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The formalism based on correlated basis functions and the cluster expansion technique has been
recently employed to derive an effective interaction from a realistic nuclear hamiltonian. To gauge
the reliability of this scheme, we perform a systematic comparison between the results of its appli-
cation to the Fermi hard-sphere system and the predictions obtained from low-density expansions,
as well as from other many-body techniques. The analysis of a variety of properties, including the
ground state energy, the effective mass and the momentum distribution, shows that the effective
interaction approach is quite accurate, thus suggesting that it may be employed to achieve a con-
sistent description of the structure and dynamics of nuclear matter in the density region relevant to
astrophysical applications.

I. INTRODUCTION

Approaches based on effective interactions are widely
used to study the properties of strongly interacting many-
body systems, when the bare interaction between the
constituents cannot be treated in perturbation theory us-
ing the basis states describing non interacting particles
[1, 2].

Effective interactions specifically designed to repro-
duce the bulk properties of nuclear matter (see, e.g.
Refs. [3, 4]), while being remarkably successful in a num-
ber of instances, fail to provide a quantitative account
of nucleon-nucleon (NN) scattering, both in free space
and in the nuclear medium, the understanding of which
is needed for the description of non-equilibrium proper-
ties [5, 6]. The results reported in Ref. [5] clearly show
that the determination of the shear viscosity and thermal
conductivity of pure neutron matter, relevant to many
astrophysical applications [7, 8], requires effective inter-
actions derived from ab initio microscopic approaches,
capable of explaining the observed NN scattering data in
the zero-density limit [5].

The authors of Refs. [9, 10] have developed a proce-
dure to determine the effective interaction in nuclear mat-
ter using the Correlated Basis Function (CBF) formalism
and the cluster expansion technique. While this scheme
has been thoroughly tested through comparison between
its results and those obtained from G-matrix perturba-
tion theory in pure neutron matter [5], the analysis of a
somewhat simpler many-body system, several properties
of which can be accurately calculated and expressed in
analytic form, may provide further insight into the valid-
ity and robustness of the underlying assumptions.

The nucleon-nucleon (NN) interaction is known to be
strongly repulsive at short distances, as clearly indicated
by saturation of the charge-density distributions mea-
sured by elastic electron-nucleus scattering [11]. As a
consequence, the Fermi hard-sphere fluid, i.e. a system
of point-like spin one-half particles interacting through

the potential

v(r) =

{
∞ r < a
0 r > a

, (1)

has been long recognised as a valuable model for inves-
tigating concepts and approximations employed to study
the properties of nuclear matter.

In this paper we discuss the derivation of the effective
interaction of the Fermi hard-sphere system within the
approach of Ref. [10], as well as its application to the
calculation of a variety of properties, including the energy
per particle, the self-energy, the effective mass and the
momentum distribution.

As an introduction, Section II is devoted to a summary
of the results of low-density expansions in powers of the
dimensionless parameter c = kFa, where a is the hard
core radius [see Eq. (1)] and kF is the Fermi momentum.
In Section III, we outline the basics of both CBF theory
and the cluster expansion technique, needed to obtain
the ground state energy and determine the effective in-
teraction. The perturbative calculation of the self-energy
at second order in the effective interaction is described
Section IV, while in Section V the single particle prop-
erties resulting from our calculations are reported and
compared to those obtained using different approaches.
Finally, in Section VI we summarize our findings and
state the conclusions.

II. LOW-DENSITY EXPANSIONS

The expansion of the ground state energy of the quan-
tum mechanical hard-sphere system in powers of the di-
mensionless parameter c was first discussed by Huang
and Yang [12], who were able to derive its terms up to
order c2, back in the 1950s.

More recently, Bishop carried out a systematic analy-
sis, including a comparison between results obtained us-
ing different computational schemes [13].
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The calculation of the ground-state energy exploits the
formalism developed to describe a scattering process in-
volving two particles interacting through a strongly re-
pulsive potential. The main element of this approach is
the replacement of the bare interaction with the t-matrix,
which amounts to including the contribution of the infi-
nite series of ladder diagrams. This technique, which in
general allows to achieve a fast convergence of pertur-
bative calculations, becomes essential when dealing with
the hard-core interaction of Eq. (1).

The author of Ref. [13] considered two different treat-
ments of scattering in a degenerate medium, based on the
use of time-ordered Goldstone diagrams or Feynman di-
agrams, yielding the same expression of the ground state
energy.

For a hard-sphere system of degeneracy ν = 41 the
result, obtained including the first four terms in the ex-
pansion, reads

E0 =
k2
F

2m

[
3

5
+

2

π
c+

12

35π2
(11− 2 ln 2) c2 + 0.78c3

+
32

9π3

(
4π − 3

√
3
)
c4 ln c+O(c4)

]
, (2)

where the linear term describes the effects of forward
scattering, the quadratic term takes into account Pauli’s
exclusion principle, and the higher order terms arise from
the occurrence of processes involving at least three par-
ticles.

