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Background: Nuclear excited states within a wide range of excitation energies are formally de-
scribed by the linear response theory. Besides its conventional formulation within the quasiparticle
random phase approximation (QRPA) representing excited states as two correlated quasiparticles
(2q), there exist extensions for 4q configurations. Such extended approaches are quite successful
in the description of gross properties of nuclear spectra, however, accounting for many of their fine
features requires further extension of the configuration space.
Purpose: This work aims at the development of an approach which is capable of such an extension
as well as of reproducing and predicting fine spectral properties, which are of special interest at low
energies.
Method: The method is based on the covariant density functional theory and time blocking ap-
proximation, which is extended for couplings between quasiparticles and multiphonon excitations.
Results: The covariant multiphonon response theory is developed and adopted for nuclear struc-
ture calculations in medium-mass and heavy nuclei. The equations are formulated in both general
and coupled forms in the spherical basis.
Conclusions: The developed covariant multiphonon response theory represents a new generation
of the approaches to nuclear response, which aims at a unified description of both high-frequency
collective states and low-energy spectroscopy in medium-mass and heavy nuclei.

PACS numbers: 21.10.-k, 21.60.-n, 24.10.Cn, 21.30.Fe, 21.60.Jz, 24.30.Gz

I. INTRODUCTION

Linear response theory is a conventional framework
adopted for calculations of nuclear spectra in the low-
energy regime, i.e. at excitation energies below and
around ∼ 100 MeV. Such excitations represent the re-
sponse of nuclear systems to sufficiently weak external
fields, so that the induced changes of the nucleonic den-
sity are small compared to the ground state density and
can be treated in the linear approximation. The self-
frequencies of the oscillations of the nucleonic densities
can be found as solutions of the secular equation in
the limit of the vanishing external field. The simplest
non-perturbative approach to the secular equation for
strongly interacting Fermions includes scattering process
of particle-hole pairs which can be described by ring dia-
grams summed up to the infinite order. This approach is
known as the random phase approximation (RPA) [1] or
the quasiparticle random phase approximation (QRPA)
[2–4], where the latter is a generalization of the former to
the superfluid case and since 1960’s has become a stan-
dard approach to vibrational spectra of nuclei. Besides
its typical diagrammatic structure, the QRPA calcula-
tions are based on the concept of nucleon-nucleon (effec-
tive) residual interaction which has evolved considerably
over the years. The use of relatively simple multipole-
multipole forces [4] and Landau-Migdal interaction [5]
allowed for reasonable explanation of some experimental
findings although the agreement with data could only be
achieved after fine tuning of the interaction parameters.

Over the decades, various approaches to the nucleon-
nucleon residual interaction, such as G-matrix [6–8],

Skyrme [9, 10], Gogny [11] or Fayans [12] interactions
have been developed and successfully tested on nu-
clear structure calculations. The relativistic approach,
based on the Walecka model [13–15] for meson-exchange
nucleon-nucleon interaction, has become very successful
after the inclusion of non-linear meson coupling [16] or
the density dependence of the coupling vertices [17–21],
see also review [22] and references therein.

The progress in computer technologies has allowed for
fast execution of complex numerical algorithms and for
self-consistent QRPA calculations with the above men-
tioned interactions, in contrast to the earlier ones with
simple effective interactions which were disconnected
from the underlying mean-field. At the same time, ap-
proaches beyond QRPA were developed to account for
effects of more complex nature than particle-hole (1p1h)
or two-quasiparticle (2q) configurations to overcome the
principal limitation of the QRPA in the description of
the nuclear response.

Medium-mass and heavy nuclei represent Fermi-
systems where single-particle and vibrational degrees of
freedom are strongly coupled. Collective vibrations lead
to shape oscillations of the mean nuclear potential and,
therefore, modify the single-particle motion. To take this
effect into account, already in Ref. [23] a general concept
for the quasiparticle-vibration (phonon) coupling (QVC)
part of the single-nucleon self-energy has been proposed.
This concept had various implementations over the years
within the Quasiparticle-Phonon Model (QPM) [24–26],
Nuclear Field Theory [27–33] and others [34–44]. In par-
ticular, the approaches [39, 41, 43, 44] are formulated as
a theory for nuclear response function. These studies,
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however, are either not self-consistent or do not include
pairing correlations of the superfluid type. Recently, a set
of self-consistent approaches to QVC in the relativistic
framework has become available [45–51], where the latter
four account for the superfluid pairing. It has been shown
that these models improve considerably the description
of the single-particle states around the Fermi surface and
explain the strong fragmentation of deep hole states, gi-
ant resonances and soft modes quantitatively with a good
precision, despite the very limited number of parameters
in the underlying Lagrangian.

The present work focuses on the nuclear response
theory which includes QVC and superfluid pairing on
equal footing. Specifically, the nuclear response in the
particle-hole channel, which describes a large variety of
typical nuclear excited states, is considered. Based on
the relativistic quasiparticle time blocking approximation
(RQTBA) developed in Ref. [49] and its two-phonon ver-
sion [50, 51], it is shown how higher-order QVC effects, or
multiphonon coupling, can be included self-consistently.
The approach is formulated as a non-perturbative exten-
sion of the RQTBA. The convergence of the response
function with respect to the number of coupled phonon
modes is justified in terms of its multipole expansion in
the spherical basis.

It is implied that the response theory with multi-
phonon coupling presented here is based on the rela-
tivistic description of the nuclear uncorrelated ground
state known as the covariant density functional theory
(CDFT), although the approach can be straightforwardly
adopted for calculations with other types of underlying
density functionals, such as Skyrme, Gogny, Fayans etc.

II. RELATIVISTIC QUASIPARTICLE TIME

BLOCKING APPROXIMATION: A BRIEF

OVERVIEW

This section introduces nuclear response formalism
and reviews the relativistic time blocking approximation,
which serves as a foundation for the extended approach.
To maintain consistency with the previous versions of
RQTBA, the notations are kept close to those of Ref.
[51].

