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Abstract

We calculate neutrino absorption rates due to charged-current reactions νe+n→ e−+p and ν̄e+p→ e+ +n

in the outer regions of a newly born neutron star called the neutrino-sphere. To improve on recent work

which has shown that nuclear mean fields enhance the νe cross-section and suppress the ν̄e cross-section, we

employ realistic nucleon-nucleon interactions that fit measured scattering phase shifts. Using these interactions

we calculate the momentum-, density-, and temperature-dependent nucleon self-energies in the Hartree-Fock

approximation. A potential derived from chiral effective field theory and a pseudo-potential constructed to

reproduce nucleon-nucleon phase shifts at the mean-field level are used to study the equilibrium proton fraction

and charged-current rates. We compare our results to earlier calculations obtained using phenomenological

mean-field models and to those obtained in the virial expansion valid at low density and high temperature. In

the virial regime our results are consistent with previous calculations, and at higher densities relevant for the

neutrino sphere, ρ & 1012 g/cm3, we find the difference between the νe and ν̄e absorption rates to be larger

than predicted earlier. Our results may have implications for heavy-element nucleosynthesis in supernovae, and

for supernova neutrino detection.
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I. INTRODUCTION

The neutrino opacity of dense matter plays a central role in supernovae, associated nucleosynthesis,

and the subsequent evolution of the newly born neutron star called the proto-neutron star (PNS).

Neutrino interactions at the high densities and temperatures of relevance are influenced by matter

degeneracy, inter-particle correlations due to strong and electromagnetic interactions, and by multi-

particle excitations [1–11]. Supernova and PNS simulations that include these corrections have found

them to play a role in shaping the temporal and spectral aspects of neutrino emission [4, 12–14]. Of

particular interest to our study here are the spectra of electron and anti-electron neutrinos, νe and

ν̄e, which decouple in the outer region of the PNS called the neutrino-sphere. Here, the reactions

νe+n→ e−+p and ν̄e+p→ e+ +n are an important source of neutrino opacity, and their rates directly

influence the mean energy of νe and ν̄e neutrinos [1–4]. The mean neutrino energy can in turn impact

supernova dynamics [15], supernova nucleosynthesis [16, 17], and influence the number of neutrinos

detectable from a supernova in terrestrial neutrino detectors [18].

Since matter is neutron-rich in the neutrino-sphere, the reaction νe + n → e− + p is favored over

ν̄e + p → e+ + n, and on general grounds we can expect that 〈σνe〉 > 〈σν̄e〉, where 〈σνe〉 and 〈σν̄e〉 are

the thermally averaged neutrino and anti-neutrino cross-sections, respectively. The corresponding root-

mean-square (rms) energies of neutrinos emerging from the neutrino-sphere will satisfy the following

inequality εν̄e > ενe . It is now well established, through parametric studies and simulations, that

nucleosynthesis in the neutrino-driven wind (NDW) is very sensitive to the difference δε = εν̄e − ενe .

Neutron-rich conditions in the material ejected by the neutrino-driven wind, a prerequisite for the r-

process, is only achieved when δε > 4(mn − mp) ' 5 MeV [16, 17]. Parametric studies indicate a

robust r-process in the NDW is only realized for an electron fraction Ye . 0.4 which requires even

larger δε [19, 20]. However, recent simulations of supernova and PNS evolution do not achieve these

conditions, instead they predict Ye > 0.45 [13, 17, 21]. This difficulty has led to a renewed interest in

charged-current reactions in the neutrino-sphere to better determine the differences in neutrino spectra.

The role of nuclear interactions in determining the charged-current rates in dense neutron-rich matter

was first studied in [1]. Subsequently, it was recognized [22, 23] that the difference in the neutron and

proton interaction energies enhances the electron neutrino absorption cross-section and simultaneously

suppresses the cross-section for the absorption of anti-electron neutrinos. Simple phenomenological

models based on the relativistic mean field (RMF) theory [23], and a model independent approach
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based on the virial expansion valid at low density and high temperatures [24] were used to calculate the

difference between the neutron and proton interaction energies. Using these inputs it was found that

the electron neutrino absorption rate in the neutrino-sphere for typical thermal neutrinos with energy

' 10 MeV could be enhanced by a factor of 2− 4, while the absorption rates for anti-electron neutrinos

were found to be suppressed by as much as an order of magnitude [22–24]. Due to this suppression,

other processes including the neutral-current processes such as ν̄e + νe + N + N → N + N were found

to play a role in determining the ν̄e spectra, which were consequently found to be very similar to the

spectra expected for νµ and ντ .

In this article, we improve on these earlier studies by using realistic nuclear interactions that can

reproduce nucleon-nucleon (NN) phase shifts to compute the nucleon self-energies and the equation of

state of hot and dense matter expected in the neutrino-sphere. We use the potential developed by Entem

and Machleidt [25] within the framework of chiral effective field theory (EFT) at next-to–next-to–next-

to–leading order (N3LO) in the chiral expansion. This low-momentum potential is able to reproduce

low-energy phase shifts without a strong repulsive core and it is expected that many-body perturbation

theory provides a reasonable description of matter at moderate density and temperature [26–37]. To

assess the convergence of many-body perturbation theory in the particle-particle channel (the ladder

summation) for the partially degenerate conditions encountered in the neutrino-sphere, we define and

use a pseudo-potential, which is given directly in terms of NN phase shifts obtained from the partial-

wave analysis (PWA) of the Nijmegen group [38]. The composition of matter, and the medium-induced

self-energies are obtained using finite-temperature perturbation theory in the Hartree-Fock (HF) ap-

proximation. This allows us to calculate the in-medium Green’s functions for neutrons and protons,

and the density-, temperature-, and momentum-dependent nucleon dispersion relations are naturally

incorporated in calculations of the charged-current cross-sections for νe and ν̄e. We also present new

results, using the formalism developed in Ref. [11], for the neutrino pair absorption mean free path for

the reaction ν̄e + νe + N + N → N + N , which improves upon earlier work by properly accounting for

nucleon-nucleon interactions and nucleon self-energies in the medium.