The low-density expansion for the single particle spec-
trum, e(k), and the effective mass, defined as

m?(k) =

(
1

k

de

dk

)−1

, (3)

are discussed in Ref. [1]. The result at k = kF , derived
taking into account terms quadratic in c is

m?(kF )

m
= 1 +

24

15π2
(7 ln 2− 1)c2 . (4)

Note that the above equation implies that: i) there are
no linear contributions and ii) [m(kF )?/m] > 1 for all
values of c.

Perturbative results at order c2 have been also ob-
tained for the momentum distribution, defined as

n(k) = 〈0|a†kak|0〉 , (5)

where |0〉 denotes the system ground state, while a†k and
ak are creation and annihilation operators, respectively
[14–18]. The explicit expression of n(k), obtained by
the authors of Ref. [16–18] carrying out an expansion
in powers of the free space t-matrix, can be found in the
Appendix.

1 The hard-sphere system with ν = 2 and 4 is meant to model pure
neutron matter and isospin-symmetric nuclear matter, respec-
tively. Note that in both instances the system can be described
in terms of the single parameter c = kF a.

III. THE CBF EFFECTIVE INTERACTION

Within the CBF approach, the correlated states of the
hard-sphere system are obtained from the non interacting
Fermi gas (FG) states through the transformation

|n〉 =
F |nFG〉

〈nFG|F †F |nFG〉1/2
, (6)

where the operator F , embodying the correlation struc-
ture induced by the interaction potential, is written in
the form

F =
∏
j>i

f(rij) , (7)

with

f(rij ≤ a) = 0 , lim
rij→∞

f(rij) = 1 , (8)

rij = |ri − rj | being the interparticle distance.
In principle, the shape of the two-body correlation

function, f(rij), at rij > a can be determined from func-
tional minimisation of the expectation value of the hamil-
tonian

H = T + V =
∑
i

k2
i

2m
+
∑
j>i

v(rij) , (9)

in the correlated ground state. In the above equation,
ki = |ki|, m denotes the particle mass and v is the po-
tential of Eq. (1).

The effective interaction

V eff =
∑
j>i

veff(rij) , (10)

is defined by the relation

1

N
〈H〉 =

1

N

〈0|H|0〉
〈0|0〉 (11)

= KFG +
1

N
〈0FG|Veff |0FG〉 ,

whereN is the number of particles, andKFG = 3k2
F /10m

is the expectation value of the kinetic energy in the FG
ground state. Note that the above equation implies that
the CBF effective interaction is defined not in operator
form, but in terms of its expectation value in the Fermi
gas ground state.

The calculations discussed in the following Sections
are largely based on the assumption—that will be tested
comparing our results to those obtained from differ-
ent many-body approaches—that perturbative calcula-
tions involving matrix elements of Veff between Fermi gas
states provide accurate estimates of all properties of the
Fermi hard-sphere system.
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A. Cluster expansion formalism

The calculation of matrix elements of any many-body
operator between correlated states involves largely irre-
ducible 3N -dimensional integrations. This problem, that
becomes quickly intractable with increasing N , can be
circumvented expanding the matrix element in a series,
the terms of which represent the contributions of subsys-
tems (clusters) involving an increasing number of par-
ticles [19]. Since correlations are short ranged, at not
too high density the cluster expansion is expected to be
rapidly convergent.

The effective interaction of Ref. [10] is derived expand-
ing the left hand side of Eq. (11), and keeping the two-
body cluster contribution only. The resulting expression
is

1

N
〈H〉 =

3k2
F

10m
+ (∆E)2 , (12)

with

(∆E)2 =
ρ

2

∫
d3r

1

m
[∇f(r)]

2

[
1− 1

ν
`2(kF r)

]
, (13)

where ν denotes the degeneracy of the momentum eigen-
states, ρ = νk3

F /6π
2 is the particle density, and the Slater

function is defined as `(x) = 3 (sinx− x cosx) /x3. The
form of veff follows immediately from Eqs. (10)-(13), im-
plying

veff(r) =
1

m
[∇f(r)]

2
. (14)

As pointed out above, the shape of f(r) can be ob-
tained from the functional minimisation of the hamilto-
nian expectation value in the correlated ground state.
Within the two-body cluster approximation, this proce-
dure yields the Euler-Lagrange equation

g′′(r)− g(r)

[
Φ′′(r)

Φ(r)
+mλ

]
= 0 , (15)

where

g(r) = f(r)Φ(r) , (16)

with

Φ(r) ≡ r
√

1− 1

ν
`2(kF r) . (17)

Equation (15) is solved with the boundary conditions
f(a) = 0 and f(d) = 1, the additional constraint
f ′(d) = 0 being fulfilled through the introduction of
the Lagrange multiplier λ. The determination of the cor-
relation range d will be discussed in the next Section.

