized with
NI1 points and evaluated using the composite Simpson’s
rule. As for negative-k moments, the composite Simp-
son’s rule was applied to the variable 1/ω to describe
the divergent behavior of integrand around ω = 0. In
this particular test case, the smallest and largest en-
ergy MQRPA poles appear at 1.3 MeV and 128.7 MeV,
respectively. Consequently, the contour radii were set
to RA2

= 1 MeV and RA1
= 200 MeV. In order to sys-

tematically assess our numerical procedure for different
moments k, we used the same contour D for all cases,
without simplifications listed in Table I.

As far as the external field F̂ is concerned, we consid-
ered the isoscalar (IS) and isovector (IV) monopole (M)
and quadrupole (Q) operators:

F̂ ISM =
eZ

A

A∑
i=1

r2
i , (16)

F̂ IVM =

A∑
i=1

eeff(τ3i)r
2
i τ̂3i, (17)

F̂ ISQ =
eZ

A

A∑
i=1

r2
i Y20(θi, ϕi) , (18)

F̂ IVQ =

A∑
i=1

eeff(τ3i)r
2
i Y20(θi, ϕi)τ̂3i, (19)

where eeff(n) = eZ/A and eeff(p) = −eN/A.
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It is worth noting that neutron and proton pairing-
rotational spurious modes, associated with the break-
ing of the particle number symmetry, are present in
the Kπ = 0+ sector. Fortunately, these modes – gen-
erated by the neutron and proton particle number op-
erators – cannot be excited by particle-hole operators
(16)-(19). Therefore, the presence of pairing-rotational
spurious modes does not cause any additional difficulties
[41, 43].

To begin with, we checked the convergence of the inte-
gral (15) along A1, A2, and I1 with respect of the number
of integration points. The results are presented in Ta-
bles II-IV for the isoscalar monopole operator. As seen
in Table II, the integrals along A1 are small for negative
k. Analytically, these values should be zero for negative-
odd values of k; hence, nonzero values in Table II reflect
the numerical error of calculations. As far as the posi-
tive k moments are concerned, the convergence is faster
for odd-k sum rules. In particular, the convergence for
k = 1 is excellent, since a 6-digit accuracy is achieved al-
ready with NA1

= 5. The integration along A1 captures
the total m1 and m3 sum rules; the result in Table II
indicates that these sum rules can be computed very effi-
ciently. Moreover, since the semicircle A1 is located very
far from the QRPA poles, FAM calculations along A1

converge very quickly, typically after 6 iterations. Fur-
thermore, each FAM calculation at a given ω along the
contour is easily parallelizable; this could significantly re-
duce the total computational time, although not so many
points are required for the convergence of m1 and m3.

Table III shows the convergence of the integral (15)
along A2. This portion of the contour is required for the
sum rules with negative k. Of most practical importance
is the inverse energy-weighted sum rule m−1. The value
of m−1 converges here with NA2

= 16 points. In gen-
eral, as compared to integration along A1, more FAM
iterations are required to achieve reasonable convergence
along A2. In the case considered, typically 50 FAM it-
erations are necessary for each ω. When choosing RA2

one has to keep in mind that its value should be smaller
than the lowest QRPA pole, whose energy is not a pri-
ori known. At the same time, the convergence of FAM
calculations for negative-k moments deteriorates rapidly
when RA2 gets too close to zero.

Table IV illustrates the convergence along the segment
I1 on the imaginary axis. As discussed, this integration
should be nonzero only for even-k moments. The con-
vergence for k = 0 is reached rather slowly, especially
when compared with the k = 4 and −4 cases. This is
because the Simpson’s formula used approximates the in-
tegrand with quadratic functions, which is a poor ansatz
for k = 0.

To benchmark our FAM approach, in Table V we dis-
play the values of sum rules for the isoscalar and isovec-
tor monopole operators; they are compared with the
MQRPA results based on the direct evaluation of the
r.h.s. of Eq. (15). Overall, there is an excellent agree-
ment between the two sets of calculations. This result

indicates that the proposed FAM technique can be used
to predict sum rules of interest in model spaces that are
too large to be treated with MQRPA. The convergence
of integration along A2 is not sufficient in the case of
k = −4; this sum rule is, however, less important than
other moments discussed.