In Sec. II we describe the kinematics of charged-current reactions and highlight the importance of

nucleon dispersion relations. The nucleon dispersion relation and the composition of matter in the

neutrino-sphere are calculated in Sec. III, where we also briefly discuss the NN interactions used and as-

sess the validity of the HF approximation for the relevant conditions. In Sec. IV the neutrino-absorption
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rates using the HF self-energies are calculated and compared to results obtained in earlier work. In Sec. V

we discuss the implications of our findings and identify areas where improvements are necessary. Finally,

we note that throughout we use natural units: we set ~ = 1, the speed of light c = 1 and the Boltzmann

constant kB = 1. Energy and temperature are measured in MeV, and the density is measured in units

of nucleons per fm3.

II. KINEMATICS

We begin with a general discussion of the kinematics of charged-current reactions to highlight the

importance of nuclear interactions. Kinematic restrictions for the charged-current reactions νe + n →
e−+p and ν̄e+p→ e+ +n are relevant, because the neutrino energy is comparable to the typical energy

and momentum scales in the hot and dense plasma in the neutrino-sphere. Due to strong electron

degeneracy, final-state blocking suppresses the νe absorption when the neutrino energy is comparable or

smaller than the electron Fermi energy. Similarly, ν̄e absorption requires a neutrino energy large enough

to overcome the energy difference between the proton in the initial state and the neutron plus positron

energy in the final state. These constraints are depicted in Fig. 1, where we illustrate energy and

momentum conservation for an incoming neutrino of energy Eν = 24 MeV; this is the typical thermal

energy of the neutrino for an ambient temperature of T = 8 MeV. The x-axis is the magnitude of the

momentum transferred to the nucleons, ~q = ~kν − ~ke, where ~kν and ~ke are the νe (ν̄e) and final state

e− (e+) lepton momenta, respectively. The y-axis is the final-state lepton energy Ee. The shaded area

enclosed by the solid black lines is the region allowed by lepton kinematics for an incoming neutrino

with Eν = 24 MeV.

The reaction can proceed when the allowed regions for nucleon and lepton kinematics overlap. Energy

and momentum constraints imposed by the nucleons for the νe+n→ e−+p and ν̄e+p→ e++n reactions

are shown by the regions enclosed by the dashed blue and red curves, respectively. For the νe reaction,

the blue region is defined by the equation En(|~k |)− Ep(|~k + ~q |) = −ω, and for the ν̄e reaction the red

region is defined by Ep(|~k |) − En(|~k + ~q |) = −ω, where ω = Eν − Ee is the energy transferred to the

nucleons. When nuclear interactions are neglected, the neutron and proton single-particle energies are

given by En(|~k |) = Mn + k2/2Mn and Ep(|~k |) = Mp + k2/2Mp, respectively. In this case, the allowed

kinematic region for the νe and ν̄e are similar and the small difference arises solely due to the small

neutron-proton mass difference.
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FIG. 1. (Color online) Energy and momentum constraints on the charged-current reactions for conditions

discussed in the text. Reactions are possible when the allowed region for lepton kinematics, shown by the

shaded region enclosed by the black lines, overlaps the allowed region for nucleon kinematics, shown by the

regions enclosed by blue and red lines corresponding to the νe and ν̄e reactions, respectively. The region enclosed

by the solid blue lines includes the nuclear self-energy difference for the transition n → p associated with the

νe reaction, and regions enclosed by the dashed lines are for non-interacting nucleons. The p → n transition

associated with the ν̄e reaction is kinematically forbidden as there is no overlap when nucleon self-energy

corrections are included.

In an interacting system, the single-particle energy is given by

Ei=n,p(|~k |) = Mi +
k2

2Mi

+ Σi(k) ≡ εi(k) +Mi , (1)

where Σi(k) is the momentum-, density-, and temperature-dependent self-energy (we note that in gen-

eral, the self-energy will also be energy-dependent, but in the Hartree-Fock approximation employed

in the present study this does not arise). At the densities ρ ' 1011 − 1013 g/cm3 and temperatures

T ' 3− 10 MeV of interest in the neutrino-sphere, matter is very neutron-rich with an electron fraction

Ye of only a few percent (note that charge neutrality requires the proton fraction Yp = Ye). Due to
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this large asymmetry, the proton and neutron self-energies are not equal, Σn(k) 6= Σp(k). Both neutron

and proton energies are shifted downwards by the nuclear interaction at the densities and temperatures

encountered in the neutrino-sphere, i.e., Σi < 0, because NN interactions are on average attractive at

the relevant low momenta (k < 200 MeV). However, the energy shift is much larger for the protons and

Σn − Σp > 0 because of the denser neutron background and the additional attraction in the neutron-

proton interaction. This energy difference is related to the potential part of the nuclear symmetry energy

— in neutron-rich matter it costs nuclear interaction energy to convert protons to neutrons, and there

is an energy gain resulting from the conversion of neutrons to protons. The resulting change in the

reaction Q value modifies the relative νe and ν̄e absorption rates as described below.

Using calculations of Σn(k) and Σp(k), which will be discussed in detail in Sec. III, we illustrate

the change in reaction kinematics in Fig. 1 by enclosing the allowed nucleon kinematic regions (using

the same color legend) by solid lines. The Q value for the reaction at q = 0 is the energy shift

Σn(k) − Σp(k) ' 30 MeV which is much larger than the rest mass difference Mn −Mp = 1.3 MeV.

This large energy gain associated with n → p conversion shifts the outgoing electron energy to larger

values and the overlap region between lepton and nucleon kinematic regions is enhanced. Further, the

higher Q value also helps overcome the Pauli blocking in the final state for the degenerate electrons

with µe/T & 3− 10. In contrast, the ν̄e reaction is now kinematically forbidden because the ν̄e energy

Eν = 24 MeV is insufficient to overcome the energy threshold ' 30 MeV to convert protons to neutrons.