B. Ground state energy

The terms of the cluster expansion can be conveniently
represented by diagrams, that are classified according to

FIG. 1. (color online) Radial dependence of the correlation
functions obtained from the solution of the Euler-Lagrange
equation (15). The solid, dashed and dot-dash lines corre-
spond to c = kF a =0.3, 0.5 and 0.7, respectively.

their topological structure. Selected classes of diagrams
can be then summed up to all orders solving a set of
coupled integral equations, dubbed Fermi Hyper-Netted
Chain (FHNC) equations [20, 21].

The correlation functions obtained from the procedure
outlined above and the FHNC summation scheme have
been extensively used to obtain upper bounds to the
ground state energy of a variety of interacting many-
body systems, including liquid helium [22], nuclear and
neutron matter [23] and the Fermi hard-sphere sys-
tem [24, 25]. Within this approach, yielding remark-
ably accurate results, the correlation range d is treated
as a variational parameter. Figure 1 shows the radial de-
pendence of the correlation functions obtained from min-
imisation of the FHNC ground state energy at different
densities, corresponding to c = kFa =0.3, 0.5 and 0.7,
respectively. Note that, throughout this article, we will
consistently set the hard-core radius, the particle mass
and the degeneracy to the values a = 1 fm, m = 1 fm−1

and ν = 4.
The ground state energy of the Fermi hard-sphere sys-

tem is usually written in the form

E0 =
3k2
F

10m
(1 + ζ) , (18)

and the low-density expansion of the parameter ζ can be
readily obtained combining its definition, Eq. (18), and
Eq. (2)

ζ =
5

3

[
2

π
c +

12

35π2
(11− 2 ln 2) + 0.78c3

+
32

9π3

(
4π − 3

√
3
)
c4 ln c

]
. (19)

In Fig. 2, the density dependence of ζ computed using
Eq. (19) (dashed line) is compared to the correspond-
ing FHNC result (full line). For reference, we also show,
by the diamonds, the perturbative values of ζ obtained
including contributions up to order c3. It clearly ap-
pears that at low c, corresponding to low density, the
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predictions of the two approaches are very close to one
another. At c = 0.2 (0.3), the difference in ζ turns out
to be less than 5% (7%), which translates into an energy
difference of less than 1% (2%). The more significant
discrepancies observed at higher values of c may be as-
cribed to a failure of the low-density expansion, although
the observation that including the term of order c4 log c
leads to a decrease of ζ suggests that the contribution of
cluster terms not taken into account within the FHNC
scheme may also play a role. Note, however, that the full
line representing the FHNC results lies consistently above
the perturbative results. This pattern supports the as-
sumption that the approximations involved in the FHNC
calculation of the ground state expectation value of the
hamiltonian do not spoil its upper bound character.

FIG. 2. (colour online) The full line shows the c-dependence
of the dimensionless quantity ζ, defined by Eq. (18), obtained
within the FHNC approach for the system of hard spheres of
radius a = 1 fm, massm = 1 fm−1 and degeneracy ν = 4. The
results obtained from the low-density expansion of Eq. (19)
are represented by the dashed line, while the diamonds corre-
spond to the perturbative estimates of ζ computed neglecting
terms of order higher than c3.

The effective interaction, defined by Eq. (11), is de-
signed to obtain the ground state expectation value of
the hamiltonian at first order of perturbation theory in
the Fermi gas basis. Our procedure to construct veff is
based on the tenets that: i) FHNC calculations provide
an accurate estimate of 〈H〉/N , and ii) the FHNC re-
sults can be reproduced within the two-body cluster ap-
proximation by adjusting the correlation range d, which
determines the solution of the Euler-Lagrange equation
(15). From Eqs. (12)-(14), it follows that under these as-
sumptions Eq. (11) is fulfilled by construction, provided
its left hand side is identified with the FHNC result.

In Fig. 3, the correlation range resulting from min-
imisation of the FHNC ground state energy is compared
to that employed to obtain the CBF effective interac-
tion, as a function of the dimensionless variable c. The
range of the effective interaction turns out to be size-
ably smaller than the correlation range obtained from
the variational calculation for all values of c, the differ-

ence being ∼ 35 ÷ 40%. This result is consistent with
the observation that the two-body cluster approximation
underestimates the FHNC energy. Therefore, reproduc-
ing the FHNC result at two-body cluster level requires
a shorter correlation range, leading a stronger effective
interaction.

FIG. 3. (colour online) The full line shows the c-dependence
of the correlation range, d, resulting from minimisation of
the ground state energy of the hard-sphere system computed
within the FHNC approach. The dashed line corresponds to
the correlation range employed to obtain the CBF effective
interaction of Eq. (14).