B. Thouless theorem for energy-weighted sum rule

The Thouless theorem [35] gives the relation between

the energy-weighted sum rule m1(F̂ ) for isoscalar F̂ =∑A
i=1 f(r̂i) or isovector F̂ =

∑A
i=1 f(r̂i)τ̂3i one-body op-

erators and the expectation value of the double commu-
tator at the ground state [21–23, 58]:

m1(F̂ ) =
1

2
〈[F̂ , [Ĥ, F̂ ]]〉 =

1

2
(1 + κ)〈[F̂ , [T̂ , F̂ ]]〉

=(1 + κ)
~2

2m

∫
|∇f(r)|2ρ(r)dr , (20)

where T̂ is the kinetic energy operator and κ is the en-
hancement factor, which is present in the case when F̂
is an isovector operator. The explicit expressions for the
r.h.s. of Eq. (20) for the operators (16)-(19) are given in
Appendix A.

The theorem is exact when both the ground state and
the excited states are many-body shell-model states, and
has been proven for HF+RPA [35], HFB+QRPA [36],
and second RPA [58, 59]. In the case of HF+RPA, ex-
pression (20) also holds for the Skyrme force due to the
δ-character of the momentum-dependent terms [23, 24].
However, as pointed out in Ref. [33], the theorem has not
been proven for a generalized EDF, which is not explic-
itly related to an effective interaction. Deviations from
relation (20) can be caused by, e.g., different assumptions
about particle-hole and pairing channels, the Slater ap-
proximation to the Coulomb exchange term, approxima-
tions to spin-orbit and tensor terms [60], and generalized
density dependence [61–63]. To the best of our knowl-
edge, the Thouless theorem has not been proven in the
case of generalized EDFs.

In the following, we refer to the value (20) as the “HFB
value” of the energy-weighted sum rule. In Table VI the
energy-weighted sum rules obtained in HFB and FAM
are compared for different model spaces given by Nsh. In
a small model space of Nsh = 5, the difference between
FAM and HFB values is non-negligible but quickly be-
comes small with Nsh. This can be attributed to a poor
representation of the operator F̂ in small basis spaces, re-
sulting in an error on the derivative of the function f(r̂)
in Eq. (20). In spite of the fact that the SLy4 EDF com-
bined with volume pairing cannot be related to a force,
the numerical test in Table VI demonstrates that the
Thouless theorem provides a reasonably good approxi-
mation to the value of the sum rule m1 for the Skyrme
EDF.
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TABLE II. The real part of the integral (15) for −4 ≤ k ≤ 4 and F̂ ISM (in MeVk e2 fm4) along semicircle A1 with RA1 =
200 MeV. The integral was discretized with NA1 points. The numbers in parentheses denote powers of 10.

NA1 k = −4 k = −3 k = −2 k = −1 k = 0 k = 1 k = 2 k = 3 k = 4
2 -9.0(-9) -2.6(-6) -3.8(-4) -2.7(-3) 14.4510 4195.31 608575 4318446 -23121542422
3 9.0(-9) 6.8(-8) -1.7(-4) 1.1(-4) 13.8328 4199.78 574147 4338677 -10598058261
4 3.3(-9) -2.6(-9) -1.4(-4) -5.7(-6) 13.5751 4199.39 562629 4336463 -8502934038
5 2.5(-9) 2.2(-10) -1.3(-4) 4.1(-6) 13.4599 4199.44 557421 4336545 -7722808528
7 2.0(-9) 7.1(-12) -1.2(-4) 2.9(-6) 13.3593 4199.44 552937 4336634 -7119788306
9 1.9(-9) 2.1(-12) -1.1(-4) 2.9(-6) 13.3181 4199.44 551106 4336643 -6889795483
10 1.8(-9) 1.9(-12) -1.1(-4) 2.9(-6) 13.3061 4199.44 550575 4336644 -6824728295
11 1.8(-9) 1.9(-12) -1.1(-4) 2.9(-6) 13.2972 4199.44 550183 4336638 -6777106568
12 1.8(-9) 2.0(-12) -1.1(-4) 2.9(-6) 13.2905 4199.44 549885 4336648 -6741178415
101 1.6(-9) 1.9(-12) -1.1(-4) 2.9(-6) 13.2556 4199.44 548341 4336643 -6558793102
201 1.6(-9) 1.9(-12) -1.1(-4) 2.9(-6) 13.2552 4199.44 548325 4336643 -6556876296
301 1.6(-9) 2.0(-12) -1.1(-4) 2.9(-6) 13.2551 4199.44 548322 4336644 -6556517206

TABLE III. Similar to Table II but for the integration along A2 for several values of NA2 with RA2 = 1.0 MeV.

