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Determining the nonperturbative ss̄ content of the nucleon has attracted considerable interest
and been the subject of numerous experimental searches. These measurements used a variety of
reactions and place important limits on the vector form factors observed in parity-violating PV
elastic scattering and the parton distributions determined by deep inelastic scattering, DIS. In
spite of this progress, attempts to relate information obtained from elastic and DIS experiments
have been sparse. To ameliorate this situation, we develop an interpolating model using light-
front wave functions capable of computing both DIS and elastic observables. This framework is
used to show that existing knowledge of DIS places significant restrictions on our wave function.
The result is that the predicted effects of nucleon strangeness on elastic observables are much
smaller than those tolerated by direct fits to PV elastic scattering data alone. Using our model,
we find −0.024 ≤ µs ≤ 0.035, and −0.137 ≤ ρDs ≤ 0.081 for the strange contributions to the
nucleon magnetic moment and charge radius. The model we develop also independently predicts
the nucleon’s strange spin content ∆s and scalar density 〈N |s̄s|N〉, and for these we find agreement
with previous determinations.
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I. INTRODUCTION

A precise understanding of the nonperturbative structure of the nucleon remains an elusive goal half a century since
the advent of the quark model [1, 2]. Following the revelation of the “proton spin crisis” by the EMC collaboration
[3], the desire to map the internal landscape of the nucleon has driven many experimental efforts to discover the origin
of its flavor and spin content.
In this respect, parity-violating (PV) lepton-nucleon experiments have shed considerable light by merit of their

sensitivity to the flavor structure of various quark currents within the struck nucleon, with elastic and deeply in-
elastic scattering (DIS) measurements providing complementary information. For the former, reactions of the type
eN → e′N ′ are capable of discriminating the quark-level contributions to the charge, magnetization, and axial struc-
ture of the nucleon, whereas the DIS mechanism eN → e′X enables the extraction of the probabilistic quark or parton
distribution functions (PDFs).
The properties of QCD suggest that matrix elements of the nucleon involving strange quarks should in general be

non-zero, and as such must be associated with some nonperturbative “strangeness” content of the nucleon which would
have observable consequences for elastic form factors [4]. This recognition spurred multiple efforts (See Ref. [5] for a
recent review) to detect the signatures for nucleon strangeness in PV elastic measurements at SAMPLE [6], HAPPEX
I – III [7–9], Mainz [10, 11], and G0 [12, 13], and remains a relevant consideration in experimental searches for BSM
physics [14] and phenomena such as partonic charge symmetry breaking [15, 16]. On the other hand, a number of
theoretical studies, e.g., [17–21], have proceeded in tandem with these experimental developments, including several
global analyses of the elastic data [22–24].
It is also true that continued improvements in the technology of QCD global analyses of high energy data have

inspired efforts to constrain the implications of nucleon strangeness for DIS PDFs such as the strange-antistrange
momentum asymmetry [25]

xS− =

∫ 1

0

dx x[s(x) − s̄(x)] , (1)

in which s(x) and s̄(x) are PDFs for strange and antistrange quarks, respectively, carrying a fraction x of the
nucleon’s momentum. Nonperturbative contributions to the strange PDFs have also been considered by various
theoretical models [26–28], which are comparatively well-constrained by global analyses. Part of the interest in higher
energy QCD processes extends to recent LHC measurements of neutral- and charge-current mechanisms [29] that are
potentially sensitive to the quark density of the nucleon, though these are typically restricted to small x. At more
intermediate kinematics, recent efforts to extract the strange PDFs from the semi-inclusive production of K± [30]
have also been made, though such undertakings present the added difficulty of model dependence associated with the
required nonperturbative fragmentation functions.
Current data sensitive to nucleon strangeness therefore come from both elastic scattering and DIS, and both

channels must shed light on the presumed nonperturbative dynamics that underlie the generation of strangeness at
the momentum scale of the nucleon. This being the case, the physics related to each process should constrain or serve
as input to models that attempt a consistent description of the nucleon’s strange content.
Fundamentally, quantization on the light-front has the favorable property that eigenstates of front-form hamiltonians

correspond to the physical states of the hadronic spectrum — a fact which permits the formulation of universal,
Poincaré-invariant wave functions whose dynamics are determined by interactions. In our case, we may leverage this
feature in order to specify wave functions that provide the momentum-dependent coupling of the proton to higher
Fock states involving ss̄. With such a wave function in hand, one is then specially positioned to compute strange
quark effects in both elastic and DIS observables using a common framework, as we show below. Moreover, as the
light-cone wave functions we develop are specifically adapted to the strange sector, the results we obtain are consistent
by construction with parity-conserving data which concern the results of similar models in the light sector.
While there have been few attempts to unite the physics of elastic and DIS strangeness, one prominent exception

can be found in the analyses of Refs. [31, 32]. These made use of generalized parton distributions (GPDs) to construct
a relation between the strangeness PDFs and form factors, but required additional input from lattice QCD and vector
meson dominance assumptions. With the goal of using an approach with as few model assumptions as possible, we
proceed using the Fock expansion of the nucleon into states explicitly involving strange and antistrange quarks via
light-front wave functions (LFWFs) as described above.
We organize our paper as follows: in Sec. II we present the basic details of our light-front model and use it to

find expressions for the strangeness contributions to the vector form factors of the nucleon. In Sec. III, we use the
light-front wave functions of Sec. II to determine expressions for the PDFs s(x) and s̄(x), and observe that existing
information from QCD global analyses of these objects impose constraints upon the parameters of the light-front wave
functions. In Secs. IV–VI, we consider the implications of these DIS constraints for elastic observables, the proton’s
strange spin content ∆s, and scalar density 〈N |s̄s|N〉, respectively, and conclude in Sec. VII.
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II. LIGHT-FRONT FORMALISM