The radial dependence of the effective interaction de-
fined by Eq. (14) is illustrated in Fig. 4 for three different
values of the dimensionless variable c. Note that the re-
gion (r/a) < 1, where veff(r) = 0, is not shown. The
shape of veff simply reflects the fact that, as the Fermi
momentum increases, the correlation range, displayed in
Fig. 3, decreases, and the slope of the correlation function
increases.

FIG. 4. (colour online) Radial dependence of the effective in-
teraction defined by Eq. (14). The dot-dash, solid and dashed
lines correspond to c = kF a = 0.3, 0.5 and 0.7, respectively.
The region (r/a) < 1, where veff(r) = 0, is not shown.
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IV. SELF-ENERGY

The two-point Green’s function G, embodying all in-
formation on single-particle properties of many-body sys-
tems, is obtained from Dyson’s equation [1, 26]

G(k,E) = G0(k,E) +G0(k,E)Σ(k,E)G(k,E) , (20)

where G0 is the Green’s function of the non interacting
Fermi gas, the expression of which reads

G0(k,E) =
θ(k − kF )

E − e0(k) + iη
+

θ(kF − k)

E − e0(k)− iη . (21)

In the above equation, η = 0+, e0(k) = k2/2m, θ(x)
is the Heaviside step function, and the two terms in the
right-hand side describe the propagation of particles (k >
kF ) and holes (k < kF ).

The irreducible, or proper, self-energy, Σ(k,E), ac-
counts for the effects of interactions. From Eqs. (20) and
(21), it follows that in interacting systems the Green’s
function can be written in terms of the self-energy ac-
cording to

G(k,E) =
1

E − e0(k)− Σ(k,E)
. (22)

In perturbation theory, the irreducible self-energy is
obtained from the expansion

Σ(k,E) = Σ(1)(k) + Σ(2)(k,E) + . . . , (23)

where the energy-independent first order term corre-
sponds to the Hartree-Fock approximation, whereas the
second order terms, referred to as polarisation and corre-
lation contributions, describe interaction effects affecting
the propagation of particle (2p1h) and hole (2h1p) states,
respectively. The diagrams representing the direct part of
the first and second order contribution to the irreducible
self-energy are shown in Fig. 5.

The real and energy-independent Hartree-Fock contri-
bution is obtained from

ΣHF (k) =
1

ν

∑
σ,k′σ′

n0
<(k′)〈kσ k′σ′|veff |kσ k′σ′〉a , (24)

where n0
<(k) = θ(kF − k), the two-particle state is anti-

symmetrised according to |α β〉a = (|α β〉 − |β α〉)/
√

2,
and the index σ labels the discrete quantum numbers
specifying the state of a particle carrying momentum k.
Equations (25) and (26) show that, as the effective inter-
action is diagonal in the space of the discrete quantum
numbers, the self-energy does not depend on σ.

The explicit expression of the polarisation and corre-
lation contributions are (see Fig. 5)

Σ2p1h (k,E) =
m

ν

∑
σ,k′σ′,qτ,q′τ ′

|〈qτ q′τ ′|veff |kσ k′σ′〉a|2
q2 + q′2 − k′2 − 2mE − iη

× n0
>(q)n0

>(q′)n0
<(k′) , (25)

ΣHF (k)

(a)

Σ2p1h(k, ω)

(a)

q q′
k′

Σ2h1p(k, E)

(b)

q q′
k′

FIG. 5. Diagrammatic representation of the direct part of the
first and second order contributions to the irreducible self-
energy. Panels (a), (b) and (c) correspond to the Hartree-
Fock, polarisation and correlation terms, respectively. Dashed
lines represent the CBF effective interaction, while upward
and downward oriented solid lines depict the free propagation
of particle and hole states, respectively.

and

Σ2h1p (k,E) =
m

ν

∑
σ,k′σ′,qτ,q′τ ′

|〈qτ q′τ ′|veff |kσ k′σ′〉a|2
k′2 − q2 − q′2 + 2mE − iη

× n0
<(q)n0

<(q′)n0
>(k′) , (26)

with n0
>(k) = θ(k − kF ). Note that the above

definitions imply that ImΣ2h1p

(
k,E > k2

F /2m
)

=

ImΣ2p1h

(
k,E < k2

F /2m
)

= 0.
Figure 6 shows the behaviour of the imaginary part of

Σ2h1p (k,E) and Σ2p1h (k,E) corresponding to c = 0.3,
computed at E = k2/2m and displayed as a function
of the dimensionless variable k/kF . For comparison, we
also show the same quantities computed by Sartor and
Mahaux using the low-density expansion and including
terms up to order c2 [16].

The energy dependence of the imaginary part of the
second order contributions to the self-energy is illustrated
in Fig. 7, showing the results corresponding to c = 0.5
for three different values of momentum, corresponding to
k/kF =1/2 (solid line), 1 (dashed line) and 3/2 (dot-dash
line).