NA2 k = −4 k = −3 k = −2 k = −1 k = 0 k = 1 k = 2 k = 3 k = 4
5 -1.20929 0.0372710 3.26165 5.00438 3.23108 1.0(-3) -1.22915 2.2(-3) 0.996926
11 -1.06784 0.0369978 3.21892 5.00387 3.18902 2.7(-5) -1.09039 4.1(-5) 0.691152
15 -1.05236 0.0369925 3.21386 5.00386 3.18407 7.1(-6) -1.07507 3.9(-6) 0.663895
16 -1.05021 0.0369910 3.21315 5.00385 3.18338 4.1(-6) -1.07293 -7.8(-7) 0.660178
21 -1.04368 0.0369929 3.21099 5.00385 3.18127 6.2(-6) -1.06646 -6.4(-7) 0.649056
31 -1.03883 0.0369918 3.20937 5.00385 3.17968 6.1(-6) -1.06164 9.9(-7) 0.640898
51 -1.03625 0.0369916 3.20851 5.00385 3.17884 5.6(-6) -1.05908 1.0(-6) 0.636594
101 -1.03512 0.0369918 3.20813 5.00385 3.17847 5.9(-6) -1.05797 7.2(-7) 0.634728

TABLE IV. Similar to Table II but for the integration along I1 for several values of NI1 with RA1 = 200 MeV and RA2 =
1.0 MeV.

NI1 k = −4 k = −3 k = −2 k = −1 k = 0 k = 1 k = 2 k = 3 k = 4
10 0.523854 -6.6(-8) -1.472654 1.3(-7) 61.4767 -2.0(-6) -208884 2.3(-2) 3356473886
30 0.523849 1.2(-6) -1.478626 -1.6(-6) 61.7093 -6.0(-7) -208523 -4.2(-3) 3356786248
50 0.523850 -1.1(-6) -1.477671 1.4(-6) 61.7024 -2.2(-6) -208522 3.3(-2) 3356787504
100 0.523850 -1.5(-6) -1.477427 2.0(-6) 61.7044 -1.4(-6) -208522 2.8(-2) 3356787251
200 0.523850 -8.7(-7) -1.477417 1.2(-6) 61.7052 -1.8(-6) -208522 2.2(-2) 3356787739

TABLE V. Sum rules (in MeVk e2 fm4) for the isoscalar and isovector monopole operators calculated with MQRPA and FAM.
The FAM calculations were performed by using NA1 = 301, NA2 = 101, and NI1 = 200 integration points.

k = −4 k = −3 k = −2 k = −1 k = 0 k = 1 k = 2 k = 3 k = 4

MQRPA(ISM) 0.013077 0.037185 0.253118 5.00072 139.825 4200.82 131368 4342358 157906069
FAM(ISM) 0.012579 0.036992 0.253186 5.00385 139.844 4199.44 131277 4336644 157058272

MQRPA(IVM) 0.00063616 0.00273872 0.07120949 2.78540 113.908 4735.03 199525 8527358 370625216
FAM(IVM) 0.00043157 0.00275227 0.07133510 2.78615 113.908 4734.30 199510 8524830 368643941
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TABLE VI. The energy weighted Kπ = 0+ sum rule (in MeV e2 fm4) for the operators (16)-(19) at the oblate minimum of
24Mg as a function of Nsh. The FAM values were obtained by taking RA1 = 200 MeV and NA1 = 12; they are compared to
HFB values (20). The results without time-odd terms except for the current-current coupling (Cjt 6= 0 and Cst (ρ0) = C∆s

t =

C∇jt = CTt = 0) (a), and with the full time-odd functional except for the current-current and kinetic spin-spin couplings

(Cjt = CTt = 0, Cst (ρ0) 6= 0, C∆s
t 6= 0, and C∇jt 6= 0) (b), obtained with Nsh=20, are also listed.