The response function of a finite Fermi-system with an
even particle number describes propagation of two quasi-
particles in the medium and quantifies the response of the
system to an external perturbation. The exact propaga-
tor includes, ideally, all possible kinds of the in-medium
interaction between two arbitrary quasiparticles and con-
tains all the information about the Fermi system, which
can be, in principle, extracted by a certain experimental
probe, if its interaction with the system is represented by
a single-quasiparticle operator.

In the case of a weak external field, the response func-
tion R is conventionally described by the Bethe-Salpeter

equation (BSE). The general form of this equation

R(14, 23) = G(1, 3)G(4, 2)−

−i
∑

5678

G(1, 5)G(6, 2)U(58, 67)R(74, 83), (1)

includes the one-nucleon Green function (propagator)
G(1, 2) in the nuclear medium and the effective nucleon-
nucleon interaction U(14, 23) irreducible in the relevant
channel. Here and below the particle-hole channel is
considered. For the systems with pairing correlations
of the superfluid type the conventional degrees of free-
dom are quasipaticles in Bogoliubov’s sense represented
by superpositions of particles and holes on top of the
Hartree (or Hartree-Fock) Fermi sea. To account for
the superfluidity effects, we use the formalism of the ex-
tended (doubled) space of quasiparticle states described
in Refs. [43, 49]. Thus, the generic number indices 1, 2, ...
include all single-quasiparticle variables in an arbitrary
representation, components in this doubled space, and
time. Respectively, the summation over the number in-
dices implies an integration over the time variables. The
amplitude U is determined as a variational derivative
of the nucleonic self-energy Σ with respect to the exact
single-quasiparticle Green function G:

U(14, 23) = i
δΣ(4, 3)

δG(2, 1)
. (2)

If the ground state can be with a reasonable accuracy
described by a static mean-field, it is convenient to de-
compose both the single-quasiparticle self-energy Σ and
the irreducible effective interaction U into static Σ̃, Ṽ and
time-dependent (energy-dependent) Σ(e), U (e) parts as

Σ = Σ̃ + Σ(e) (3)

U = Ṽ + U (e). (4)

Accordingly, the uncorrelated response is introduced as
R̃(0)(14, 23) = G̃(1, 3)G̃(4, 2), where G̃(1, 2) are the
single-quasiparticle mean-field Green functions in the ab-
sence of the term Σ(e) in the self-energy. The Green func-
tions G and G̃ are connected by the Dyson equation:

G(1, 2) = G̃(1, 2) +
∑

34

G̃(1, 3)Σ(e)(3, 4)G(4, 2), (5)

so that G can be eliminated from Eq. (1) and, after some
simple algebra, the BSE (1) takes the form:

R(14, 23) = G̃(1, 3)G̃(4, 2)−

−i
∑

5678

G̃(1, 5)G̃(6, 2)V (58, 67)R(74, 83), (6)

where V is the new effective interaction amplitude which
is specified below. The well-known quasiparticle random
phase approximation QRPA including its relativistic ver-
sion (RQRPA) corresponds to the case of V = Ṽ ne-
glecting the time-dependent term U (e). More precisely,
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in the (R)QRPA the time-dependent term is included
in a static approximation by adjusting the parameters
of the effective interaction Ṽ to ground state proper-
ties of nuclei such as masses and radii. In the self-
consistent (R)QRPA the static effective interaction is the
second variational derivative of the covariant energy den-
sity functional (CEDF) E[R] with respect to the density
matrix R [22]:

Ṽ (14, 23) =
2δ2E[R]

δR(2, 1)δR(3, 4)
. (7)

In the approaches beyond the QRPA both static and
time-dependent terms are contained in the residual in-
teractions. In medium-mass and heavy nuclei vibra-
tional and rotational modes are strongly coupled to the
single-particle ones. In particular, the coupling to low-
lying vibrations is known already for decades [23] as
a very important mechanism of the formation of nu-
clear excited states and serves as a foundation for the
so-called (quasi)particle-phonon coupling model. Imple-
mentations of this concept on the base of the modern
density functionals have been extensively elaborated in
non-relativistic [32, 52–57] and relativistic [45–51, 58, 59]
frameworks.
Going beyond the Hartree (Hartree-Fock) approach of

the CDFT, it is natural to include non-perturbatively
bubble and ladder types of nucleon-nucleon correla-
tions associated with multiple meson exchange and re-
scattering. This becomes possible because these pro-
cesses lead to the emergence of collective effects of vi-
brational character. These vibrations (phonons) man-
ifest themselves as the new degrees of freedom associ-
ated with the new order parameter corresponding to the
quasiparticle-vibration coupling vertices, which helps to
classify and decouple different correlations in the self-
consistent non-perturbative treatment. For instance,
one-phonon exchange is the leading-order approximation
for the time-dependent parts of the effective interaction
U (e) and of the nucleonic self-energy Σ(e), whose Fourier
transform to the energy domain

Σ(e)(1, 2; ε) =
∑

34

+∞
∫

−∞

dω

2πi
Γ(e)(14, 23;ω)G(3, 4; ε+ ω)

(8)
is formally expressed as a convolution of the exact single-
quasiparticle Green function G and two-quasiparticle
scattering amplitude Γ(e). In the leading-order approxi-
mation with respect to the QVC, Γ(e) is obtained as an in-
finite sum of the ring diagrams with meson-exchange in-
teraction. Thus, Σ(e) is separated from Hartree-Fock con-
tributions which are supposed to be included in the static
self-energy Σ̃. The dynamical part of the self-energy can
be represented by the Feynman graph shown in Fig. 1,
where in the leading order the straight line stands for
the mean-field single-nucleon propagator G = G̃ and the
wiggly line replaces an infinite sum of the ring diagrams.