III. NUCLEON SINGLE-PARTICLE ENERGIES IN THE NEUTRINO-SPHERE

Nucleon dispersion relations are modified in a hot and dense medium due to nuclear interactions. In

this section, we calculate these modifications using realistic nuclear interactions in the HF approximation.

The self-consistent HF self-energy ΣHF is defined through the Feynman diagrams shown in Fig. 2. We

calculate ΣHF using the finite-temperature imaginary-time formalism and find the standard expression

Σ(~k) =

∫∑ d4k′

(2π)4

V (
~k−~k′

2
,
~k−~k′

2
)

iνk′ − ξ(~k′)
=

∫
d3k′

(2π)3
V

(
~k − ~k′

2
,
~k − ~k′

2

)
f(ξ(~k′)) , (2)

where ξ(~k′) = ε(~k′) − µ = k′2/2M + Σ(k′) − µ is the single-particle energy measured with respect to

the non-relativistic chemical potential (the rest mass of the nucleon has been subtracted). The sum

over Matsubara frequencies is performed to obtain the Fermi distribution function f(ξ(k′)). Since the
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FIG. 2. Feynman diagrams depicting the self-consistent HF self-energy. The double lines are the dressed nucleon

propagators and wavy lines represent the NN interaction.

potential V is antisymmetrized, both contributions in Fig. 2 (the Hartree contribution on the left and

the Fock contribution on the right) are contained in the single expression above. We use a spherical

decomposition to represent the anti-symmetrized potential in a partial-wave basis:

〈~pSmsT |V |~p ′Sm′sT 〉 = (4π)2
∑

l,m,l′,m′,J,M

il
′−l Y m

l (p̂)Y m′∗
l′ (p̂ ′)CJM

lmSms
CJM
l′m′Sm′

s
〈p|V JT

ll′S |p′〉(1− (−1)l+S+T ) ,

(3)

where ~p and ~p ′ are relative momenta and V ≡ V (1 − P12) = V (1 − (−1)l+S+T ), with P12 the particle-

exchange operator. The other symbols appearing in Eq. (3) have the standard meaning: l, S, J and T

are the relative orbital angular momentum, spin, total angular momentum and total isospin quantum

numbers of the nucleon pair, and the projections of ~S and ~l onto the z-axis are given by the quantum

numbers ms and m, respectively.

For pure neutron matter the self-energy can be written as

Σn(~k) =
1

2π

∫ ∞
0

k′
2
dk′
∫ 1

−1

d cos θk′ f(ξ(~k′))
∑
l,S,J

(2J + 1)
〈
|(~k − ~k′ )/2|

∣∣V J1

llS

∣∣ |(~k − ~k′ )/2|
〉
, (4)

where θk′ is the angle between ~k′ and ~k. The self-consistent solution to Eq. (4) can be obtained by

iteration. To simplify notation we set p = |1
2
(~k− ~k′ )| in the following. In asymmetric matter, containing

neutrons and protons we obtain the following coupled equations:

Σmt(~k) =
1

2π

∫ ∞
0

k′
2
dk′
∫ 1

−1

d cos θk′
∑

l,S,J,T,m′
t

(2J + 1) |CT mt+m′
t

1
2
mt

1
2
m′

t
|2 〈p|V JT

llS |p〉 f(εm′
t
(~k′)− µm′

t
), (5)
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where mt and m′t label the isospin of the external and intermediate-state nucleon, respectively.

At low densities and high temperatures, where the neutron fugacity satisfies zn = eµn/T � 1, the

virial expansion provides a model-independent benchmark [39, 40]. This allows us to assess the validity

of the HF approximation at densities characteristic of the neutrino-sphere. First, we analyze the HF

predictions for the energy per particle in pure neutron matter in the density range nB = 0.001−0.02 fm−3

and temperature range T = 5 − 10 MeV. To calculate the energy density in the HF approximation we

use two approaches. In the first, we employ the chiral N3LO NN potential of Ref. [25], and in the second

approach we define and use the pseudo-potential.

In the HF calculation, the N3LO potential is treated in the Born approximation. In contrast, the

pseudo-potential defined by the relation

〈p|V pseudo
llSJ |p〉 = −δlSJ(p)

pM
, (6)

is constructed from the measured nucleon-nucleon phase shifts δlSJ(p) and should be viewed as including

a resummation of the ladder diagrams in the particle-particle channel. It is also known to correctly

predict the energy shift in a system containing Fermions interacting strongly with a heavy impurity and

is known in the context of condensed matter physics as Fumi’s theorem [41]. In the following we show

that the pseudo-potential when used in the HF approximation reproduces the energy shift predicted by

the virial expansion which is known to be exact in the limit of low density and high temperature.

In the virial expansion, two-body interactions are included through the second virial coefficient b2,

which is directly related to scattering phase shifts and is given by

b2 =
1

π
√

2T

∫ ∞
0

dε e−ε/2T
∑
lSJ

(2J + 1)δlSJ(ε)− 2−5/2 , (7)

where ε = p2/2m is the kinetic energy and the sum is over allowed partial waves. The number density

n and the energy density E are calculated in terms of the b2 coefficient and are given by [40]

n =
2

λ3
(zn + 2z2

nb2) ,

E =
3T

λ3

[
zn + z2

n

(
b2 −

2

3
Tb′2

)]
, (8)
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where b′2 = db2/dT . The respective expressions for the HF calculation in pure neutron matter are

n = 2

∫
dk3

(2π)3
f(ξ(~k)) ,

E = 2

∫
dk3

(2π)3

(
ε(~k)− 1

2
Σn(~k)

)
f(ξ(~k)) .

(9)

A detailed study of low-density hot matter in the virial expansion is presented in Refs. [39, 40]. Here

we consider neutron matter and use the second virial coefficient computed in Ref. [40] to compare with

the results obtained using the chiral NN potential and the pseudo-potential in the HF approximation.