V. RESULTS

The self-energy computed at second order in the CBF
effective interaction, discussed in the previous Section,
has been used to obtain the single particle spectrum, ef-
fective mass and momentum distribution of the Fermi
hard-sphere system.

The conceptual framework for the identification of sin-
gle particle properties in interacting many-body systems
is laid down in Landau’s theory of liquid 3He (see, e.g.
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FIG. 6. (colour online) Imaginary part of the quanti-
ties Σ2h1p

(
k < kF , k

2/2m
)

and Σ2p1h

(
k > kF , k

2/2m
)
, com-

puted at c = 0.3 and displayed as a function of the dimension-
less variable k/kF . The solid and dashed lines correspond to
the results obtained from the CBF effective interaction and
from the low-density expansion of Ref. [16], respectively.

FIG. 7. (colour online) Energy dependence of the imagi-
nary part of the polarisation (2mE/k2

F > 1) and correlation
(2mE/k2

F < 1) contributions to the self-energy of the Fermi
hard-sphere system at c = 0.5. The dashed, solid and dot-
dash lines correspond to k/kF = 0.5, 1 and 1.5, respectively.

Ref. [27]), based on the tenet that there is a one-to-one
correspondence between the elementary excitations of a
Fermi liquid, dubbed quasiparticles, and those of the non
interacting Fermi gas.

Quasiparticle states of momentum k are specified by
their energy, e(k) and lifetime τk = Γ−1

k . In the limit of
small Γk, the Green’s function describing the propagation
of quasiparticles can be written in the form

G(k,E) =
Zk

E − e(k) + iΓk
. (27)

A comparison between the above expression and Eq.(22)
clearly shows that quasiparticle properties can be readily
related to the real and imaginary parts of the self-energy.

A. Effective mass and single particle spectrum

The energy of a quasiparticle of momentum k, e(k), is
obtained solving the equation

e(k) = e0(k) + Re Σ[k, e(k)] . (28)

Substitution of Eq. (24) in Eq. (28) yields the Hartee-
Fock spectrum, represented by the dashed lines of Fig. 8,
while the results obtained including the second order cor-
rections to the self-energy are displayed by full lines. For
comparison, the dot-dash lines show the kinetic energy
spectrum.

FIG. 8. (colour online) Quasiparticle energy, computed from
Eq. (28) at c = 0.2 [panel (A)] and 0.5 [panel(B)]. The dashed
and solid lines correspond to the first order (i.e. Hartree-Fock)
and second order approximations to the self-energy, respec-
tively. For comparison, the dot-dash lines show the kinetic
energy spectrum.

From Eqs. (22) and (27) it also follows that the quasi-
particle lifetime is related to the self-energy through

τ−1
k = Γk = ZkIm Σ[k, e(k)] , (29)

where

Zk =

[
1− ∂

∂E
Re Σ(k,E)

]−1

E=e(k)

, (30)

is the residue of the Green’s function of Eq. (27) at the
quasiparticle pole.

Equations (28) and (29) are obtained expanding the
energy of the quasiparticle pole in powers of Γk, and
keeping the linear term only. Note that the resulting ex-
pressions of e(k) and Γk obtained using the second order
self-energy are not second order quantities.

The quasiparticle spectrum is conveniently
parametrized in terms of the effective mass m?,
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defined by Eq. (3). The total derivative of e = e(k)
is performed using Eq. (28), and keeping in mind that,
since Re Σ(k,E) is evaluated at the quasiparticle pole,
k and E are not independent of one another. As a
consequence, one finds

de

dk
=

k

m
+

∂

∂k
Re Σ(k, e) +

∂

∂e
Re Σ(k, e)

de

dk
, (31)

implying

de

dk
=

[
k

m
+

∂

∂k
Re Σ(k,E)

]
×
[
1− ∂

∂E
Re Σ(k,E)

]−1

E=e(k)

. (32)

At first order the self-energy depends on k only, and the
above equation reduces to

de

dk
=

k

m
+
∂ΣHF (k)

∂k
, (33)

with ΣHF given by Eq. (24).

The dot-dash and solid lines of Fig. 9 show the c-
dependence of the ratio m?(kF )/m at k = kF , evaluated
using the self energy computed at first and second order
in the CBF effective interaction, respectively. It is appar-
ent that inclusion of the energy-dependent contributions
to the self-energy, resulting in a moderate correction to
the spectra of Fig. 8, leads instead to a drastic change in
the behaviour of the effective mass. While in the Hartee-
Fock approximation the ratio m?(kF )/m is less than one
and monotonically decreasing with c, the full result turns
out to be larger than one and monotonically increasing.