 Σ(e)
=k   k1    2 k                k                  k 1                3                  2

µ

FIG. 1: Top: The skeleton graph representing the single-
quasiparticle self-energy Σ(e). The solid straight line denotes
the single-quasiparticle nucleonic propagator, the Latin in-
dices stand for the single-quasiparticle quantum numbers, the
wiggly line with Greek index shows the phonon propagator
with phonon quantum numbers, empty circles represent QVC
vertices.

To account for higher-order correlations, after solution
of the Dyson equation (5) the obtained Green function,
together with the amplitude Γ(e) calculated from the Eq.
(6), for instance, in the approach described below, can be
substituted to Eq. (8), thus dressing the skeleton graph
shown in Fig. 1.
The consistent response formalism for the BSE (6)

based on the QVC self-energy of Eq. (8) has become pos-
sible in the time blocking approximation, first proposed
in Refs. [43, 44] for superfluid Fermi systems and elabo-
rated in Ref. [49] in detail for the relativistic framework.
This approximation allows for exact summation of a se-
lected class of Feynman’s diagrams which give the leading
contribution of the quasiparticle-phonon coupling effects
to the response function. Following [49], it is convenient
to write the BSE (6) in the representation in which the

mean-field Green function G̃ is diagonal. This represen-

tation is given by the set of the eigenfunctions |ψ
(η)
k 〉 of

the Relativistic Hartree-Bogoliubov (RHB) Hamiltonian
HRHB satisfying the equations [60]:

HRHB |ψ
(η)
k 〉 = ηEk|ψ

(η)
k 〉, HRHB = 2

δE[R]

δR
, (9)

where Ek > 0, the index k stands for the set of the single-
particle quantum numbers including states in the Dirac
sea, and the index η = ±1 labels positive- and negative-
frequency solutions of Eq. (9) in the doubled quasipar-

ticle space. The eigenfunctions |ψ
(η)
k 〉 are 8-dimensional

Bogoliubov-Dirac spinors:

|ψ
(+)
k (r)〉 =

(

Uk(r)
Vk(r)

)

, |ψ
(−)
k (r)〉 =

(

V ∗
k (r)
U∗
k (r)

)

,

(10)
which form the working basis called Dirac-Hartree-BCS
(DHBCS) basis for the subsequent calculations.
Within the time blocking approximation and after per-

forming a Fourier transformation to the energy domain,
the BSE (6) for the spectral representation of the nuclear

response function R(ω) in the basis {|ψ
(η)
k 〉} reads:

Rηη′

k1k4,k2k3
(ω) = R̃

(0)η
k1k2

(ω)δk1k3
δk2k4

δηη
′

+

+R̃
(0)η
k1k2

(ω)
∑

k5k6η′′

V ηη′′

k1k6,k2k5
(ω)Rη′′η′

k5k4,k6k3
(ω), (11)
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being a matrix equation in the DHBCS basis for each
external energy variable ω. This is the main result of
the time-blocking approximation which separates the in-
tegrations over the intermediate energy variable in such
a way that it is fully integrated out in the interaction
amplitude V . The quantity R̃(0)

R̃
(0)η
k1k2

(ω) =
1

ηω − Ek1
− Ek2

(12)

describes the free propagation of two quasiparticles with
their Bogoliubov energies Ek1

and Ek2
in the relativistic

mean field. The interaction amplitude of Eq. (11) con-

tains both static Ṽ and dynamical (frequency-dependent)
W (ω) parts as follows:

V ηη′

k1k4,k2k3
(ω) = Ṽ ηη′

k1k4,k2k3
+W ηη′

k1k4,k2k3
(ω),

W ηη′

k1k4,k2k3
(ω) =

[

Φη
k1k4,k2k3

(ω)− Φη
k1k4,k2k3

(0)
]

δηη
′

.(13)

The diagrammatic representation of the Eq. (11) with
the interaction of Eq. (13) is given in Fig. 2. The black
circle in the second term on the right hand side of the
top line corresponds to the static effective interaction de-
noted by Ṽ and, in the absence of the third term contain-
ing the phonon coupling effects via the amplitudeW , one
would have the QRPA equation. The energy-dependent
resonant part of the two-quasiparticle amplitude Φ(ω)
can be factorized [43] and takes the following form:

Φη
k1k4,k2k3

(ω) =
∑

k5k6,µ

ζ µη
k1k2;k5k6

R̃
(0)η
k5k6

(ω−ηΩµ) ζ
µη∗
k3k4;k5k6

,

(14)

so that R̃
(0)η
k5k6

(ω − ηΩµ) are the matrix elements of the
two-quasiparticle propagator in the mean field with the
frequency shifted forward or backward by the phonon
energy Ωµ. The quantities ζ are the generalized phonon
vertices:

ζ
µ(+)
k1k2;k5k6

= δk1k5
γ
(−)
µ;k6k2

− γ
(+)
µ;k1k5

δk6k2
,

ζ
µ(−)
k1k2;k5k6

= δk5k1
γ
(+)∗
µ;k2k6

− γ
(−)∗
µ;k5k1

δk2k6
, (15)

revealing the four terms in Eq. (14) which correspond to
those in the diagrammatic representation of the ampli-
tude Φ(ω) in the bottom line of Fig. 2.
The shorthand notation for the phonon emission (ab-

sorption) amplitudes imply:

γηµ;k1k2
= γη1η2

µ;k1k2
δηη1

δηη2
, η = (±), (16)

where γη1η2

µ;k1k2
are the matrix elements of these amplitudes

in the doubled quasiparticle space. They determine the
probability of the coupling of a quasiparticle pair in the
states {k1η1}, {k2η2} to the collective vibrational state
(phonon) with quantum numbers µ = {Ωµ, Jµ,Mµ, πµ}.
In the RQTBA these vertices are derived from the corre-
sponding RQRPA transition densities Rµ and the static
effective interaction as