Results for T = 8 MeV are displayed in Fig. 3, which shows the change in the energy per particle

due to NN interactions. At very low densities (with corresponding fugacities z < 0.25), the virial

equation of state is well reproduced at the HF level when the pseudo-potential is used, in agreement

with previous statistical-mechanics consistency checks [42, 43]. At the breakdown scale of the virial

expansion eµ/T ∼ 0.5, the pseudo-potential predicts additional attraction over the virial equation of

state due to using full Fermi-Dirac distribution functions. On the other hand, the chiral NN potential

when used in the HF approximation significantly underestimates the strength of the attractive mean

field at low densities and therefore provides a conservative upper bound on the energy per particle

at temperatures and densities beyond the scope of the virial expansion. Higher-order perturbative

contributions from chiral NN interactions are attractive and could lead to a narrower uncertainty band

for the energy per particle. We omit contributions from three-neutron forces, which are small at these

low densities.

A comparison between the second-order virial calculation and the HF calculation of matter with

a finite proton fraction Yp = np/(np + nn), where nn and np are the neutron and proton densities, is

complicated by the presence of the deuteron bound state. The HF description solely in terms of neutrons

and protons will fail at low temperature and density when there is a large abundance of deuterons and

light nuclei. However, on general grounds we expect the abundance of weakly bound states such as

the deuteron to decrease rapidly with increasing temperature and density. The second-order virial

calculation provides a correct description of deuterons at low density and moderate temperature, but it

does not capture the physics relevant to the dissolution of weakly bound states with increasing density.

Finite-density effects due to Pauli blocking of intermediate states in the T -matrix and modifications

to the nucleon propagators alter the scattering in the medium at low momentum. Recent calculations
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FIG. 3. (Color online) Change in the energy per particle of neutron matter from NN interactions in the Hartree-

Fock (HF) approximation. Results for both the chiral NN potential and the pseudo-potential are shown and

compared to the model-independent virial equation of state [40]. The shaded area denotes the density region

in which the fugacity z < 0.5.

have shown that this leads to a decrease in the binding energy of light nuclei [44]. These results

indicate that the deuteron abundance is suppressed for nB & 0.005 fm−3 [44–46] even at relatively low

temperatures. Since the typical densities encountered in the neutrino-sphere are larger, especially during

the proto-neutron star phase, in the following we will neglect the deuteron pole and calculate the nucleon

self-energies in the HF approximation using both the chiral NN potential and the pseudo-potential. In

Appendix A we present a brief assessment of the deuteron contribution to the second-virial coefficient

to show that it is relatively small at the densities and temperatures of interest.

To make a comparison between the HF and viral results for hot matter containing protons we consider

neutron-rich matter at temperature T = 8 MeV and determine the proton fraction in charge-neutral

matter in beta-equilibrium for baryon densities in the range nB = 0.0001 − 0.02 fm−3. We solve for

the proton and neutron single-particle energies self-consistently and use them to obtain the proton and

neutron densities given by

ni =
1

π2

∫ ∞
0

p2dp
1

e(p2/2Mi+Σi(p)−µi)/T + 1
. (10)
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FIG. 4. (Color online) The proton fraction Yp as a function of density for matter in beta-equilibrium at

temperature T = 8 MeV. Results for the chiral NN potential and the pseudo-potential in the Hartree-Fock

(HF) approximation are shown. The shaded Yp band is enclosed by solid and dashed lines resulting from the

pseudo-potential and modified pseudo-potential calculations, respectively. The region beteen the HF chiral and

HF pseudo-potential band should be considered as a conservative uncertainty range. In addition, we compare

to the model-independent virial equation of state [40] as well as the predictions from relativistic mean-field

(RMF) theory [23]. The shaded area denotes the density region in which the fugacity z < 0.5.

Attractive interactions between neutrons and protons increase the proton fraction Yp relative to the non-

interacting case as is evident from Fig. 4, which shows the proton fraction as a function of the density

from different treatments of nuclear interactions. At the lower densities where the virial expansion

is reliable, the HF pseudo-potential matches its predictions well. The HF calculation with the chiral

potential underestimates the attraction between neutrons and protons and predicts lower values of Yp.

Since the HF calculation does not provide a reliable treatment of the deuteron pole in the neutron-

proton 3S1 channel, which is nonetheless included in defining the pseudo-potential, we study how the

results are affected when we modify the low-energy 3S1 phase shifts. The alteration is designed to

replace the bound state by a scattering resonance at low momentum and to asymptotically match

with the experimental values of the phase shifts at high momenta. Further details can be found in

Appendix A. By using the original and altered phase shifts in this channel we are able to provide a
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FIG. 5. (Color online) Momentum dependence of the neutron and proton single-particle energies in hot (T = 8

MeV) and dense (nB = 0.02 fm−3) beta-equilibrated nuclear matter calculated in the HF approximation from

the pseudo-potential. The solid and dashed lines are parametrized fits, with the form given in Eq. (11), of the

non-relativistic dispersion relations for protons and neutrons respectively.

theoretical band for the prediction of the HF pseudo-potential approach as shown in Fig. 4 and in all

future plots where the pseudo-potential results are shown.

The ambient conditions encountered in the neutrino-sphere span densities and temperatures in the

range nB = 0.001 − 0.05 fm−3 and T = 3 − 8 MeV. To study the nuclear medium effects, we choose

baryon density nB = 0.02 fm−3 and temperature T = 8 MeV to compare with earlier results obtained in

Ref. [23]. For these conditions the pseudo-potential predicts a proton fraction of Yp = 0.049 (modified

pseudo-potential: Yp = 0.038), while for the HF chiral NN potential we find Yp = 0.019. The neutron and

proton momentum-dependent single-particle energies associated with mean-field effects from the nuclear

pseudo-potential are shown with filled circles and squares in Fig. 5, and qualitatively similar results were

found for the chiral NN potential and modified pseudo-potential. For convenience in calculating the

charged-current reaction rates described later in the text, we parametrize the momentum dependence
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of the single-particle energies with an effective mass plus energy shift:

ε(k) =
k2

2M
+ Σ(k) ' k2

2M∗ − U , (11)

where U is momentum independent. To demonstrate that the quadratic form in Eq. (11) provides a

good description, we display in Fig. 5 the single-particle energies computed for the pseudo-potential

(points) and quadratic fit (curves). The results for the proton and neutron effective masses and energy

shifts are presented in Table I. The Hartree-Fock energy from the chiral NN potential is considerably

smaller for both protons and neutrons than those obtained using the pseudo-potential. The pseudo-

potential predictions are also higher than those obtained in the relativistic mean-field (RMF) models

employed in recent astrophysical simulations [22, 23]. Simple RMF models such as the GM3 model from

Ref. [47] provide a fair description of symmetric nuclei but fail to reproduce ab-initio neutron matter

calculations and are therefore not suitable for asymmetric matter calculations. In contrast, a new class

of RMF models, such as the IUFSU model from Ref. [48], that are constructed to simultaneously provide

a good description of nuclear masses, neutron skin measurements, and match ab-initio calculations of

pure neutron matter predict larger energy shifts and are closer in magnitude to those obtained using

the HF pseudo-potential approach.