To evaluate the strangeness contributions to the nucleon Sachs form factors, we base our formalism upon a 2-body
Fock state expansion of the nucleon wave function. The light-front technology we employ in the following calculations
has already seen extensive use in previous computations related to composite structure in few-body systems. In
hadrons, LFWFs provide a successful description for both the pionic [33, 34] and quark [33, 35, 36] content as well as
their contributions to electromagnetic and long-range structure. Somewhat further afield from our present purposes,
the generality of the LFWF framework has also facilitated progress in disentangling the extended structure of the
interacting electron [37] and of nuclear bound states [34]. Recently, in Ref. [36] a 2-body quark-diquark decomposition
of the nucleon wave function was used to find the pion cloud-dressed valence quark contributions to the vector form
factors measured in parity-conserving elastic scattering experiments. The resulting ansatz was capable of computing
the bare quark components of the proton form factors as well as modifications due to the coupling of the nucleon to
a cloud of virtual pions. Once constrained by empirical data for F1,2(Q

2), the model was also able to independently
predict the quark spin content of the nucleon (a quantity typically accessed via inclusive polarized DIS), obtaining
∆Σ = ∆u + ∆d = 0.496 in the bare nucleon — of roughly similar scale as the results of DIS global fits. Once pion
cloud effects were included, this became ∆Σπ = 0.365, which agreed closely with NLO analyses of helicity-dependent
PDFs.

Our present computation of nucleon strangeness thus closely mirrors the bare quark calculation of [36], and we
note that the strange quark contributions we obtain represent independent components of the proton’s light cone
wave function, and are in addition to the successful light-sector description just outlined above. In full generality, the
n-particle light-front wave function for an initial-state proton of mass M and 4-momentum Pµ = (P+,P⊥, P

−) [33]
can be expanded as

|Ψλ
P (P

+,P⊥)〉 =
1

16π3

∑

n

n
∏

i=1

∫

dxid
2k⊥i√
xi

16π3 δ

(

1−
n
∑

i=1

xi

)

δ(2)

(

n
∑

i=1

k⊥i

)

× ψλ
n(xi,k⊥i, λi)|n; k+i , xiP⊥ + k⊥i, λi〉 ; (2)

for the 2-body mechanism, physically associated with the process whereby the proton fluctuates into a state consisting
of, e.g., a virtual strange quark and a tetraquark spectator (made up of the usual [uud] valence content of the proton
and virtual s̄, though for generality we leave the formalism independent of the struck quark flavor at this stage). We
select n = 2 and obtain

|Ψλ
P (P

+,P⊥)〉 =
1

16π3

∑

q=s,s̄

∫

dxd2k⊥
√

x(1− x)
ψλ
qλq

(x,k⊥)|q;xP+, xP⊥ + k⊥〉 , (3)

following a trivial integration over dx2, d
2k⊥2, and setting x ..= x1. Note that in Eqs. (2) – (3) λ, λq refer to the helicity

of the initial proton and struck quark, respectively, and as usual the light-front momentum fraction is x = k+/P+ of
the intermediate quark (k) with respect to the parent nucleon (P ). In particular, the object ψλ

(q=s,s̄)λq
represents the

LFWF describing the amplitude for the proton to dissociate into an intermediate state involving a spin-1/2 strange
or antistrange quark and scalar tetraquark spectator. The requirements of the Pauli principle are maintained through
our use of the Fock expansion of Eq. (2), and we also assume that the two 5-quark states corresponding to the struck
quark and antiquark are orthogonal.

Thus, using the standard definition of the electromagnetic current in terms of Dirac/Pauli operators between
nucleonic states

〈P ′, λ′|Jµ
EM |P, λ〉 = ūλ′(P ′)

{

γµF1(Q
2) + i

σµνqν
2M

F2(Q
2)

}

uλ(P ) , (4)

where here and in the following, primed quantities apply to the final state, we can access the elastic form factors
F1,2(Q

2) by computing matrix elements of the µ = + components of the current operators of Eq. (4) in a basis defined
by the appropriate proton helicity combinations. Namely,

F1(Q
2) =

1

2P+
〈P ′, λ′ = +1|J+

EM |P, λ = +1〉 ,

F2(Q
2) =

2M

[q1 + iq2]

1

2P+
〈P ′, λ′ = −1|J+

EM |P, λ = +1〉 , (5)
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where for the states |P, λ〉, we make use of the expressions of Eq. (3). Substituting these, and noting the general
normalization condition

〈n; p′+i ,p′

⊥i, λ
′

i|n; p+i , p⊥i, λi〉 =

n
∏

i=1

16π3p+i δ
(

p′+i − p+i
)

δ(2) (p′

⊥i − p⊥i) δλ′

i
λi

(6)

to determine the quark state overlaps implicit in Eq. (5), one arrives at [36] the quark-specific contributions

F q
1 (Q

2) = eq

∫

dxd2k⊥

16π3

∑

λq

ψ∗λ=+1
qλq

(x,k′

⊥) ψ
λ=+1
qλq

(x,k⊥) ,

F q
2 (Q

2) = eq
2M

[q1 + iq2]