The dashed line of Fig. 9, representing the ratio
obtained from the low-density expansion at order c2,
Eq. (4), exhibits the same features as the solid line. The
low-density expansion appears to provide quite accurate
results for c <∼ 0.3. A comparison with Fig. 2 suggests
that in the case of the ground state energy the inclu-
sion of higher order contributions extends the range of
applicability of the expansion to c <∼ 0.4.

It is worth pointing out that the striking differences be-
tween the effective masses computed using the first and
second order expressions of the self-energy are a conse-
quence of their different functional dependences. While
the former is a function of momentum only, the latter
depends on both momentum and energy. Because the
enhancement of the effective mass, as well as the modifi-
cation of its behaviour as a function of density, arise from
the appearance of the energy dependence, it is arguable
that the inclusion of higher order terms would result in
small corrections.

The analysis of the momentum dependence of e(k) re-
veals that its behaviour is nearly quadratic, and can be
accurately parametrized in terms of m?

F = m?(kF ) ac-

cording to

e(k) =
k2

2m?
F

+ const , (34)

at densities corresponding to c <∼ 0.5.

FIG. 9. (colour online) c-dependence of the ratio m?(kF )/m,
obtained from Eqs. (3) and (28). The dot-dash and solid
lines represent the results of calculations carried out using
the first and second order approximations to the self-energy.
For comparison, the dashed line shows the results computed
using the low-density expansion of Eq. (4).

B. Momentum distribution

In translationally invariant systems, the momentum
distribution, n(k), describes the occupation probability
of the single-particle state of momentum k.

The connection between n(k) and the Green’s func-
tion, or the self-energy, can be best understood introduc-
ing the spectral functions appearing in the Lehmann rep-
resentation of the two-point Green’s function (see, e.g.,
Refs. [15, 26])

G(k,E) =

∫ ∞
0

dE′
[

Pp(k,E)

E − E′ − µ+ iη

+
Ph(k,E)

E + E′ − µ− iη

]
, (35)

where µ = e(kF ) denotes the chemical potential.
The particle (hole) spectral function Pp(k,E)

[Ph(k,E)] yields the probability of adding to (removing
from) the ground state a particle of momentum k,
leaving the resulting (N + 1)- [(N − 1)-] particle system
with energy E. It follows that

n(k) =

∫ ∞
0

dEPh(k,E) = 1−
∫ ∞

0

dEPp(k,E) . (36)

The momentum distribution obtained from Eq. (36),
with
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Ph(k,E) =
1

π
Im G(k, µ− E) =

1

π

ImΣ(k, µ− E)

[µ− E − e0(k)− ReΣ(k, µ− E)]2 + [ImΣ(k, µ− E)]2
, (37)

and

Pp(k,E) = − 1

π
Im G(k, µ+ E) = − 1

π

ImΣ(k, µ+ E)

[µ+ E − e0(k)− ReΣ(k, µ+ E)]2 + [ImΣ(k, µ+ E)]2
, (38)

can be cast in the form [28]

n(k) = Zkθ(kF − k) + δn(k) . (39)

The first term in the right-hand side of the above equa-
tion, with Zk defined by Eq. (30), originates from the
quasiparticle pole in Eq. (27), while δn(k) is a smooth
contribution, extending to momenta both below and
above kF , arising from more complex excitations of the
system. Equation (39) shows that the discontinuity of
n(k) at k = kF is given by

n(kF − η)− n(kF + η) = ZkF = Z . (40)

At second order in the effective interaction, the mo-
mentum distribution obtained from Eqs.(35)-(38) can be
conveniently written in the form

n(k) = n<(k) + n>(k) , (41)

where n<(k > kF ) = n>(k < kF ) = 0, and

n<(k < kF ) = 1 +

[
∂

∂E
ReΣ2p1h(k,E)

]
E=e0(k)

, (42)

n>(k > kF ) = −
[
∂

∂E
ReΣ2h1p(k,E)

]
E=e0(k)

. (43)

Note that the above equations imply that within the
Hartree-Fock approximation n(k) = θ(kF − k), and
Z = 1.

Figure 10 shows the momentum distributions obtained
including contributions up to second order in the CBF
effective interaction, for three different values of the di-
mensionless parameter c. It clearly appears that the de-
viation from the Fermi gas result rapidly increases with
density. A measure of interaction effects is provided by
the discontinuity Z, shown in Fig. 11 as a function of c.

In Fig. 12 we compare the momentum distribution re-
sulting from our calculation, represented by the solid line,
to those reported in Ref. [24] for c = 0.4. The dashed line
shows the results computed using the variational wave
function obtained from minimisation of the ground state
energy within the FHNC scheme, while the crosses corre-
spond to the predictions of the the low-density expansion
discussed in Refs.[14, 16–18] (see Appendix), including
contributions up to order c2. Note that the values of
n(k > kF ) are multiplied by a factor 10.