Model Yp M∗
n/Mn M∗

p/Mp Un Up ∆U

HF Pseudo-potential 4.9% 0.65 0.42 22 55 33

HF Pseudo-potential (mod) 3.8% 0.78 0.57 18 42 23

HF Chiral NN 1.9% 0.94 0.90 7 10 3

RMF: GM3 2.5% 0.96 0.96 14 23 9

RMF: IUFSU 4.0% 0.94 0.94 31 52 21

RMF: DD2 4.2% 0.92 0.92 9 25 16

TABLE I. The Hartree-Fock (HF) effective masses M∗ and energy shifts U (in units of MeV) for protons and

neutrons in beta equilibrium at nB = 0.02 fm−3 and temperature T = 8 MeV. The difference in proton and

neutron mean-field shifts is given by ∆U = Up−Un, and the proton fraction is denoted by Yp. Results for both

the pseudo-potential and its modified (mod) version are compared to those from the chiral NN interaction and

RMF models [23, 49].

In Fig. 6 we show the difference in the neutron and proton self-energies for the chiral NN potential

and the pseudo-potential. The momentum dependence is also quite different for these two cases. While

the effective masses of proton and neutron quasiparticles are similar and close to bare masses when

13



0 100 200 300 400
k (MeV)

0

5

10

15

20

25

30

35

Σ
n -

 Σ
p  

(M
eV

)

T = 8 MeV

HF Pseudo-potential

HF Chiral NN

β equilibrium

FIG. 6. (Color online) Difference in the momentum-dependent self-energies of neutrons and protons in the HF

approximation for beta-equilibrated matter at nB = 0.02 fm−3 and temperature T = 8 MeV. Results for the

chiral NN potential and pseudo-potential are shown.

chiral NN interactions are treated in the HF approximation, the implicit iteration of NN interactions in

the pseudo-potential results in proton and neutron effective masses that are quite different from each

other and much smaller than the free-space masses. The density dependence of self-energy shifts and

nucleon effective masses are shown in Figures 7 and 8 respectively. As discussed earlier, the band for

the pseudo-potential represents the variation expected for different treatments of the low-momentum

behavior of the potential in the deuteron channel. The rapid increase in ∆U = Un − Up and a similarly

rapid decrease in the nucleon effective masses obtained in the HF pseudo-potential approach are quite

intriguing. Although the HF pseudo-potential approach is well motivated at these low densities and

high temperatures as discussed earlier, these predictions for the self-energies are surprisingly large and

have to be tested with explicit higher-order calculations in the many-body expansion. For now, it would

be reasonable to suppose that the range spanned by the predictions of the HF chiral and HF pseudo-

potential approaches represents our current uncertainty associated with non-perturbative effects. Using

this as a representative range we discuss in the following section how the energy shifts and effective masses

influence the neutrino/antineutrino mean free paths at the temperatures and densities of relevance to

the neutrino-sphere.
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FIG. 7. (Color online) Difference in the HF proton and neutron energy shifts U , defined in Eq. (11), as a

function of the density. The results from the pseudo-potential and chiral NN interaction are compared to those

from RMF models [23].
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IV. NEUTRINO ABSORPTION MEAN FREE PATH

The differential cross-section for the reaction νe + n → e− + p follows from Fermi’s golden rule and

is given by

dσ

V
=

2

(2π)5

∫
d3pn d

3pe d
3pp Wfi δ

(4)(pνe + pn − pe − pp)fn(ξn)(1− fe(ξe))(1− fp(ξp)) , (12)

where f(ξ) and E are the fermi distribution functions and energies of the particles, and

Wfi =
〈|M|2〉

24EnEpEeEνe
(13)

is the transition probability. 〈|M |2〉 is the squared matrix element (corresponding to the diagram

in Fig. 9), averaged over initial spin states and summed over the final spin states. For the reaction

ν̄e + p → e+ + n one obtains a similar expression but with the replacement: n ↔ p, e− → e+, and

νe → ν̄e. To simplify notation, we label the incoming neutrino as particle 1 with four-momentum

p1 = (E1, ~p1), the incoming baryon as particle 2 with four-momentum p2 = (E2, ~p2), and the outgoing

lepton and baryon by the particle labels 3 and 4, with four-momenta p3 = (E3, ~p3) and p4 = (E4, ~p4),

respectively.

W

n, p2 p, p4

e−, p3ν, p1

FIG. 9. Tree-level scattering amplitude for the process νe + n→ e− + p .