∫

dxd2k⊥

16π3

∑

λq

ψ∗λ=−1
qλq

(x,k′

⊥) ψ
λ=+1
qλq

(x,k⊥) , (7)

where q corresponds to s or s̄ and es/s̄ = ∓1/3. These equations are obtained because single-quark operators such as
those originating in the electromagnetic current of Eq. (4) do not connect the two components of Eq. (3) under the
model assumption that the two 5-quark states are orthogonal.
The spin structure of the dissociation P → q(q̄) ⊕ uudq̄(q), in which the uudq(q̄) tetraquark state is assumed to

possess an overall scalar behavior, is encoded in the LFWFs ψλ
qλq

(x,k⊥). Again following Ref. [36], these can be

specified up to a quark-level wave function, which we denote ψ̃q and constitutes the principal result of the present
analysis:

ψλ=+1
qλq=+1(x,k⊥) =

1√
1− x

(mq

x
+M

)

ψ̃q ,

ψλ=+1
qλq=−1(x,k⊥) =

−1√
1− x

1

x

(

k1 + ik2
)

ψ̃q ,

ψλ=−1
qλq=+1(x,k⊥) =

1√
1− x

1

x

(

k1 − ik2
)

ψ̃q ,

ψλ=−1
qλq=−1(x,k⊥) =

1√
1− x

(mq

x
+M

)

ψ̃q . (8)

Inserting these expressions into Eq. (7) provides the desired formulas for our light-front model of strangeness.
Integrating over the light-front fraction x and k⊥, we are left with a description of the Q2 dependence of F q

1,2(Q
2),

namely,

F q
1 (Q

2) =
eq

16π2

∫

dxdk2
⊥

x2(1− x)

(

k2⊥ + (mq + xM)2 − 1

4
(1 − x)2Q2

)

ψ̃′

q ψ̃q , (9)

F q
2 (Q

2) =
eqM

8π2

∫

dxdk2
⊥

x2

(

mq + xM
)

ψ̃′

q ψ̃q . (10)

To treat these contributions in our framework, we complete our LFWFs for the intermediate production of
(anti)quarks (including strange) by specifying the product ψ̃′

q ψ̃q:

ψ̃′

q ψ̃q =
Nq

Λ4
q

exp(−sq/Λ2
q) ,

ψ̃′

q̄ ψ̃q̄ =
Nq̄

Λ4
q̄

exp(−sq̄/Λ2
q̄) , (11)

in which Λq,q̄ are cutoffs for the momentum integrals of Eqs. (9) – (10), and the factors of Λ−4
q,q̄ are included to

ensure the dimensionlessness of the wave function normalization constants Nq,q̄. Also, we take the Q2-dependent
center-of-mass energy of the quark-spectator system to be

sq =
1

x(1 − x)
[

k2⊥ + (1− x)m2
q + xm2

Sp
+

1

4
(1 − x)2Q2

]

, (12)

where m2
Sp

is the squared mass of the 4-quark scalar spectator, and a similar expression holds for sq̄. For the sake of

the forthcoming numerical analysis, we find it convenient to write mS̄p
= α mSp

, such that the parameter α amounts
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to a measure of the mass-splitting of the spectator states. We thus take the basic expressions of our light-front model
to be

F q
1 (Q

2) =
eqNq

16π2Λ4
q

∫

dxdk2
⊥

x2(1− x)

(

k2⊥ + (mq + xM)2 − 1

4
(1 − x)2Q2

)

exp(−sq/Λ2
q) , (13)

F q
2 (Q

2) =
eqNqM

8π2Λ4
q

∫

dxdk2
⊥

x2

(

mq + xM
)

exp(−sq/Λ2
q) , (14)

while the same expression with q → q̄ provides the description for elastic scattering from antiquarks.
In fact, the more compact expressions of Eqs. (12) – (14) have followed from definitions of the individual initial/final

state wave functions; i.e.,

ψ̃q =

√

Nq

Λ2
q

exp
{

−M2
0q(x,k⊥,q⊥)

/

2Λ2
q

}

,

ψ̃′

q =

√

Nq

Λ2
q

exp
{

−M ′2
0q(x,k⊥,q⊥)

/

2Λ2
q

}

, (15)

where the initial and final state invariant masses can be written as [36]

M2
0q(x,k⊥,q⊥) =

(

k⊥ − 1
2 (1− x)q⊥)

)2
+m2

q

x
+

(

k⊥ − 1
2 (1− x)q⊥)

)2
+m2

Sp

1− x ,

M ′2
0q(x,k⊥,q⊥) =

(

k⊥ + 1
2 (1− x)q⊥)

)2
+m2

q

x
+

(

k⊥ + 1
2 (1− x)q⊥)

)2
+m2

Sp

1− x , (16)

and it is straightforward to show sq = (M2
0q +M ′2

0q)/2, using the fact that q2
⊥
= Q2.