γη1η2

µ;k1k2
=

∑

k3k4

∑

η

Ṽ
η1,−η,η2,η

k1k4,k2k3
Rη

µ;k3k4
, (17)

where Ṽ η1η4,η2η3

k1k4,k2k3
is the matrix element of the amplitude

Ṽ of Eq. (7) in the basis {|ψ
(η)
k 〉}. The matrix elements of

the phonon transition densities are calculated, in first ap-
proximation, within the relativistic quasiparticle random
phase approximation [21]. In the Dirac-Hartree-BCS ba-

sis {|ψ
(η)
k 〉} it has the following form:

Rη
µ;k1k2

= R̃
(0)η
k1k2

(Ωµ)
∑

k3k4

∑

η′

Ṽ ηη′

k1k4,k2k3
Rη′

µ;k3k4
, (18)

where Ṽ ηη′

k1k4,k2k3
= Ṽ η,−η′,−η,η′

k1k4,k2k3
, since we cut out the

particle-hole components of the tensors in the quasipar-
ticle space.
In the diagrammatic expression of the amplitude (14)

in the upper line of the Fig. 2 the uncorrelated propa-

gator R̃
(0)η
k1k2

is represented by the two straight nucleonic
lines between the circles denoting emission and absorp-
tion of a phonon by a single quasiparticle with the am-
plitude γη1η2

µ;k1k2
. The approach to the amplitude Φ(ω)

expressed by Eq. (14) represents a version of first-order
perturbation theory compared to RQRPA and the am-
plitude W (ω) of Eq. (13) is the first-order correction

to the effective interaction Ṽ , because the dimension-
less matrix elements of the phonon vertices are such that
γη1η2

µ;k1k2
/Ωµ ≪ 1 in most physical cases. The phonon-

coupling term Φ generates fragmentation of the excita-
tion modes obtained in QRPA. In particular, the high-
frequency oscillations known as giant resonances acquire
their spreading width due to the term Φ. In the low-
energy region below the neutron threshold of medium-
mass even-even nuclei this term is responsible solely for
the appearing strength. In the relativistic framework, the
latter was confirmed and extensively studied [49, 61], and
verified by comparison to experimental data [50, 51, 62–
64]. However, a comparison with high-resolution experi-
ments on the dipole strength below the neutron threshold
has revealed that, although the total strength and some
gross features of the strength are reproduced well, the
fine features are sensitive to truncation of the configu-
ration space by 2q⊗phonon configurations and further
extensions of the method are needed. Such an extension
forms the content of the subsequent sections.
Before proceeding further, let us notice that the dia-

grammatic equation of Fig. 2 written, as in Ref. [49], for
the system with pairing correlations has the same form
as that for the normal (non-superfluid) system. The for-
mal similarity of the equations for normal and superfluid
systems is achieved by the use of the representation of

the basis functions |ψ
(η)
k 〉 satisfying Eq. (9). This ba-

sis is a counterpart of the particle-hole basis of the con-
ventional RPA in which the (Q)RPA equations have the
most simple and compact form. In the representation of

the functions |ψ
(η)
k 〉 the generalized superfluid mean-field

Green function G̃ (often called Gor’kov-Green’s function)
has a diagonal form and describes the propagation of the
quasiparticle with fixed energy. In this diagonal represen-
tation the directions of the fermion lines of the diagrams
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FIG. 2: Top: Bethe-Salpeter equation for the response function R in the ph-channel in diagrammatic representation. The solid
lines denote single-quasiparticle mean-field propagators. The integral part is divided into two terms; the small black circle
represents the static effective interaction Ṽ and the energy-dependent block Φ(ω) − Φ(0) contains the dynamic contributions.
Bottom: The dynamical part of the effective interaction in the quasiparticle-vibration coupling (QVC) model in the leading
order on QVC.

=

FIG. 3: The 4-component Green’s function in the diagram-
matic representation.

(of the type shown in Fig. 2) denote the positive- or the

negative-frequency components of the functions G̃. The
so-called backward-going diagrams, corresponding to the
ground-state correlations in the RQRPA, are not marked
out in Fig. 2 though they are included in Eq. (11). In the
coordinate representation, the non-diagonal Green func-
tion G̃ for the quasiparticle has no definite energy. This
Green function can be represented by the 2×2 block ma-
trix shown in Fig. 3, see an extended discussion in Ref.
[51].
In RQTBA based on the CDFT, the elimination of

double counting effects of the phonon coupling is per-
formed by the subtraction of the static contribution of the
amplitude Φ from the residual interaction in Eq. (13),
since the parameters of the underlying functional have
been adjusted to experimental data for ground states and
include, thereby, the phonon coupling contributions to
the ground state. The subtraction of the phonon coupling
amplitude at zero frequency Φ(0) in Eq. (13) acquires
another important role for the excitations which have an
isoscalar dipole component, for example, the electromag-
netic dipole response. On the RQRPA level the elimina-
tion of the 1− spurious state is achieved by the use of
a sufficiently large 2q configuration space within a fully
self-consistent approach [21]. In the extended theories
based on the self-consistent RQRPA the translational in-
variance can be restored by the subtraction of the energy
dependent interaction amplitude at zero frequency. In
the numerical implementation, due to numerical inaccu-
racies, this state appears at a finite energy below 1 MeV
already in RQRPA, but due to the subtraction procedure,
in extended theories such as RQTBA and RQTBA-2 of

Refs. [50, 51] the accuracy of elimination of the spurious
state is preserved. A detailed description of the subtrac-
tion procedure which, in addition, guarantees stability
of solutions of the extended RPA theories, is presented
in Refs. [66]. A similar procedure is proposed in the
higher-order RQTBA described in Section IV.
In practice, calculations for the response function (11)

are divided into two major steps. First, the BSE for the
correlated propagator R(e)(ω)

R
(e)η
k1k4,k2k3

(ω) = R̃
(0)η
k1k2

(ω)δk1k3
δk2k4

+ R̃
(0)η
k1k2

(ω)×

×
∑

k5k6

[

Φη
k1k6,k2k5

(ω)− Φη
k1k6,k2k5

(0)
]

R
(e)η
k5k4,k6k3

(ω) (19)

is solved in the Dirac-Hartree-BCS basis. Second, the
BSE for the full response function R(ω)

Rηη′

k1k4,k2k3
(ω) = R

(e)η
k1k4,k2k3

(ω)δηη
′

+

+
∑

k5k6k7k8

R
(e)η
k1k6,k2k5

(ω)
∑

η′′

Ṽ ηη′′

k5k8,k6k7
Rη′′η′

k7k4,k8k3
(ω),

(20)

where

Rηη′

k1k4,k2k3
(ω) = Rη,−η′,−η,η′

k1k4,k2k3
(ω), (21)

is solved either in the DHBCS or in the momentum-
channel representation which is especially convenient be-
cause of the structure of the one-boson exchange interac-
tion. The details are given in Appendix C of Ref. [49].