In the non-relativistic limit, retaining only terms independent of the nucleon velocity, Eq. (12) sim-

plifies to

1

V

d2σ

d cos θ dE3

=
G2
F cos2 θC

4π2
|~p3|E3 (1− f3(ξ3))

[
(1 + cos θ)Sτ (q0, q) + g2

A(3− cos θ)Sστ (q0, q)
]
, (14)
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where gA = 1.26 is the nucleon axial charge, θ is the angle between the initial-state neutrino and the

final-state lepton, and θC is the Cabibbo angle. Sτ (q0, q) and Sστ (q0, q) are the response functions

associated with the Fermi and Gamow-Teller operators, respectively [23]. The energy transfer to the

nuclear medium is q0 = E1 − E3, and the magnitude of the momentum transfer to the medium is

q2 = E2
1 +E2

3 − 2E1E3 cos θ13, because for the leptons |~p1| = E1 and |~p3| = E3. In general, the response

functions Sτ (q0, q) and Sστ (q0, q) are different because of isospin and spin-isospin dependent correlations

in the medium [3, 4]. However, in the HF approximation Sτ (q0, q) = Sστ (q0, q) = SF(q0, q) where

SF(q0, q) =
1

2π2

∫
d3p2δ(q0 + E2 − E4)f(E2)(1− f(E4)) , (15)

is the response function for a non-interacting Fermi gas, and follows directly from Eq. (12). The effects

of interactions are included in Eq. (15) by using the HF self-energies for neutrons and protons calculated

in Sec. III. We use the quadratic form defined by Eq. (11):

E2 = M2 +
p2

2

M∗
2

− U2 and E4 = M4 +
p2

4

M∗
4

− U4 , (16)

where M2,M4 are the physical masses, M∗
2 ,M

∗
4 are the effective masses, and U2, U4 are the momentum-

independent interaction-energy shifts of the initial- and final-state nucleon, respectively. It is also

straightforward to include in the nucleon currents corrections due to weak magnetism of order |~p|/M .

To do so, we explicitly calculate the square of the matrix element appearing in Eq. (13) for the Fermi

weak interaction Lagrangian

L =
GF

2
√

2
ψ̄4(gV γµ + igM

σµνq
ν

M
− gAγµγ5)ψ2 · ē3(γµ − γµγ5)ν1 , (17)

where the ψ’s are the nucleon spinors and e and ν are the final-state lepton and initial-state neutrino

spinors. The nucleon current has a vector component with gV = 1, an axial-vector component with

gA = 1.26, and a Pauli component that incorporates weak magnetism with gM = 3.71 [50]. We find that

the differential cross-section per unit volume can be written as

dσ(E1)

V dΩdE3

= E2
3 (1− f3(E3))

∫
d3p2

(2π)3
Wfi δ(E1 + E2 − E3 − E4)f2(E2)(1− f4(E4)) . (18)

An explicit form for Wfi including weak magnetism and leading |~p|/M terms in the nucleon weak
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currents is derived in Appendix B.

The differential absorption rates for neutrinos and anti-neutrinos are shown in Fig. 10. The rates are

shown as a function of the energy of the outgoing lepton (e− for νe+n→ p+e− or e+ for ν̄e+p→ n+e+)

and for an incoming neutrino energy of 24 MeV which is the mean thermal energy Eν ∼ 3T = 24 MeV

at the ambient temperature of T = 8 MeV. The trends seen in the figure can be understood on the basis

of our earlier discussion of reaction kinematics in Sec. II, where it was shown that the interaction-energy

shifts in neutron-rich matter enhance the rate for νe absorption and suppress the ν̄e rate. Further, since

the energy shifts are larger and the effective masses are smaller for the pseudo-potential, charged-current

rates calculated using the pseudo-potential show larger differences than with the chiral NN potential in

the Born approximation.

The inverse neutrino mean free path for the absorption reactions mentioned, λ−1
ν (Eν) = vrelσ/V ,

where vrel = c is the relative velocity for relativistic neutrinos, can be calculated by numerical integration

of the differential cross-section defined in Eq. (18). The results shown in Fig. 11 follow the trends

expected from the results for the differential cross-section. The difference between neutrino and anti-

neutrino mean free paths is enhanced by the difference between the neutron and proton self-energies,

and is larger for the case where the HF self-energy was obtained using the pseudo-potential. Our range

for the mean free paths should be compared with those obtained in Refs. [22, 23]. We refer to Fig. 1

in Ref. [22] and Figs. 2 and 3 in Ref. [23] where similar results were obtained using a phenomenological

RMF model. Our results are qualitatively similar to those obtained earlier, but important quantitative

differences exist. The νe + n → e− + p rate is enhanced by almost a factor of 7 relative to the non-

interacting case for Eν = 24 MeV and the ν̄e + p → e+ + n rate is suppressed by a larger factor ' 30.

Under these conditions, neutral current scattering ν̄e + N → ν̄e + N and the inverse bremsstrahlung

process ν̄e + νe +N +N → N +N , where N can be either a neutron or a proton, can be expected to be

more important. For energy exchange, the latter absorption process will be more relevant and is shown

in Fig. 11. Its rate is given by [5]

λ−1
Brems(ω1) = 2π G2

F nB

∫
d3~k2

(2π)3
(3− cos θ)f2SA(ω1 + ω2) , (19)

where ~k2 is the momentum of the neutrino, ω1 and ω2 are the energies of the anti-neutrino and neutrino,

respectively, θ is the scattering angle, and f2 is the occupation number of the neutrinos. We use the axial
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FIG. 10. (Color online) Effect of the in-medium neutron (proton) dispersion relation on the differential cross-

section for (anti-)neutrino absorption as a function of the outgoing lepton energy Ee. We consider an incoming

neutrino energy Eν = 24 MeV and matter in beta equilibrium at a density nB = 0.02 fm−3 and temperature

T = 8 MeV, including weak magnetism and leading |~p|/M corrections. The chiral NN interaction and pseudo-

potential are both used in the HF approximation. This provides a range for the theoretical uncertainty due to

the many-body treatment, which can be improved by performing higher-order calculations.

response function SA(ω) from Ref. [11] and assume a Maxwell-Boltzmann distribution at temperature

T for the neutrinos. The inverse mean free path due to the neutrino-pair absorption obtained using the

chiral NN potential is shown in red, and results obtained using the full T -matrix potential (corresponding

to our pseudo-potential for the self-energy calculations) is shown in blue using consistently the electron

fractions and effective masses given in Table I.
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FIG. 11. (Color online) Effect of the in-medium neutron (proton) dispersion relation on the (anti-)neutrino

absorption mean free path in beta-equilibrated matter at density nB = 0.02 fm−3 and temperature T = 8 MeV.