The Gaussian wave function chosen to describe the nucleon-quark-spectator interaction in Eq. (11) is by no means
unique, and other ground-state choices are well-motivated, particularly power-law expressions such as

ψ̃q =

√

Nq/Λ
2
q

(

1 +M2
0q

/

2Λ2
q

)γ , ψ̃′

q =

√

Nq/Λ
2
q

(

1 +M ′2
0q

/

2Λ2
q

)γ , (17)

in which the selection γ = 2 would specify a dipole-like model.
As indicated, Eqs. (13) – (14) also apply to antiquarks, and we therefore always compute the total contribution as

F qq̄
1,2(Q

2) = F q
1,2(Q

2) − F q̄
1,2(Q

2) =⇒

Gqq̄
E (Q2) = F qq̄

1 (Q2)− Q2

4M2
F qq̄
2 (Q2) , Gqq̄

M (Q2) = F qq̄
1 (Q2) + F qq̄

2 (Q2) , (18)

where we have used the standard expressions to construct the familiar Sachs parametrization in the second line, and
we take q = s for the strange components in the remainder of this analysis. The strangeness contributions to the
latter quantities of Eq. (18) are in fact what have typically been extracted in experimental efforts, and there has been
a dedicated drive to measure them at a range of facilities via Rosenbluth-separated electron-nucleon elastic scattering.
In particular, the Sachs form factors of Eq. (18) are defined such that the nucleon’s strange magnetic moment and
charge radius follow from the limits

µs = Gss̄
M (Q2 = 0) ,

ρs = −6 dGss̄
E (Q2)

dQ2

∣

∣

∣

Q2=0
; (19)

we shall consider their behavior as well as Gss̄
E,M (Q2) in Sec. IV after a discussion of the role played by DIS.

III. DEEPLY INELASTIC SCATTERING AND PDFS

We noted in Sec. I that contemporary data weighing on nonperturbative strangeness come from both elastic scat-
tering measurements and DIS, with a pronounced effort currently underway to precisely constrain the strange con-
tributions to electromagnetic properties of the nucleon using the former. We have formulated in Sec. II a consistent
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FIG. 1. (Color online). (a) We plot predictions for s(x) [solid curves] and s̄(x) [dashed lines] using the model wave functions

G1 (blue) and G2 (green) defined by the numerical values of Table I in Eq. (21). (b) The integrands of the sum rule
∫ 1

0
dx[s(x)−

s̄(x)] = 0 (solid) and of xS− as given by Eq. (1). In this case, results computed with G1 and G2 are given by black and red
curves, respectively.

ansatz that is capable of computing both observables; with this, we aim to understand the implications posed for
elastic physics by the generally tighter constraints that exist on DIS data. It is important to note that the analysis
which follows may be framed equally in the opposite direction: that is, the form factor model of Sec. II may be fitted
to the elastic data described in Sec. I by taking the stated ranges for µs and ρs found in, e.g., [22–24] as constraints.
The result is a calculated error range for DIS quantities such as Eq. (1) that substantially outstrips findings based
upon more direct fits [25]. For this reason, we elect to determine the form of the DIS PDFs specified by our light-front
model, constrain these to information from global analyses, and compare the resulting prediction to elastic form factor
measurements.
As stated, an essential element of the current framework is the total magnitude of the strangeness wave function

— calculable from the LFWFs given in Eq. (11); this may be taken from the quantity

Ps
..= −3 F s

1 (Q
2 = 0) ≡ 3 F s̄

1 (Q
2 = 0) , (20)

which amounts to the total multiplicity of strange quarks in the nucleon, and may serve as a constraint in applying
the preceding formalism to predictions of Gss̄

E,M . The factors of ∓3 are necessary due to the fact that Eq. (20) is

directly related (as we show) to the probabilistic quark-level PDFs, which do not involve explicit factors of the struck
quark charge, unlike the vector form factors of Eq. (7). Otherwise, F s

1 (Q
2 = 0) may be evaluated using the definition

given in Eq. (13).
Actually, the framework embodied by Eq. (13) lends itself to the computation of quark distributions for strangeness

in the nucleon. We use the wave function model of the previous section to compute the strangeness distributions as

s(x) =
Ns

16π2Λ4
s

∫

dk2
⊥

x2(1− x)
(

k2⊥ + (ms + xM)2
)

exp(−ss/Λ2
s) ,

s̄(x) =
Ns̄

16π2Λ4
s̄

∫

dk2
⊥

x2(1− x)
(

k2⊥ + (ms̄ + xM)2
)

exp(−ss̄/Λ2
s̄) , (21)

and the invariant mass ss of the system involving the strange quark is given by Eq. (12). Hence, the probability
distributions s(x), s̄(x) go like the x-unintegrated form factor F s,s̄

1 (Q2 = 0). We note the similarity of the spin-
structure evident in Eq. (21) to the quark-diquark distributions derived in previous models of other flavor sectors
[38, 39].
Using the expressions of Eq. (21), we can compute the strangeness asymmetry defined in Eq. (1), as well as the

related total momentum carried by the strange sea,

xS+ =

∫ 1

0

dx x[s(x) + s̄(x)] , (22)

both of which have been the subject of DIS global analyses [25]. As an illustrative example, the CTEQ collaboration
has estimated constraints to both xS− and xS+ using the world’s data (at the time of CTEQ6.5S) for various high
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energy QCD processes [40]. Doing so, they obtained the limits

0.018 ≤ xS+ ≤ 0.040 , −0.001 ≤ xS− ≤ 0.005 , (23)

which must serve as an important input upon any model based on Eqs. (13) – (14). Although various other deter-
minations of xS± exist [25], the uncertainties about xS± ∼ 0 are typically comparable to the CTEQ6.5S values of
Eq. (23), and we proceed with these without loss of generality.