III. EXTENDED RQTBA: THE NEXT ORDER

The first extension of the RQTBA described above
used the idea proposed in Ref. [43] and is based on the
factorization of Eq. (14): the uncorrelated propagator

R̃(0)η in Eq. (14) is replaced by the positive- (η = +1)
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or the negative- (η = −1) frequency part of a correlated
one. The first order approximation to a correlated prop-
agator is the RQRPA, in which a two-quasiparticle pair
scatters via a quasi-bound phonon configuration. As a re-
sult, two-phonon configurations appear in the amplitude
Φ(ω), as it is described in detail in Ref. [51]. This two-
phonon version of the RQTBA, RQTBA-2, contains, by
definition, more correlations than the original RQTBA
truncated by 2q⊗phonon configurations, but it is still on
the same two-particle-two-hole (2p2h) level of configura-
tion complexity.

Here we make another step forward with introducing
correlations inside the amplitude Φ(ω). But now we go
beyond the 2p2h configurations. In order to keep the
notations consistent with those used before, let us define:

Φ
(1)η
k1k4,k2k3

(ω) = 0

Φ
(2)η
k1k4,k2k3

(ω) = Φη
k1k4,k2k3

(ω)

R
e(1)η
k1k4,k2k3

(ω) = R̃
(0)η
k1k2

(ω)δk1k3
δk2k4

R
e(2)η
k1k4,k2k3

(ω) = R
(e)η
k1k4,k2k3

(ω)

R
(1)ηη′
k1k4,k2k3

(ω) = R̃
(0)η
k1k2

(ω)δk1k3
δk2k4

δηη′

R
(2)ηη′
k1k4,k2k3

(ω) = Rηη′
k1k4,k2k3

(ω). (22)

Now the response function R(2) of the conventional
RQTBA substitutes the uncorrelated intermediate prop-
agator and, instead of the amplitude Φ of Eq. (14), we
have the new amplitude Φ(3):

Φ
(3)η
k1k4,k2k3

(ω) =

=
∑

k5k6,k5′
k
6′
µ

ζ µη
k1k2;k5k6

R
(2)η
k5k6′

,k6k5′
(ω − ηΩµ)×

×ζ µη∗
k3k4;k5′

k
6′
, (23)

where the response function R
(2)η
k1k4,k2k3

is the solution of
the equation:

R
(2)η
k1k4,k2k3

(ω) = R
(e)η
k1k4,k2k3

(ω) +

+
∑

k5k6k7k8

R
(e)η
k1k6,k2k5

(ω)Ṽ ηη
k5k8,k6k7

Rη
k7k4,k8k3

(ω),

(24)

which is an analog of Eq. (20), but does not contain
ground state correlations. This simplification is made
to exclude ’zigzag’ diagrams from the amplitude Φ(3)

[65]. By this substitution, we introduce 2q⊗phonon cor-
relations into the intermediate two-quasiparticle propa-
gators, i.e., in diagrammatic language, we perform the
operation shown in Fig. 4. The analytic expression for
the new QVC amplitude in terms of the phonon vertices

 k 2  k 
2

 k 4

 k 1  k 3

 k 4

 k 1  k 3

R(2)

FIG. 4: Replacement of the uncorrelated two-nucleon propa-
gator by the correlated one.

(16) reads:

Φ
(3)η
k1k4,k2k3

(ω) =
∑

k
1′
,k

3′
;µ

γηµ;k1k1′
R

(2)η
k
1′
k2,k3′

k4
γη∗µ;k3k3′

+

+
∑

k
2′
,k

4′
;µ

γηµ;k
2′
k2
R

(2)η
k1k2′

,k3k4′
γη∗µ;k

4′
k4

−

−
∑

k
1′
,k

4′
;µ

γηµ;k1k1′
R

(2)η
k
1′
k2,k3k4′

γη∗µ;k
4′
k4

−

−
∑

k
2′
,k

3′
;µ

γηµ;k
2′
k2
R

(2)η
k1k2,k3′

k4
γη∗µ;k3k3′

,(25)

where the four terms correspond to the four diagrams in
the bottom line of Fig. 5. This Figure also illustrates the
relation between the QVC amplitudes in the conventional
RQTBA, RQTBA-2 and in the next-order approach.
In fact, the amplitude Φ(3) contains the contributions

of the graphs shown in Fig. 6. However, the substi-
tution shown in Fig. 4 allows calculation of their con-
tribution without explicit calculations of the diagrams
of Fig. 6. It is easy to see that these terms con-
tain 2q⊗2phonon configurations and thereby represent
the next, three-particle-three-hole (3p3h), level of con-
figuration complexity, as compared to the RQTBA and
RQTBA-2. The two-phonon amplitude Φ̄(2) is also con-
tained in the amplitude Φ(3), although approximately,
since the ground state correlations are neglected in Eq.
(24) [65].
The amplitude Φ(3) forms the kernel of the BSE for

the correlated propagator Re(3) taking into account 3p3h
correlations (to be compared to Re(2) = R(e) which in-
cludes 2p2h ones):