Nsh FAM(ISM) HFB(ISM) FAM(IVM) HFB(IVM) FAM(ISQ) HFB(ISQ) FAM(IVQ) HFB(IVQ)
5 4199.44 4303.67 4734.25 4752.37 762.638 767.933 848.110 845.235
10 4524.39 4502.75 4970.34 4940.08 779.019 775.724 852.995 849.015
15 4521.39 4523.80 4958.02 4960.52 776.587 776.161 849.482 849.116
20 4530.01 4529.46 4966.98 4966.01 777.425 776.832 850.145 849.747

20(a) 4530.07 - 4966.98 - 777.506 - 850.132 -

20(b) 5297.64 - 5298.46 - 905.461 - 905.441 -

In the notation of Ref. [64], the time-odd part of the
Skyrme EDF reads:

Eodd =
∑
t=0,1

[
Cst (ρ0)s2

t + C∆s
t st ·∆st

+ Cjt j
2
t + C∇jt st · (∇× jt) + CTt st · Tt

]
. (21)

By taking the Skyrme interaction as a starting point,
the time-odd and time-even coupling constants of the
Skyrme EDF are related to each other. That is, by fix-
ing time-even coupling constants, the time-odd part be-
comes also determined. This choice also guarantees the
EDF’s gauge invariance [65]. In the EDF picture, how-
ever, the time-odd coupling constants could be treated
as independent parameters, where some of them can be
constrained by local gauge invariance [64, 66]. With local
gauge invariance assumed and tensor terms excluded, the
last term of Eq. (21), proportional to CTt , vanishes. In
standard HFB calculations for even-even nuclei, the time-
odd fields do not contribute because of time-reversal sym-
metry; hence, the time-odd part (21) does not affect the
HFB value (20). However, when time-reversal symme-
try becomes broken, as in the case of FAM calculations,
time-odd terms become active.

As shown in Table VI, the inclusion of the current-
current term Cjt j

2
t is necessary in the FAM to recover

the HFB value of the energy-weighted sum rule of the
monopole and quadrupole operators. This indicates that
the gauge invariance of the term ρτ − j2 should not be
broken when applying the Thouless theorem to QRPA
sum rules. Other terms in the time-odd functional do
not impact the energy-weighed sum rule. Local gauge

invariance also couples the C∇jt and C∇Jt terms, but the
numerical results demonstrate that these do not affect
the energy-weighted sum rule.

C. Dielectric theorem for the inverse
energy-weighted sum rule

The dielectric theorem connects the inverse-energy-
weighted sum rule (related to nuclear polarizability) with
the constrained potential energy surface. This theorem

was proposed in Refs. [20, 23] for the HF case, and has
been proven in the HFB framework in Ref. [27]. Based on
this theorem, the inverse energy-weighted sum rule m−1

can be obtained from the curvature of the total energy E
at equilibrium:

m−1(F̂ ) =
1

2

∂2

∂λ2
E(λ)

∣∣∣∣
λ=0

=
1

2

∂ 〈φ(λ)| F̂ |φ(λ)〉
∂λ

∣∣∣∣∣
λ=0

, (22)

where the constrained HFB state |φ(λ)〉 is obtained by
minimizing the total Routhian containing a linear con-
straint −λF̂ . We use the relation (22) to compute the
m−1 sum rule. The derivative is evaluated with a finite
difference of ∆λ = 0.0001 MeV e−1 fm−2. The resulting
m−1 values are compared with those from the FAM in
Table VII. A good agreement is found already in a small
model space (Nsh = 5) where m−1 is not fully converged,
indicating that the dielectric theorem works well, inde-
pendently of the size of the model space. This finding is
consistent with the proof of Ref. [27], which applies to an
arbitrary size of quasiparticle space.

D. Example of systematic calculations

As an illustrative example, we discuss the energy-
weighted Kπ = 0+ sum rules in the shape transitional re-
gion of 142−152Nd and 144−154Sm. The calculations were
carried out by using the SLy4 EDF parameterization with
a volume pairing strength Vn = Vp = −190 MeV fm3 in
the model space of Nsh = 20 oscillator shells. The pair-
ing strength was adjusted to reproduce the experimental
proton pairing gap of 1.23 MeV in 142Nd. In this realis-
tic calculation we use NGH = NGL = 40 and NLeg = 80,
which are the recommended values based on recent anal-
ysis [56]. The FAM contour integration was carried out
using a semicircle with RA1

= 200 MeV, discretized with
NA1 = 12 points.

Table VIII summarizes the results. The calculated
ground state properties show a gradual spherical-to-
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TABLE VII. Inverse energy-weighted sum rule (in MeV−1 e2 fm4) computed using the dielectric theorem (HFB) and the FAM
for various sizes of the model space given by Nsh. FAM calculations were performed using NA2 = 22 and RA2 = 1.0 MeV.