TABLE I. Parameter values yielding the greatest spread in µs, ρs consistent with the CTEQ6.5S limits of Eq. (23). Masses
and cutoffs are given in units of [GeV], while Ns,s̄ are strictly dimensionless. Parameter combinations labeled G1, G2 make
use of the Gaussian wave functions of Eq. (11), while P1, P2 follow from the power law expression in Eq. (17) with γ = 2.

model xS+ xS− Ns Ns̄ Λs Λs̄ mSp α Ps µs ρDs

G1 0.040 0.005 46.54 1143. 4.75 1.25 3.0 0.7 8.05% 0.035 −0.137

G2 0.040 −0.001 56.44 20.22 1.25 8.25 1.18 1.3 6.16% −0.024 0.081

P1 0.040 0.005 40.6 507. 8.25 1.25 1.96 1.3 7.13% 0.016 −0.038

P2 0.040 −0.001 120. 35.5 1.25 3.0 1.44 1.3 6.72% −0.018 0.068

We therefore incorporate these DIS constraints upon xS± by scanning the available parameter space of the LFWF
model outlined in Sec. II, admitting only those input combinations that are consistent with the limits given in
Eq. (23). Both formal constraints and model assumptions reduce the possible eight free parameters of our framework
— ms,s̄, Ns,s̄, Λs,s̄, mSp

, and α — to a set of five independent model inputs. In the present analysis, we assume a
fixed constituent mass for the struck quark, such that for strange, ms,s̄ = 0.4 GeV. Fundamental properties of the
form factors themselves enable us to make an additional reduction. Due to the requirement of zero net strangeness

in the nucleon, Gss̄
E (Q2 = 0) ≡ 0 [essentially equivalent to the DIS condition

∫ 1

0 dx[s(x) − s̄(x)] = 0], and we may
then determine a simple relation between Ns ∼ Ns̄, the latter of which we tabulate together with the model input
parameters in Table I. The remaining model space is scanned by assigning plausible ranges to input parameters and
sampling the allowed values within the resulting interval according to a defined frequency (typically, 10 points). In
general, we restrict 1.25 ≤ Λs,s̄ ≤ 10 GeV, ms ≤ mSp

≤ 3 GeV, and α = 1 ± 50%. We point out also that the lower
bounds Λs,s̄ are chosen to avoid numerical instabilities that can occur if the wave function cutoff scales are allowed
to venture too far below the nucleon mass.
We proceed by using the Gaussian formulation of Eqs. (11) – (14) and finding combinations of the CTEQ6.5S

constraints of Eq. (23) responsible for the widest spread in the elastic observables µs and ρs introduced in Eq. (19).
Then, if we take the Gaussian calculation constrained to satisfy the combination of extrema [xS+ = 0.040, xS− =
0.005] (G1) and [xS+ = 0.040, xS− = −0.001] (G2) as distinct models, we obtain the family of parameter values
listed in Table I after running scans over the input parameter ranges just described with a 50 point sampling of
1 ≤ Ns ≤ 100. Using these in the expressions of Eq. (21), we plot in the left panel of Fig. 1 examples for the behavior
of s(x) [solid curves] and s̄(x) [dashed curves] for fits corresponding to G1 [in blue], and G2 [in green]. Moreover, the

integrands of the moment defined by Eq. (1), as well as for the first moment
∫ 1

0 dx[s(x) − s̄(x)] = 0, are plotted in
the right hand side of Fig. 1, with the latter given by solid and the former by dot-dashed curves, respectively. In this
case, the result of using the G1 wave functions are given in black, whereas the calculation with the G2 wave function
corresponds to the red lines, and the expected behavior that the first moment of s(x) − s̄(x) vanishes is recovered.
While the difference in shapes among the quark distributions of Fig. 1 is striking, it should be kept in mind that these
represent limits for the parameter space of the LFWFs and hence are extremal choices yielding the greatest spread
in µs, ρs consistent with the DIS ranges of Eq. (23).
We note also that the values of xS± of Eq. (23) reported by CTEQ6.5S hold at the charm threshold Q2 = 1.69

GeV2 ∼ m2
c , which represents a momentum scale slightly larger than would be natural to ascribe the nonperturbative

strange model prediction of Eqs. (21). As such, if we instead applied the model distributions of Eqs. (21) to a
somewhat lower initial scale Q2

0 < m2
c , QCD evolution would alter the magnitudes of the moments in xS± as one

moves to higher Q2. For example, to leading order (LO) in αs, one has for the nth moments Mn
NS(Q

2) of non-singlet
quark density combinations like xS− [41]

Mn
NS(Q

2) =

(

αs(Q
2)

αs(Q2
0)

)γ
(LO),n
NS

/

2β0

·Mn
NS(Q

2
0) =⇒ Mn

NS(Q
2) ≈

(

αs(Q
2)

αs(Q2
0)

)0.41

·Mn
NS(Q

2
0) , (24)

where the second relation follows from assuming nf = 3 − 4 active flavors, and a more complicated behavior applies
to singlet quantities like xS+. Thus, if one uses successively smaller starting scales Q2

0, larger and larger corrections
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FIG. 2. (Color online). A comparison of the systematic LFWF uncertainty between the Gaussian models G1 and G2 against
Rosenbluth-separated measurements for Gss̄

E (Q2) (a) and Gss̄
M (Q2) (b). The inner bands represent the constraints due to

CTEQ6.5S, while the outer bands correspond to ad hoc ranges for xS± produced by doubling the ranges of Eq. (23) so as to
be more comparable to the experimental uncertainties of the elastic data.

to xS− due to evolution are possible, but the reliability of a LO computation becomes more questionable. Either way,
the result of Eq. (24) implies that the ranges for xS− of Eq. (23) at Q2 = m2

c would be a slight underestimate of the
corresponding range at a lower scale Q2

0 ∼ 1 GeV2, but the systematic effect in our subsequent predictions should be
small.