R
e(3)η
k1k4,k2k3

(ω) = R̃
(0)η
k1k2

(ω)δk1k3
δk2k4

+ R̃
(0)η
k1k2

(ω)×

×
∑

k5k6

[

Φ
(3)η
k1k6,k2k5

(ω)− Φ
(3)η
k1k6,k2k5

(0)
]

R
e(3)η
k5k4,k6k3

(ω). (26)

Analogously to the conventional RQTBA (20), the equa-
tion for the full response function is formulated in terms
of the correlated propagator Re(3) as a free term and the
static effective interaction as a kernel:

R
(3)ηη′

k1k4,k2k3
(ω) = R

e(3)η
k1k4,k2k3

(ω)δηη
′

+

+
∑

k5k6

R
e(3)η
k1k6,k2k5

(ω)
∑

k7k8η′′

Ṽ ηη′′

k5k8,k6k7
R

(3)η′′η′

k7k4,k8k3
(ω),

(27)
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 k  k  , k  k
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1   4    2   3

 k 4  k 4  k 4 k 2  k 2 k  k 2 4  k 
2
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R
(2) R

(2)

 µ 

R
(2)

 µ 

R
(2)

 µ 

(2)

Φ            =
 k  k  , k  k

1   4    2   3

+ + +

 µ 

 ν 
 k  k 1‘’ 3‘

 ν 

 µ 
 k 

2‘
 k 4‘  k 4‘

 k 1‘  k 
2‘

 k 
3‘

 ν 

 ν 
 µ 

 µ 
 k 4  k 4  k 4 k 2  k 2 k  k 2 4  k 

2

 k 3  k 1  k 3  k 1  k 3  k 3 k 1 k 1
(2)

FIG. 5: Hierarchy of the quasiparticle-phonon coupling amplitudes: 2q⊗phonon amplitude Φ = Φ(2) of the leading-order QVC
(compare to the bottom line of Fig. 2), the 2-phonon amplitude Φ̄(2) and the 2q⊗2phonon amplitude Φ(3) with the correlated

intermediate two-quasiparticle propagator R
(2).

+

++

++

+ +

+ + + +

+ + + +

 Φ    =
(3)

 Φ    +
(2)

+

FIG. 6: The time-ordered diagrams taken into account in the
extended RQTBA in the second order of the quasiparticle-
vibration coupling.

where the superscript ’(3)’ indicates that this response
function takes into account 3p3h configurations. Anal-
ogously to the 2q⊗phonon RQTBA, the subtraction of
the amplitude Φ(3) at zero frequency from the effective
interaction in Eq. (27) eliminates double counting of the
static contribution of phonon coupling effects.

IV. HIGHER-ORDER CORRELATIONS:

MULTIPHONON COUPLING

In principle, the procedure shown in Fig. 4 can be re-
peated with the replacement R(2) ⇒ R(3) to take into
account the next-order effects, and it can be continued
until convergence. Each iteration in this procedure will

add another correlated two-quasiparticle pair into the
phonon coupling amplitude Φ(n)(ω), resolving finer and
finer features of the response function. The latter means
that in the model-independent spectral expansion of the
response function

R
(n)ηη′

k1k4,k2k3
(ω) =

∑

ν

[R
(n)η∗
ν;k1k2

R
(n)η′

ν;k3k4

ω − ων + iδ
−

R
(n)−η

ν;k2k1
R

(n)−η′∗

ν;k4k3

ω + ων − iδ

]

(28)
more and more terms numbered by the index ν will ap-
pear with the increase of n, so that the spectrum will
become more and more fragmented. In this way, the
parameter n establishes a hierarchy of the excited states:
larger n numbers correspond to fine structure while small
n’s are responsible for gross structure of the spectra. As
it is shown below in Section V by the multipole expan-
sion of R(n), each iteration introduces such a geometrical
factor into the kernel of the Bethe-Salpeter equation for
R(n), that contains some smallness providing a condition
for the convergence of the iterative procedure.

The chain of operator equations for the correlated
propagator Re(n), phonon coupling amplitude Φ(n) and
response function R(n) looks as follows:























R(1)(ω) = Re(1)(ω) = R̃0(ω)

Re(n)(ω) = R̃0(ω)+

+R̃0(ω)
[

Φ[R(n−1)(ω)]− Φ[R(n−1)(0)]
]

Re(n)(ω)

R(n)(ω) = Re(n)(ω) +Re(n)(ω)Ṽ R(n)(ω),

(29)
where n > 1 and the matrix elements of the amplitude
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Φ[R(n−1)(ω)] = Φ(n)(ω) are defined as:

Φ
(n)η
k1k4,k2k3

(ω) =

=
∑

k5k6,k5′
k
6′
µ

ζ µη
k1k2;k5k6

R
(n−1)η
k5k6′

,k6k5′
(ω − ηΩµ)×

×ζ µη∗
k3k4;k5′

k
6′
. (30)

In this context, the model, which was previously called
RQTBA (’conventional’ RQTBA), represents the second-
order approach: if the procedure (29) is truncated at
n = 2, one would obtain the conventional RQTBA of Ref.
[49]. The approach (29) of the n-th order describes the
nuclear response function which includes couplings of two
quasiparticles to up to (n-1) phonons, or np-nh (2n quasi-
particles, 2nq) configurations. These effects are included
in the time blocking approximation which is, thereby,
generalized to multiphonon coupling. Here only the res-
onant part of the phonon coupling is taken into account,
and the so-called associated components introduced in
Ref. [41, 43] are neglected. Their quantitative role is
known to be minor for the spectral gross features, how-
ever, they represent the ground state correlations caused
by phonon dynamics and may affect the fine structure of
low-lying states [41].

In the diagrammatic language, the proposed solu-
tion (29) for the multiphonon response function is ob-
tained by iteration of the intermediate double-line (two-
quasiparticle propagator) in the QVC amplitude Φ of Fig.
2. This procedure is similar to the method applied to the
solution of the Dyson equation beyond the leading order
of QVC, when the single-quasiparticle Green function en-
tering the self-energy (8) is iterated.