Nsh FAM(ISM) HFB(ISM) FAM(IVM) HFB(IVM) FAM(ISQ) HFB(ISQ) FAM(IVQ) HFB(IVQ)
5 5.00385 5.00375 2.78615 2.78614 4.44830 4.44765 0.798680 0.798680
10 11.2033 11.2102 5.09467 5.09671 5.21547 5.21586 1.07516 1.07524
15 12.4930 12.5009 5.71677 5.71960 5.31250 5.31268 1.12916 1.12910
20 12.9506 12.9634 6.06842 6.07304 5.35499 5.35730 1.15744 1.15771

TABLE VIII. Isoscalar monopole and quadrupole energy-weighted Kπ = 0+ sum rules in units of MeV e2 fm4 computed with
the FAM and the HFB techniques for 142−152Nd and 144−154Sm isotopes. The quadrupole deformation β, neutron and proton
pairing gaps (∆n and ∆p, respectively), and total rms radius

√
〈r2〉 are also shown.

β ∆n(MeV) ∆p(MeV)
√
〈r2〉(fm) HFB(ISM) FAM(ISM) HFB(ISQ) FAM(ISQ)

142Nd 0.0 0.00 1.21 4.92 50497 50724 10046 10068
144Nd 0.09 0.49 1.09 4.95 50453 50647 10606 10626
146Nd 0.15 0.55 1.00 4.99 50590 50769 11042 11062
148Nd 0.21 0.00 0.93 5.03 50788 50936 11412 11429
150Nd 0.31 0.64 0.00 5.11 51667 51806 12287 12301
152Nd 0.32 0.00 0.00 5.14 51649 51762 12375 12383

144Sm 0.0 0.00 1.10 4.94 53635 53873 10670 10693
146Sm 0.06 0.55 1.08 4.97 53492 53712 11048 11069
148Sm 0.16 0.56 1.07 5.01 53754 53957 11770 11792
150Sm 0.21 0.16 0.93 5.06 53979 54145 12189 12207
152Sm 0.28 0.57 0.69 5.11 54474 54646 12768 12786
154Sm 0.32 0.09 0.65 5.16 54707 54849 13071 13084

deformed shape transition with increasing neutron num-
ber. Moreover, in some of the isotopes we predict pairing
collapse. For that reason, the chosen set of nuclei is rep-
resentative of a realistic situation encountered in global
surveys across the nuclear landscape, where deformations
and pairing may vary rapidly as a function of proton and
neutron number.

The energy-weighted sum rules computed with the
FAM agree well with the HFB expressions of Appendix A.
This agreement holds regardless of nuclear shape or pair-
ing. As expected, the energy-weighted sum rule for the
isoscalar monopole operator increases with N in the re-
gion of the shape transition; this is attributed to an
increase of the root mean square radius with deforma-
tion. Similarly, the isoscalar quadrupole operator in-
creases even more rapidly with increasing quadrupole de-
formation.

Next, we consider the energy weighted sum rules in
constrained HFB states. The constrained HFB poten-
tial energy curve as a function of quadrupole moment
was obtained using the quadratic constraint. The con-
tribution from the quadratic constraining potential was
included consistently to the residual field in the FAM.
This kind of calculation represents local QRPA on top of
constrained HFB [67]; it contains dynamical information
about non-equilibrium configurations in the deformation
space.

The energy-weighted sum rule of the isoscalar
quadrupole operator as a function of quadrupole defor-

mation is shown in Fig. 2. The sum rule increases mono-
tonically with β and agrees very well with HFB values.
This, together with results presented in Table VIII, in-
dicates that the Thouless theorem provides a good ap-
proximation to the energy weighted sum rule within the
Skyrme-EDF picture, which is not based on the underly-
ing Hamiltonian.
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FIG. 2. (Color online) Energy-weighted sum rule of the
isoscalar quadrupole operator in 142Nd obtained in the HFB
(solid line with asterisks) and FAM (dashed line with open
circles) frameworks as a function of quadrupole deformation
β for the constrained HFB solutions.
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In passing, we should note that when departing from
the HFB minimum, there is a possibility of imaginary
energy QRPA solutions; in such cases, a pair of QRPA
poles would appear on the imaginary axis. Although one
expects no contribution to odd-k sum rules from such
a pair, a careful consideration needs to be given to the
choice of integration contour in the FAM. A general ex-
tension of the complex FAM formalism to the case of local
QRPA will be an interesting avenue for future studies.

V. CONCLUSIONS

We propose an efficient formalism to compute sum
rules by using the contour integration formalism within
the complex-energy finite-amplitude method. In partic-
ular when the order of the moment is odd, the obtained
expression becomes extremely simple, as the sum rules
appear as expansion coefficients of the Laurent series of
the response function. The new formalism has been suc-
cessfully benchmarked against the matrix diagonalization
method of QRPA.