IV. ELASTIC SCATTERING AND STRANGE FORM FACTORS

Having constrained our Gaussian LFWF model according to the DIS global analyses, we may confront our results
with some of the more recent data for Gss̄

E,M (Q2) — especially newer values from G0 and PVA4, as shown in Fig. 2.
Aside from precise measurements of the Sachs form factors, great interest attaches also to the parameters µs and ρs

defined in Eq. (19), which have in fact already been constrained to some extent by previous analyses [23, 24], though
the uncertainties of fits to elastic data remain fairly large. These fits generically proceed by ascribing a simple Q2

dependence to the the vector and axial form factors, and leaving ρs and µs, as well as vector and axial masses as free
parameters to be constrained by data. It is crucial to note, however, that the definition of ρs specified by Eq. (19) is
not universal. In fact, the analysis contained in Ref. [42] explicitly accounts for the treatment of ρs as it appears in
[23, 24], with the strangeness radius defined via

ρDs
..=

dGss̄
E

dτ

∣

∣

∣

τ=0
, τ ..= Q2

/

4M2 , (25)

from which we conclude the relation between the definition of ρs according to Eq. (19) and that of the recent elastic
global analyses [23, 24] to be

ρs ≡ −
3

2M2
ρDs . (26)

For the sake of comparison, we shall refer to ρDs (as we have reported in Table I). On the other hand, the dimensionless
‘magneton’ units of µs are generally standard across former calculations, and similarly match what we use here.
The LFWFs that gave rise to the quark distributions plotted in Fig. 1 may be used to compute Gss̄

E,M (Q2) using the

exclusive formalism built in Sec. II. In Fig. 2 we compare our calculated Gss̄
E,M (Q2) with the separated data obtained

by the G0 and Mainz collaborations; as explained, the plotted bands follow from scanning the five-dimensional
parameter space spanned by Ns, Λs/s̄, mSp

, and α and selecting those combinations that yield wave functions

sufficiently near the required values of xS± (in this case, within ∼ 1%). Using wave functions computed with the
parameter combinations labeled G1, G2 in Table I then generates the narrow inner bands plotted in Fig. 2, with the
experimental uncertainties for the Rosenbluth-separated Gss̄

E,M (Q2) far outstripping the more stringent constraints
corresponding to the CTEQ6.5S analysis of the DIS distributions. It must be pointed out that this behavior occurs
systematically, and does not depend qualitatively upon the specific wave function used in Eq. (11); for example,
the same essential procedure but with the dipole expressions of Eq. (17) [choosing γ = 2] and 5 point samplings of
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FIG. 3. (Color online). An extension of the curves evaluated in Fig. 2 to the quantity Gss̄
E (Q2) + ηGss̄

M (Q2) determined at
forward kinematics. The colored bands about Gss̄

E (Q2) + ηGss̄
M (Q2) are as described for Fig. 2.

1 < Ns < 200 as well as the previously mentioned parameter ranges leads to a similar conclusion: the tight constraints
to xS± are such that any reasonable LFWF that generates consistent strangeness PDFs will predict values of µs, ρs
that lie well within the reported errors of the elastic data plotted in Fig. 2. We summarize our numerical results with
this scheme in the latter rows “P1, P2” of Table I, but otherwise continue the remainder of the analysis with Eq. (11).
One might ask what level for xS± is required for the width of the systematic model bands of Fig. 2 to begin to

approximate the current experimental precision for Gss̄
E,M . This information is represented by the somewhat broader

outer bands plotted in the same figure, which result from a similar calculation using ranges for xS± that we increase
by a factor of 2. Namely, the broad, outer bands of Figs. 2 – 3 follow from constraining scans to

xS+ = 0.080 (±1%), −0.002 ≤ xS− ≤ 0.010 , (27)

i.e., a total strange momentum enhanced by a factor of 2 to xS+ = 0.080, corresponding to a strange probability of
∼ 15%, and within an error about xS− = 0 that we have also broadened by a factor of 2 with respect to the ranges
of Eq. (23). That is, the simple result of this ad hoc increase to the limits for xS± is a doubling of the predictions for
Gss̄

E,M relative to the G1, G2 calculations using the parameters given in Table I.

The results of Fig. 2 may also be rendered in the combination measured by forward elastic experiments Gss̄
E (Q2) +

ηGss̄
M (Q2) using a trivial description of the Q2 dependence of η(Q2) ∼ 0.94 · Q2, which is defined as the ratio of

electromagnetic form factors η = τGγ
M/ǫGγ

E , with τ given in Eq. (25) and ǫ a kinematical parameter dependent upon
the angle of the scattered electron. This is shown explicitly in Fig. 3 against forward form factor data obtained by
G0 (as well as LVA4, and HAPPEX I–III). As with Fig. 2, the Gaussian models G1, G2 deviate from zero by margins
that are generally well-exceeded by the uncertainties of the existing data.
We also compute the total strangeness probability according to Eq. (20), finding Ps ∼ 6− 8% with the models G1,