FIG. 10. (colour online) Momentum distributions computed
at second order in the CBF effective interactions, for three
different values of c = kF a. The values of the discontinuity
corresponding c = 0.3, 0.5 and 0.7 are 0.92, 0.72 and 0.28,
respectively.

FIG. 11. (colour online) Discontinuity of the momentum dis-
tribution of the Fermi hard-sphere system, as a function of
c = kF a.

It clearly appears that the variational approach size-
ably underestimates interaction effects, and fails to pro-
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FIG. 12. (colour online) Momentum distribution of the Fermi
hard-sphere system at c = 0.4. Solid line: results obtained
at second order in the CBF effective interaction; dashed line:
variational results of Ref. [24]; crosses: results of the low-
density expansion at order c2. All values of n(k > kF ) are
multiplied by a factor 10.

vide the correct logarithmic behaviour at k close to the
Fermi momentum. On the other hand, the momentum
distributions obtained from the CBF effective interaction
and from the low-density expansion are in close agree-
ment at k < kF and exhibit discontinuities that turn out
to be within ∼ 3% of one another.

The kinetic energy computed using the variational n(k)
exactly agrees with the variational energy. On the other
hand, the result obtained from the perturbative momen-
tum distribution does not necessarily reproduce the ki-
netic energy calculated using the effective interaction,
Eq. (11), which coincides with the variational energy
by definition.

In Fig. 13, the difference between the momentum dis-
tribution computed using the effective interaction and
that obtained from the low-density expansion is illus-
trated for different values of c, ranging from 0.2 to 0.6.
The emerging picture is consistent with that observed in
Figs. 2 and 9, and suggests that the low density expan-
sion provides accurate predictions for c <∼ 0.3. Sizable
discrepancies appear at larger values of c, most notably
in the vicinity of the Fermi surface.

In order to establish a correspondence between the
hard-sphere system and isospin symmetric nuclear mat-
ter at equilibrium density, we have analysed the corre-
sponding momentum distributions. In Fig. 14 the re-
sults of our calculations at c = 0.55 are compared to the
results of the the calculation of Fantoni and Pandhari-
pande [29], carried out using a correlated wave function
and including second order contributions in CBF pertur-
bation theory. Note that the approach of Ref. [29] is
conceptually very similar to ours, although the effects of
correlations are taken into account modifying the basis
states, instead of replacing the bare potential with an

FIG. 13. (colour online) Comparison between the momen-
tum distribution obtained from the CBF effective interac-
tions (crosses) and the low-density expansion discussed in
Refs. [14, 16] (diamonds), for different values of the dimen-
sionless parameter c = kF a. Panels (A) and (B) correspond
to the regions k < kF and k > kF , respectively.

effective interaction.

FIG. 14. (colour online) Comparison between the momen-
tum distribution of the Fermi hard-sphere system obtained
from the effective interaction approach discussed in this ar-
ticle (squares) and that of isospin symmetric nuclear matter
at equilibrium density reported in Ref. [29] (solid line), com-
puted using correlated wave functions and second order CBF
perturbation theory.

It appears that, as far as the momentum distribu-
tion is concerned, the system of hard spheres of radius
a = 1 fm and kF = 0.55 fm−1 corresponds to nuclear
matter at density ρNM = 0.16 fm−3, or Fermi momentum
kF = 1.33 fm−1. Because n(k) is mainly determined
by the dimensionless parameter c = kFa, the results of
Fig. 14 suggest that nucleons in nuclear matter behave
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like hard spheres of radius a = 0.55/1.33 ≈ 0.4 fm. A
comparison with nuclear matter momentum distributions
obtained from other methods [30] leads to the same con-
clusion.

Note that, because the momentum distribution pro-
vides a measure of the occupation probability of single
particle levels, the deviations of n(k) from the prediction
of the Fermi gas model reflect the occurrence of virtual
scattering processes involving pairs of strongly correlated
particles, leading to their excitation to states outside the
Fermi sea. Therefore, our results suggest that these pro-
cesses are mainly driven by the short-range repulsive core
of the nucleon-nucleon interaction. On the other hand,
the crude description in terms of hard spheres is not ex-
pected to explain nuclear matter properties driven by low
momentum, i.e. long distance, physics. In this context,
it is worth mentioning that the discussion of the hard-
core model of nuclear matter of Ref. [1], based on the
solution of the Bethe-Goldstone equation, also assumes
a hard-core radius a = 0.4 fm.

VI. CONCLUSIONS

We have carried out a perturbative calculation of the
properties of the Fermi hard-sphere system using an ef-
fective interaction derived within the CBF formalism and
the cluster expansion technique.