The contribution of the terms with vertex corrections
are known to contain smallness, as compared to the line
corrections, in analogy to Migdal’s theorem for electron-
phonon systems [67]. In particular, in spherical nuclei
all phonon-exchange terms which represent vertex cor-
rections (such as the last two terms in the bottom line of
Fig. 2), in their coupled form contain 6j-symbols which
make these terms smaller than those associated with self-
energy insertions (first two terms in Fig. 2), see Eq. (C4)
of Ref. [49]. Numerical calculations within the RQTBA
[49, 61] have confirmed that the corrections to the phonon
vertices and frequencies beyond the RQRPA can be ne-
glected for the most important phonon modes. However,
these corrections can be, in principle, included into the
iterative scheme (29) by extraction of the phonon ver-
tices from the n-th order RQTBA response function on
each iteration.

In the next section the equations (29) are formulated
in the coupled form in the spherical DHBCS basis, which
allows one to adopt the approach for numerical calcula-
tions for finite nuclei.

V. THE MULTIPHONON RESPONSE

FUNCTION IN THE COUPLED FORM

For practical calculations for finite nuclei, it is conve-
nient to formulate the equations (25) - (30) in terms of
the reduced matrix elements with the transferred angular
momentum J , i.e. in the so-called coupled form. The re-
duced matrix elements of the phonon-coupling amplitude
Φ(n) read:

Φ
(n)J,η
(k1k4,k2k3)

(ω) =
(−1)j1+j2+j3+j4

2J + 1

∑

(µ)Je

×

[

∑

(k
1′
k
3′
)

γη(µ;k1k1′
)R

(n−1)Je,η

(k
1′
k2,k3′

k4)
(ω − ηωµ)γ

η∗

(µ;k3k3′
) ×

×

{

J Jµ Je
j1′ j2 j1

}{

J Jµ Je
j3′ j4 j3

}

+

+
∑

(k
2′
k
4′
)

γη(µ;k
2′
k2)
R

(n−1)Je,η

(k1k2′
,k3k4′

)(ω − ηωµ)γ
η∗

(µ;k
4′
k4)

×

×

{

J Jµ Je
j2′ j1 j2

}{

J Jµ Je
j4′ j3 j4

}

−

−
∑

(k
1′
k
4′
)

γη(µ;k1k1′
)R

(n−1)Je,η

(k
1′
k2,k3k4′

)(ω − ηωµ)γ
η∗

(µ;k
4′
k4)

×

×

{

J Jµ Je
j1′ j2 j1

}{

J Jµ Je
j4′ j3 j4

}

−

−
∑

(k
2′
k
3′
)

γη(µ;k
2′
k2)
R

(n−1)Je,η

(k1k2′
,k

3′
k4)

(ω − ηωµ)γ
η∗

(µ;k3k3′
) ×

×

{

J Jµ Je
j2′ j1 j2

}{

J Jµ Je
j3′ j4 j3

}

]

.

(31)

Here the indices in the brackets denote full sets of single-
particle quantum numbers with the excluded magnetic
quantum numbers (total angular momentum projections:
k1 = {(k1),m1}. The correlated propagator Re(n) is cal-
culated in the symmetrized form:

R
e(n)J,η
s(k1k4,k2k3)

(ω) = R̃
(0)J,η
s(k1k4,k2k3)

(ω) +

+R̃
(0)η
(k1k2)

(ω)
∑

(k6≤k5)

[

Φ
(n)J,η
s(k1k6,k2k5)

(ω) − Φ
(n)J,η
s(k1k6,k2k5)

(0)
]

×

× R
e(n)J,η
s(k5k4,k6k3)

(ω),

(32)

where the matrix elements with the subscript ”s” are
symmetrized with respect to one non-conjugated and one
conjugated quasiparticle index. Such a symmetrization
allows a shortened summation in the integral part of the
Eq. (32) and simplifies, to some extent, the numerical
calculations. The symmetrized matrix elements of the

mean field propagator R̃
(0)
s and of the phonon coupling
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R = +

+ R

 Φ (ω) − Φ (0)
e(n)

R = 
(n)

R
e(n) (n)R

e(n)

R
e(n)(n)

+ + +

+ + +

(2)
 Φ    =

(n)
 Φ      = R(n-1) R(n-1) R(n-1)R(n-1)

(n)

FIG. 7: The diagrammatic representation of the iterative series for the QVC amplitude and response function with multiphonon
couplings: The lowest order 2q⊗phonon amplitude Φ(2) of the conventional phonon coupling model, the higher-order 2q⊗(n-

1)phonon amplitude Φ(n) for n > 2; Bethe-Salpeter equations in the ph-channel for the correlated propagator R
e(n) and for

the response function R
(n).

amplitude Φ
(n)
s have the following form:

R̃
(0)J,η
s(k1k4,k2k3)

(ω) = R̃
(0)η
(k1k2)

(ω)×

×
[

δ(k1k3)δ(k2k4) + (−)φ12δ(k1k4)δ(k2k3)

]

, (33)

Φ
(n)J,η
s(k1k4,k2k3)

(ω) =
1

1 + δ(k3k4)
×

×
[

Φ
(n)J,η
(k1k4,k2k3)

(ω) + (−)φ12Φ
(n)J,η
(k2k4,k1k3)

(ω)
]

, (34)

with φ12 = J + l1 − l2 + j1 − j2. The BSE for the full
response function R(n)(ω)

R
(n)J,ηη′

(k1k4,k2k3)
(ω) = R

e(n)J,η
s(k1k4,k2k3)

(ω)δηη
′

+
∑

(k6≤k5)

×

×
∑

(k8≤k7)η′′

R
e(n)J,η
s(k1k6,k2k5)