The chiral NN potential and pseudo-potential are both used in HF approximation. This provides a conservative

range for the theoretical uncertainty due to the many-body treatment, which can be improved by performing

higher-order calculations. Also shown is the mean free path for the neutrino-pair absorption process.

V. CONCLUSIONS

In this study we have presented a calculation of the HF self-energy of protons and neutrons in the hot

neutron-rich matter encountered in the neutrino-sphere of supernovae and used them to calculate the

charged-current neutrino and anti-neutrino mean free paths. The mean free paths were found to be quite

sensitive to the nucleon dispersion relation, especially to the difference in the energy shifts experienced

by neutrons and protons in hot and relatively low-density neutron-rich matter. The difference between

the results obtained using a chiral N3LO potential and the pseudo-potential is large and indicates that

non-perturbative effects in the particle-particle channel, which are approximately included in the pseudo-

potential, are important. A desirable feature of the HF pseudo-potential approach is that it reproduces
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the predictions of the virial calculation for the energy shifts which are exact in the low-density, high-

temperature limit. However, the reader should not assume the results obtained by the pseudo-potential

at the densities and temperatures comparable to the ones displayed in Figs. 10 and 11 to be the definitive

answer. Instead, it would be prudent to treat the entire region between the HF chiral potential and

pseudo-potential as a theoretical band, which needs to be further improved by higher-order many-body

calculations. The uncertainty associated with not including the deuteron bound state contribution

consistently in the HF pseudo-potential approach was studied by altering the low-momentum 3S1 phase

shift to mimic the behavior expected from a low-energy resonance. This error was found to be relatively

small in comparison at the relevant temperatures and densities. Although the RMF model predictions

are roughly consistent with the theoretical band it should be noted that they are constrained by fitting

to the properties of nuclei, which are largely determined by the behavior at nuclear saturation density

and small isospin asymmetry and zero temperature. The error introduced by their extrapolation to low

density, large isospin asymmetry and high temperature can be large.

At temperatures lower than those considered in the present work, the importance of Pauli blocking

precludes the use of the pseudo-potential, and an alternative strategy would be to employ an in-medium

T -matrix as an effective interaction. This framework treats on equal footing quasiparticle energy shifts

from the nuclear mean field and Pauli blocking in intermediate states, both of which tend to suppress

the role of the strongly attractive components of the nuclear interaction. Consequently, we can expect

that the large energy shifts reported in the present study should be reduced in this regime, while at

higher temperatures the in-medium T -matrix and pseudo-potential results could be expected to match

quantitatively.

The larger difference between neutrino and anti-neutrino rates compared to the predictions of the

RMF models will have an impact on supernova nucleosynthesis. To quantitatively gauge its importance

it will be necessary to incorporate these new rates into supernova and PNS simulations and predict the

resulting neutrino spectra. Qualitatively, we can anticipate a larger δε that would favor smaller Ye in the

neutrino-driven wind compared to the predictions in Ref. [23] based on the RMF models. Simulations

that incorporate our current results will be able to ascertain if the change in δε is large enough to

favor conditions for a robust r-process in the standard supernova neutrino-driven wind scenario. In

addition, our calculations of neutrino cross sections were performed in the impulse approximation. Here

we neglect vertex corrections (screening) and finite lifetime effects (damping), which arise because the
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weak interaction amplitude involving different nucleons in the system will interfere. These effects were

studied within the purview of the RMF model in Ref. [23] and were found not to have as large of an

effect as the corrections due to energy shifts because the typical energy and momentum transfer were

large compared to characteristic scales associated with temporal and spatial correlations, respectively.

Nonetheless, these effects, which are known to be important in the study of neutral-current reactions,

warrant further investigation. They can be systematically studied using chiral EFT interactions within

self-consistent Green’s functions where both particle-particle and particle-hole diagrams in the response

function are partially re-summed. At the high densities and temperatures chosen for this study, alpha

particles and light clusters are disfavored. However, for a better understanding of a wider range of

ambient conditions encountered in the neutrino-sphere, the role of these microphysical effects will need

to be investigated and incorporated in proto-neutron star simulations. We plan to explore these topics

in future work.
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[47] N. K. Glendenning and S. A. Moszkowski, Phys. Rev. Lett. 67, 2414 (1991).

[48] F. J. Fattoyev, C. J. Horowitz, J. Piekarewicz, and G. Shen, Phys. Rev. C 82, 055803 (2010).

[49] G. Mart́ınez-Pinedo, T. Fischer, and L. Huther, J. Phys. G. 41, 044008 (2014).

[50] C. J. Horowitz, Phys. Rev. D 65, 043001 (2002).

[51] C. J. Horowitz and G. Li, Phys. Rev. D 61, 063002 (2000).

24

http://dx.doi.org/ 10.1103/PhysRevLett.111.032501
http://dx.doi.org/ 10.1103/PhysRevLett.111.032501
http://dx.doi.org/10.1103/PhysRevC.88.024614
http://dx.doi.org/10.1103/PhysRevC.88.025802
http://nn-online.org
http://dx.doi.org/10.1016/j.nuclphysa.2006.05.009
http://dx.doi.org/10.1016/j.physletb.2006.05.055
http://dx.doi.org/10.1103/PhysRevC.79.014002
http://dx.doi.org/ 10.1103/PhysRevC.81.015803
http://dx.doi.org/10.1103/PhysRevC.84.055804
http://dx.doi.org/10.1103/PhysRevLett.67.2414
http://dx.doi.org/10.1103/PhysRevC.82.055803
http://dx.doi.org/10.1103/PhysRevD.65.043001


Appendix A: Deuteron contribution and the modified pseudo-potential

To assess the importance of the deuteron pole in neutron-proton scattering we study its contribution

in the second-order virial calculation. Since the contributions to the second virial coefficient from the

bound state denoted by bd and the scattering continuum denoted by bs can be calculated separately [39],

the ratio

r =
bs

bs + bd
, (A1)

is a measure of the relative importance of the scattering continuum. In the virial calculation r is

independent of density and increases rapidly with temperature as shown in Fig. 12. At the physical

value of the deuteron binding energy the contribution from the scattering continuum is about 70% at

T = 8 MeV. Medium effects mentioned earlier reduce the deuteron binding energy, and although such

changes to Bd are beyond the scope of the virial expansion, it is still useful to explore how the ratio r

changes for smaller values of Bd.
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FIG. 12. (Color online) The relative importance of the scattering continuum contribution to the second virial

coefficient (normalized with respect to the sum of bound- and scattering-state contributions). Results assuming

a free-space deuteron binding energy and a medium-reduced binding energy of Bd = 1.0 MeV are shown.