The proposed approach combines the effectiveness of
including correlation effects through a modification of the
basis states with the flexibility of perturbation theory in
the Fermi gas basis. This feature is fully manifest in the
calculated momentum distributions, which, unlike those
obtained using correlated wave functions in the context
of the variational method, exhibit the correct logarithmic
shape in the vicinity of the Fermi surface. Achieving the
same result using the bare interaction and a correlated
basis involves non-trivial difficulties, arising from the use
of non-orthogonal perturbation theory [29].

The single particle properties obtained from the self-
energy computed using the CBF effective interaction turn
out to be significantly affected by the energy-dependent
second order contributions to Σ(k,E). In the case of the
effective mass at momentum k = kF , including these con-
tributions leads to a dramatic change of both the magni-
tude and the density-dependence of the ratio m?(kF )/m,
with respect to the predictions of the Hartree-Fock ap-
proximation. Similar results have been found in nuclear
matter calculations, carried out within G-matrix [31, 32],
Self Consistent Green’s Function [33] and CBF [34] per-
turbation theory.

The enhancement of the effective mass has important
implications for the calculation of the in medium scatter-
ing cross section, which in turn determines the transport
coefficients, as the value of the effective mass affects both
the incoming flux and the phase-space available to the
particles in the final state. For example, the enhanced
ratio m?

F /m > 1 brings about an increase of the cross

section, resulting in turn in a decrease of the shear vis-
cosity coefficient (see, e.g., Ref. [10]).

A comparison between the results discussed in this
article and those obtained from low-density expansions
suggests that the latter provide accurate predictions in
the density range corresponding to kF <∼ 0.3− 0.4 fm−1.
Note that, according to the argument of Section V B,
these values of kF correspond to densities in the range
0.2 <∼ (ρ/ρNM ) <∼ 0.4, ρNM being the equilibrium density
of isospin symmetric nuclear matter.

Further insight into the accuracy of the effective inter-
action approach may be gained from its extension to the
study of quasiparticle scattering, which has been also in-
vestigated using Landau’s kinetic theory [35], as well as
of transport properties [36].

In view of applications to dense matter of astrophysical
interest, the formalism developed in this article can be
readily generalised, along the line discussed in Ref. [37],
to obtain a number of properties of isospin-symmetric nu-
clear matter at equilibrium density, such as the spectral
functions defined by Eq. (35) and the density and spin-
density responses [37]. Comparison between the results
obtained from the CBF effective interaction and those
derived from different many-body techniques and using
different nuclear hamiltonians [37–42] will allow to firmly
assess the potential of this new approach.
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Appendix: Low-density expansion of the momentum
distribution

For the sake of completeness, we report the explicit
expression of the momentum distribution obtained from
the low-density expansion including terms of order up to
c2 = (kFa)2. As pointed out in Section V B, n(k) can
be conveniently written in terms of two contributions,
associated with hole and particle states, according to

n(k) = n<(k) + n>(k) , (A.1)

where

n<(k) = 0 for k > kF ,

n>(k) = 0 for k < kF . (A.2)
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At x = k/kF < 1, the algebraic expression of n<(k), derived by the authors of Refs. [16, 18], reads

n<(k) = 1− ν − 1

3π2x
c2
[
(7 ln 2− 8)x3 + (10− 3 ln 2)x+ 2 ln

1 + x

1− x − 2(2− x2)3/2 ln
(2− x2)1/2 + x

(2− x)1/2 − x

]
, (A.3)

where ν denotes the degeneracy of the momentum eigenstates. The form of n>(k), reported in Refs. [16, 17], depends

on the range of x. For 1 < x <
√

2

n>(k) =
ν − 1

6π2x
c2
{

(7x3 − 3x− 6) ln
x− 1

x+ 1
+ (7x3 − 3x+ 2) ln 2− 8x3 + 22x2 + 6x− 24

+ 2(2− x2)3/2

[
ln

2 + x+ (2− x2)1/2

2 + x− (2− x2)1/2
+ ln

1 + (2− x2)1/2

1− (2− x2)1/2
− 2 ln

x+ (2− x2)1/2

x− (2− x2)1/2

]}
, (A.4)

while for
√

2 < x < 3

n>(k) =
ν − 1

6π2x
c2
{

(7x3 − 3x− 6) ln
x− 1

x+ 1
+ (7x3 − 3x+ 2) ln 2− 8x3 + 22x2 + 6x− 24

− 4(x2 − 2)3/2

[
tan−1 (x+ 2)

(x2 − 2)1/2
+ tan−1(x2 − 2)−1/2 − 2 tan−1 x(x2 − 2)−1/2

]}
. (A.5)

Finally, in the domain x > 3

n>(k) = 2
ν − 1

3π2x
c2
{

2 ln
x+ 1

x− 1
− 2x+ (x2 − 2)3/2

×
[
2 tan−1 x(x2 − 2)−1/2 − tan−1(x− 2)(x2 − 2)−1/2 − tan−1(x+ 2)(x2 − 2)−1/2

]}
. (A.6)
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