We compare the energy-weighted sum rule obtained in
the FAM with those based on the Thouless theorem. Al-
though the double commutator cannot be evaluated for
general energy density functionals that are not based on a
Hamiltonian, the numerical results indicate that the the-
orem provides a very good approximation to m1 when a
large model space is employed and local gauge symmetry
of the EDF is satisfied. The inverse-energy-weighted sum
rule was compared with the constrained HFB result us-
ing the dielectric theorem, and a perfect agreement was
obtained regardless of the model space.

Our results suggest that sum rules can be computed
efficiently in the FAM even in cases when other methods
are not easily available (e.g., the Thouless theorem can-
not be applied or constrained calculations cannot be car-
ried out because of self-consistent symmetries assumed).
Of particular interest is the systematic analysis of the
isovector dipole sum rule and neutron skins. The exten-
sion of the FAM formalism to non-Hermitian operators is
also straightforward, as it has already been applied to the
beta-decay rates [44]. Extension of the complex-energy
FAM to weakly-bound systems near the drip line, e.g.,
within the framework of Ref. [45], is also an interesting
future avenue.

The FAM approach to sum rules promises to add
new functionality to the EDF optimization framework
of Refs. [6–8] as it will allow adding new kinds of data
on multipole- and charge-exchange strength to the set
of fit-observables defining the objective function. The
new FAM technique can be very useful when studying
the nuclear response to non-trivial operators such as the
nuclear Schiff moment, which is closely related to the
isoscalar dipole operator [68, 69].
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Appendix A: Thouless theorem for monopole and
quadrupole operators

According to the Thouless theorem (20), the energy-
weighted sum rule for isoscalar monopole and quadrupole
operators of an axially-deformed nucleus are:

m1(ISM) =4e2

(
Z

A

)2 ~2

2m
A〈r2〉 , (A1)

m1(ISQ) =e2

(
Z

A

)2 ~2

2m

5

2π
A〈r2〉

(
1 +

√
5

4π
β

)
.

(A2)

where 〈r2〉 is the total rms squared radius and β is the
mass quadrupole deformation parameter:

β =

√
π

5

1

A〈r2〉

∫
(3z2 − r2)ρ(r)dr. (A3)

For isovector operators, there appears an enhancement
factor

κ =
8m

~2
(Cτ0 − Cτ1 )

∫
|∇f(r)|2ρn(r)ρp(r)dr∫
|∇f(r)|2ρ(r)dr

, (A4)

where Cτt is the coupling constant of the term ρtτt in the
EDF in the notation of Ref. [64]. The expressions for
the isovector monopole and quadrupole operators are:

m1(IVM) =4e2 ~2

2m

NZ

A2

[
Z〈r2〉n +N〈r2〉p

]
(1 + κIVM),

(A5)

κIVM =
8m

~2
(Cτ0 − Cτ1 )

1

A〈r2〉

∫
r2ρn(r)ρp(r)dr,

(A6)
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and

m1(IVQ) =e2 ~2

2m

NZ

A2

5

2π

[
Z〈r2〉n

(
1 +

√
5

4π
βn

)

+ N〈r2〉p

(
1 +

√
5

4π
βp

)]
(1 + κIVQ), (A7)

κIVQ =
8m

~2
(Cτ0 − Cτ1 )

1

2A〈r2〉

(
1 +

√
5

4π
β

)

×
∫

(3z2 + r2)ρn(r)ρp(r)dr, (A8)

where subscripts n/p indicate neutron/proton expecta-
tion values respectively.
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N. Paar, P.-G. Reinhard, X. Roca-Maza, and D. Vrete-
nar, Phys. Rev. C 85, 041302 (2012).

[31] P.-G. Reinhard and W. Nazarewicz, Phys. Rev. C 87,
014324 (2013).

[32] S. Stringari, R. Leonardi, and D. Brink, Nucl. Phys. A
269, 87 (1976).

[33] A. Pastore, D. Davesne, Y. Lallouet, M. Martini, K. Ben-
naceur, and J. Meyer, Phys. Rev. C 85, 054317 (2012).

[34] N. Chamel and S. Goriely, Phys. Rev. C 82, 045804
(2010).

[35] D. J. Thouless, Nucl. Phys. 22, 78 (1961).
[36] E. Khan, N. Sandulescu, M. Grasso, and N. Van Giai,

Phys. Rev. C 66, 024309 (2002).
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