The red-dashed curve in Fig. 12 was obtained by setting Bd = 1 MeV and shows how dramatically

the deuteron contribution decreases with Bd. Model calculations of the reduction in the deuteron

binding energy predict Bd < 1 MeV for nB > 0.005 fm−3 for typical temperatures in the range T =
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5− 10 MeV [45].

The neutron-proton scattering phase shift at low energies in the 3S1 channel is dominated by the

deuteron bound state and by Levinson’s theorem is set equal to π at zero momentum. This complicates

the definition of the pseudo-potential that is to be used in the Born approximation since the potential

constructed does not explicitly include these negative energy states. This in principle restricts the use

of the pseudo-potential to large temperatures where we expect the deuteron abundances to be small.

To assess the importance of the low-momentum behavior of the 3S1 phase shifts we have modified them

by hand. The modified potential mimics the low-momentum behavior expected for a resonance close to

zero energy and asymptotically matches the original values of the 3S1 phase shift at high momenta. We

show both the original and modified versions of the 3S1 phase shifts in Fig. 13.
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FIG. 13. (Color online) 3S1 phase shift as a function of laboratory energy Tlab from the Nijmegen partial-wave

analysis (PWA) [38] as well as those used in the modified pseudo-potential.

Appendix B: Transition rate including weak magnetism for non-relativistic nucleons

Here we derive expressions for the transition rate Wfi including the contribution from weak mag-

netism. We shall consider thermal neutrinos with energy Eν ' T and calculate Wfi to linear order

in T/M where M in the the average nucleon mass. The expressions are derived for neutrinos, and
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analogous expression for anti-neutrinos are obtained by the substitution {gV , gM} → {−gV ,−gM}.
The transition rate

Wfi =
〈|M|2〉

24E1E2E3E4

, (B1)

where

〈|M|2〉 =
1

8
G2
F Tr

[
γµ(1− γ5) /p1

γν(1− γ5) /p3

]
× Tr

{[
γµ(gV − gAγ5) + igM

σµαq
α

M

]
(/p2

+M2)
[
γν(gV − gAγ5)− igM

σναq
α

M

]
(/p4

+M4)

}
≡ 8 G2

F (〈|M|2〉V A + 〈|M|2〉V AM + 〈|M|2〉M) .

(B2)

is the square of the matrix element summed over final-state spins and averaged over initial-state spins

for the interaction in Eq. (17). Here, the vector-axial part is given by

〈|M|2〉V A = (gA − gV )2 (p1 · p4)(p2 · p3) + (gA + gV )2 (p1 · p2)(p3 · p4) + (g2
A − g2

V ) M2M4 (p1 · p3) ,

(B3)

the mixed term is given by

〈|M|2〉V AM = −gM
M

{
(p1 · q)

[
(2gA − gV )M4(p2 · p3) + (2gA + gV )M2(p3 · p4)

]
+ (p4 · q)gVM2(p1 · p3)

− (p2 · q)gVM4(p1 · p3)− (p3 · q)
[

2(gA + gV )M4(p1 · p2)− (2gA − gV )M2(p1 · p4)
] }

,

(B4)

and the contribution due to weak magnetism is given by

〈|M|2〉M =
g2
M

M2

{
(p1 · q)

[
(p2 · q)(p3 · p4)− (M2M4 + p2 · p4)(p3 · q) + (p2 · p3)(p4 · q)

]
+ (p3 · q)

[
(p1 · p4)(p2 · q) + (p1 · p2)(p4 · q)

]
− q2

[
(p1 · p3)(M2M4 − p2 · p4) + 2

[
(p1 · p4)(p2 · p3) + (p1 · p2)(p3 · p4)

] ]}
.

(B5)

Setting qµ = pµ1 − pµ3 , we find that these results confirm equations (11) and (12) in Ref. [51].

At this stage we have only neglected the electron and neutrino masses because they are small compared
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to the thermal energies of the lepton E1 ' |~p1| ∼ T and E3 ' |~p3| ∼ T . In addition, for typical ambient

conditions we consider here, nucleons are non-relativistic and non-degenerate thus |~p2| ∼
√
MT and

|~p4| ∼
√
MT . Since the nucleon mass is large compared to the temperature it is useful to define the

following expansion parameters {χ1, χ3, χ0}
{v2, v4, χq}

 ≡
 {E1/M, E3/M, q0/M}
{|~p2|/M, |~p4|/M, |~q|/M}

 ∼
 T/M√

T/M

 (B6)

where elements in the first row are parametrical of order T/M and elements in the second row are order√
T/M . Using energy-momentum conservation, pµ4 = pµ1 + pµ2 − pµ3 and expanding to linear order in

T/M we find that

Wfi ≈
G2
F

2
×
{[
g2
V (1 + η13) + g2

A(3− η13)
]

O(1)

+
[
2 gMgAχq (η1q − η3q)− (g2

A + g2
V )v2(η12 + η23)

]
O(

√
T

M
)

+
[1

2

[
(gA + gV )2χ1 − (gA − gV )2χ3

]
(1− η13) + (g2

A + g2
V )v2

2η12η23

+ 2 gMgAv2χq (η12η3q − η1qη23) + g2
Mχq

2(1− η1qη3q)
]}

O(
T

M
)

where the first line contains terms of O(1), the second line contain terms of O(
√
T/M) and the third

and fourth lines contains terms of O(T/M). The angles between three vectors ~pi and ~pj is denoted by

ηij and the angle between ~pi and ~q is denoted by ηiq.
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