G2 across the range determined by the CTEQ6.5S limits to xS±. On the other hand, the artificially enhanced bands
intended to rise onto the elastic error bars correspond to a still larger probability Ps ∼ 15%, as mentioned. That
light-front models associated with strangeness probabilities of these magnitudes predict such small effects for Gss̄

E,M

is illustrative of the strength of the DIS constraints of Eq. (23).
Lastly, for the strangeness parameters µs and ρDs given according to the conventions of Eq. (25), we find the range

tolerated by the DIS limits for xS± to be significantly reduced relative to the values obtained from global fits to the
existing elastic data:

− 0.024 ≤ µs ≤ 0.035 , −0.137 ≤ ρDs ≤ 0.081 . (28)

We compare these values to the much larger ranges allowed by the recent fits of Ref. [24] in Table II. Also, these values
are considerably smaller than the ranges one might determine from direct fits of the LFWF framework of Sec. II to
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the experimental data shown in Figs. 2 – 3, further underlining the force of the DIS limits beyond the precision of
elastic measurements and urging improvements to the latter from future experiments.

TABLE II. We compare values of µs, ρ
D
s obtained by a recent global analysis of elastic scattering data [24] as well as independent

results for ∆s and 〈N |s̄s|N〉 with the results of our calculation using the Gaussian LFWFs G1, G2 constrained to be consistent
with CTEQ6.5S ranges for xS± of Eq. (23).

outside results this analysis

µs range −0.52 ≤ µs ≤ 0 [24] −0.024 ≤ µs ≤ 0.035

ρDs range 0.34 ≤ ρDs ≤ 1.5 [24] −0.137 ≤ ρDs ≤ 0.081

∆s −0.13 ≤ ∆s ≤ −0.01 [44] −0.041 ≤ ∆s ≤ −0.039

〈s̄s〉 〈s̄s〉 ∼ 0.4 [45] 0.85 ≤ 〈s̄s〉 ≤ 1.36

V. AXIAL FORM FACTOR AND STRANGE SPIN

The ‘spin crisis’ mentioned in Sec. I and subsequent attempts to understand the constituent make-up of the nucleon’s
intrinsic angular momentum has generated sustained interest in form factors of weak axial currents [43], and the
associated helicity-dependent quark densities ∆q. To extract the axial form factor GZ

A(Q
2), one in general requires

matrix elements of the weak neutral current Jµ
Z :

〈P ′, S′|Jµ
Z |P, S〉 = ūN (P ′, S′)

(

γµFZ
1 (Q2) + i

σµν

2M
qνF

Z
2 (Q2) + γµγ5G

Z
A(Q

2)

)

uN (P, S) , (29)

in which we shall take the light-cone components µ = + as with the electromagnetic calculation of Sec. II; the axial
form factor and helicity PDFs ∆q therefore depend upon matrix elements of the γµγ5 operator.
To compute the axial form factor, we evaluate

GZ
A(Q

2) =
1

4P+

(

〈P ′, λ = +|J+
Z |P, λ = +〉 − 〈P ′, λ = −|J+

Z |P, λ = −〉
)

. (30)

That this quantity is sensitive to quark spin polarization follows from the oddness of the operator γ+γ5 when evaluated
between states of opposing helicity; hence, when summed over quark helicities, Eq. (30) is proportional to the difference
between matrix elements of quarks with spins aligned and anti-aligned relative to that of the parent nucleon. We
therefore use the LFWFs of Eq. (3) and obtain

Gs
A(Q

2) =
1

2

∫

dxd2k⊥

16π3

∑

λs=±1

(δλs,+1 − δλs,−1)
{

ψ∗λ=+1
sλs

(x,k′

⊥) ψ
λ=+1
sλs

(x,k⊥) − ψ∗λ=−1
sλs

(x,k′

⊥) ψ
λ=−1
sλs

(x,k⊥)
}

,

(31)
which is understood to correspond to the axial coupling of the weak neutral current to nucleon strangeness.
Thus, after summing the expression in Eq. (31) for both s and s̄, and using the helicity-dependent wave functions

of Eq. (8), we get the strange-sector contribution to the axial form factor,

Gss̄
A (Q2) =

Ns

16π3Λ4
s

∫

dxd2k⊥

x2(1− x)
(

− k2⊥ + (ms + xM)2 +
1

4
(1− x)2Q2

)

exp(−ss/Λ2
s) +

{

s←→ s̄
}

, (32)

and we note the similarity of this expression cf. the charge form factor F ss̄
1 (Q2) found in Eq. (14). This similarity is

unsurprising considering that F1(Q
2) measures the spin-independent coupling of neutral currents to the electromag-

netic quark structure of the nucleon; as such the matrix elements that give rise to Eq. (32) and Eq. (14) differ only
by charge factors and the presence of γ5 in the operator structure of the current interaction.
Also, from the definition in Eq. (32) we may extract the strange contribution to the nucleon’s helicity asymmetry

according to

Gss̄
A (Q2 = 0) ≡ ∆s ..=

(

s+ − s-
)

+
(

s̄+ − s̄-
)

=

∫ 1

0

dx ∆s(x) , (33)
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in which s± denote spin-dependent contributions from quarks with helicity aligned/anti-aligned relative to that of the
nucleon. Using this definition, as well as the extremal Gaussian wave functions (G1, G2) constrained by the analysis
in Sec. III, we see that a separate test of our model can be found in the independent prediction it makes for ∆s; we
determine the range

− 0.041 (G1) ≤ ∆s ≤ −0.039 (G2) . (34)

It is notable that this range, which we report in Table II, is in good agreement with the result of direct measurement
from spin-polarized DIS as reported by SMC [44]: ∆s = −0.07± 0.06.