(ω)Ṽ J,ηη′′

(k5k8,k7k6)
R

(n)J,η′′η′

(k7k4,k8k3)
(ω)

(35)

is solved either in Dirac-Hartree-BCS or in momentum-
channel representations, see Appendix C of Ref. [49].
Similar to the conventional RQTBA, the subtraction

of the static contribution of the phonon coupling am-
plitude Φ(ω = 0) from the effective interaction should
be performed to avoid double counting effects of the
quasiparticle-vibration coupling [66]. The subtraction
can be done in the integral part either of the equation

for the correlated propagator R
e(n)
s or of the equation for

the response function R(n). In the latter case the sub-
traction acquires the meaning of renormalization of the
static effective interaction Ṽ . In this section, giving the
coupled-form expressions for these quantities, the sub-
traction is performed in Eq. (32) for the symmetrized

correlated propagator R
e(n)
s . This is more convenient

technically because the subtracted term has the same
form as its energy-dependent counterpart Φ(ω).
After finding the response function R(n) of Eq. (35)

it can be substituted to the Eq. (31) for the next-order

QVC amplitude. In principle, the iterations can be con-
tinued until the desired accuracy is reached. The closed
system of equations for the nuclear response function in
the coupled form presented in this section can be di-
rectly implemented for numerical calculations. The case
of n = 3 is the first step beyond the conventional RQTBA
and includes 2q⊗2phonon configurations. It is clear from
Eq. (31) that on the large scale the 2q⊗2phonon effects
play a smaller role compared to the 2q⊗phonon ones
of the RQTBA because of the products of the two 6j-
symbols in each term on the right hand side of the Eq.
(31), which are of geometrical nature. Every next itera-
tion contains an additional smallness of this origin, thus
providing conditions for convergence of the whole proce-
dure (29). The convergence will be examined in more
detail and verified by numerical implementation of the
approach in the future work.
The resulting linear response function R(n)(ω) contains

all the information on the nuclear response to external
one-body operators. The observed spectrum of a nu-
cleus excited by a sufficiently weak external field P as,
for instance, an electromagnetic field or a weak current,
is described by the nuclear polarizability which is a dou-
ble convolution of the response function with this field
operator. The reduced matrix elements of the external
field operator have the following general coupled form:

P
(p)J,η
(k1k2)

=
∑

LS

δη,1 + (−1)Sδη,−1
√

1 + δ(k1k2)

ηS(k1k2)
×

×〈(k1) ‖ P
(p)J
LS ‖ (k2)〉, (36)

where the index (p) contains all possible quantum num-
bers, other than those concretized here. The factors
ηS(k1k2)

are determined by combinations of the quasipar-

ticle occupation numbers uk, vk [68]:

ηS(k1k2)
=

1
√

1 + δ(k1k2)

(

uk1
vk2

+ (−1)Svk1
uk2

)

, (37)
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obtained as a solution of Eq. (9). These combinations
reflect symmetrization in the integral part of Eq. (35),
which enables one to take each 2q-pair into account only
once because of the symmetry properties of the reduced

matrix elements Ṽ J,ηη′′

(k5k8,k7k6)
.

Nuclear polarizability in np-nh time blocking approxi-
mation reads:

Π
(n)
P (ω) =

∑

(k2≤k1)η

∑

(k4≤k3)η′

P
(p)J,η∗
(k1k2)

×

× R
(n)J,ηη′

(k1k4,k2k3)
(ω)P

(p)J,η′

(k3k4)
, (38)

and determines the microscopic strength function S(E)
as:

S(E) = −
1

π
lim

∆→+0
Im Π

(n)
P (E + i∆), (39)

where a finite imaginary part ∆ of the energy variable
is introduced in order to obtain a smoothed envelope
of the spectrum, if needed, which is often the case for
the correct comparison to experimental data with lim-
ited resolution. Thus, Eqs. (38), (39) relate the obtained
response function to experimental observations.

VI. SUMMARY

In this work the nuclear response theory is advanced
beyond the existing approaches in order to include the
effects of multiphonon coupling. The theory is formu-
lated consistently for the covariant framework based on
meson-exchange nuclear forces, i.e. on the effective quan-
tum hadrodynamics as the underlying concept, although
it can be adopted for a non-relativistic framework based
on one of the modern density functionals.
While quantum hadrodynamics provides a fundamen-

tal description of nuclear processes of short and medium
range, there are long-range correlations with ranges of
the order of nuclear size, which can not be described by
an exchange of heavy and intermediate-mass mesons in

perturbative methods. In medium-mass and heavy nu-
clei, the collective effects, such as low-lying vibrational
modes, emerge as ’effective’ degrees of freedom, which
are in immediate relevance to the energy scale of nuclear
structure. An order parameter associated with these de-
grees of freedom appears naturally in the covariant re-
sponse theory already on the RQRPA level, which helps
to treat them as effective quasi-bosonic fields responsible
for the long-range correlations. Their characteristics are
computed consistently from the meson-exchange interac-
tion using, in the leading-order approximation, RQRPA
or equivalent techniques. Thereby, the link between the
short-range, medium-range, and long-range correlations
is established, that forms an essential part of the covari-
ant response theory.

The mathematical structure of the presented exten-
sion of nuclear response theory is based on the idea of
time-blocking which is another key ingredient for this
work. The time-blocking approximation makes possible
the selection of the most important Feynman graphs con-
taining quasiparticle-vibration coupling and their subse-
quent non-perturbative treatment in a controlled way.
The developed method generalizes the time-blocking ap-
proximation to multiphonon coupling and, thus, is capa-
ble of resolving fine details of nuclear excitation spectra,
which was quite limited in the previous versions of the
RQTBA. The generalized response theory presented here
is, thereby, a step forward to a more precise solution of
the nuclear many-body problem, which aims at a unified
description of both high-frequency collective states and
low-energy spectroscopy. The proposed approach is of
a rather general character and can be applied for other
many-body Fermi systems with collective degrees of free-
dom.
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