VI. STRANGE SCALAR DENSITY OF THE NUCLEON

The scalar density of strange quarks in the nucleon as given by the value of the correlator 〈N |s̄s|N〉 has been a
frequent pursuit of lattice QCD calculations, as well as other analyses. The formalism of Sec. II made use of wave
functions with a dependence upon x that accounted for the operator structure of the quark-photon vertex. For
instance, in Eq. (5) we identified the electromagnetic form factor F1(Q

2) with matrix elements of γ+; in the quark
helicity basis it can be shown that the Lapage-Brodsky spinors yield

1

2P+
ū(k, r)γ+u(k, r) = k+

/

P+ ≡ x , (35)

for an arbitrary spinor index r. From this it may be inferred that the expression for 〈N |s̄s|N〉 must differ from
Eq. (21) for F1(Q

2 = 0) as determined with Eq. (5) by an overall factor of x−1 in the integrand. That is,

〈N |s̄s|N〉 =
Ns

16π2Λ4
s

∫

dk2
⊥

x3(1 − x)
(

k2⊥ + (ms + xM)2
)

exp(−ss/Λ2
s) +

{

s←→ s̄
}

, (36)

where again ss is the Q2 = 0 center-of-mass energy of the strange quark-spectator intermediate state as given by
Eq. (12).
With these simple expressions, we may numerically evaluate Eq. (36) using the ‘extremal’ model wave functions

developed in Sec. III with Gaussian forms for ss of Eq. (12) — i.e., ‘G1’ and ‘G2’ as specified in Table I — and
thereby determine a range for 〈N |s̄s|N〉. Using our wave functions, we find the maximal range

0.85 (G2) ≤ 〈N |s̄s|N〉 ≤ 1.36 (G1) ; (37)

our values are in fact of the same approximate scale as previous computations based upon lattice QCD, which is
capable of determining the quantity [45]

fs = ms〈N |s̄s|N〉
/

MN , (38)

although the uncertainties and spread involved in these calculations remain significant as illustrated in Fig. 8 of
[45]. We note that while a world average of lattice and other determinations carried out in Ref. [45] converged upon
fs = 0.043(11), associated with 〈N |s̄s|N〉 = 0.42±0.11, uncertainties in chiral extrapolations are such that individual
efforts have found values as large as fs ∼ 0.2, corresponding to an approximate upper limit of 〈N |s̄s|N〉 ∼ 2. Thus we
judge our results using Eq. (36) to be roughly consistent with lattice QCD calculations, although we note the total
strange probabilities Ps as given by Eq. (20) and listed in Table I may be somewhat large on the grounds of the close
connections between Eqs. (20) and (36).

VII. CONCLUSION

We have developed a simple spinor-scalar model to decompose the nucleon wave function and gauge the potential
contributions from the strange sector to elastic observables of the proton, particularly its strange charge radius and
magnetic moment ρs and µs, respectively. In so doing, we have formulated wave functions of sufficient generality as
to enable the computation of both DIS distribution functions as well as elastic scattering matrix elements, and we can
therefore compute the strange Sachs form factors of the nucleon Gss̄

E,M (Q2) in a fashion that incorporates constraints

from QCD global analyses of the strange PDF combinations xS± given by Eqs. (1) and (22). Taking a representative
DIS analysis [40] and a Gaussian expression for the strange quark-nucleon interaction as in Eq. (11) [though other
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forms such as Eq. (17) yield very similar results], we find DIS information on xS± implies the tightened ranges for
µs and ρDs reported in Eq. (28) and Table II. These parameter values are notably smaller than the results of global
analyses based directly upon the available elastic data [22–24], with the suggestion being that if ground-state LFWFs
are to be taken seriously, the current precision in elastic data is not yet adequate to be unambiguously sensitive to
nucleon strangeness. It is interesting that the ranges we determine for µs and ρs closely align with the findings of
Refs. [31, 32] based upon GPDs, a fact which lends further credence to this conclusion, as does the good agreement
with separate determinations we find for our independent LFWF estimates of ∆s and 〈N |s̄s|N〉. Moreover, as the
difference between our computed range in Eq. (28) and the results of, e.g., [24] is roughly order-of-magnitude, further
experimental investigation with enhanced precision will prove vital.
This reality is something of a double-edged sword, and the potential smallness of the nucleon strangeness suggested

by our results could possibly simplify extractions of sin2 θW ; thus, one might conclude BSM physics searches based
upon parity-violating electron scattering are relatively free of the potential “contamination” that might originate in
backgrounds associated with the nucleon’s strange content.
In the end, the formalism presented here is meant to represent a simple approximation to the ground-state struc-

ture of the nucleon, and one might conceive of embellishments that perhaps capture the relevant dynamics more
ably, including more elaborate wave functions with additional spin structures — though these could possibly require
additional input parameters. All the same, we do not expect such additions to fundamentally alter the conclusions
reached here for the simple reason that it is difficult to generate large effects in elastic cross sections relative to DIS by
incorporating such new terms into the wave function. For example, by orthogonality wave functions associated with
an axial-vector spectator cannot interfere constructively in coherent elastic form factors with the scalar tetraquark
wave functions used in the present analysis; as such, the decisive role played by DIS constraints (which represent
incoherent physics) should remain unaltered in the face of such modifications.
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