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Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with
good total angular momentum j, leading to j-j coupling, decades ago phenomenological models
suggested a simpler picture for 0p-shell nuclides can be realized via coupling of total spin S and
total orbital angular momentum L. I revisit this idea with large-basis, no-core shell model (NCSM)
calculations using modern ab initio two-body interactions, and dissect the resulting wavefunctions
into their component L- and S-components. Remarkably, there is broad agreement with calculations
using the phenomenological Cohen-Kurath forces, despite a gap of nearly fifty years and six orders
of magnitude in basis dimensions. I suggest L-S decomposition may be a useful tool for analyzing
ab initio wavefunctions of light nuclei, for example in the case of rotational bands.

PACS numbers: 21.60.Cs,21.60.De,27.20.+n,21.10.Re

I. INTRODUCTION

Microscopic theories of low-energy nuclear structure arguably began with the realization that one could base nuclear
wavefunctions on an independent particle model (IPM), with the crucial proviso that one has a strong spin-orbit force.
The IPM was motivated by filled shells (‘magic numbers’) and by the magnetic moments of nuclei with one particle
outside or one hole in a closed shell [1–3]. Even today many high-end methods for ab initio nuclear structure, such as
Green’s Function Monte Carlo [4, 5], coupled-clusters [6, 7], and the no-core shell model [8], use the IPM as a starting
point, although each go far beyond it.
Because the nuclear Hamiltonian is rotationally invariant, total angular momentum J is a good quantum number

(as is the third or z component, M). In the nuclear IPM, despite the lack of a core as in atomic physics, one uses an
average or mean potential, typically one which is rotationally invariant, to construct the single-particle states. These
single-particle states have good orbital angular momentum l and intrinsic spin s, which for electrons and for nucleons
is (1/2)h̄, and following the rules for addition of quantized angular momentum [9], symbolized by ⊕, one can combine
these into the total angular momentum for a single particle,

j = l ⊕ s. (1)

Single particle states which are degenerate or nearly so are grouped together into shells, and the IPM is often called
the non-interacting shell model.
For atoms, with weak coupling between orbital angular momentum and spin, single-particle states with the same

l but different j are nearly degenerate. In that case it makes sense, to follow L-S or Russell-Saunders coupling and
couple together all the individual orbital angular momenta for A particles,

L = l1 ⊕ l2 ⊕ l3 ⊕ . . . lA, (2)

into total orbital angular momentum L, and similarly for the total spin S, and then construct

J = L⊕ S. (3)

Indeed, such L-S coupling could be found in the first approaches to the IPM for nuclei [10, 11]. With the understanding
of a strong nuclear spin-orbit coupling, however, it was seen as advantageous to adopt j-j coupling [12, 13], by first
coupling up l and s for each particle as in (1) and then summing the js:

J = j1 ⊕ j2 ⊕ j3 ⊕ . . .⊕ jA. (4)

Nowadays the IPM has been superseded by the interacting or configuration-interaction (CI) shell model [14–16] and
other many-body methods. Nonetheless one can consider how good the IPM is as a starting point by looking at semi-
magic shells. For example, using the phenomenological interaction KB3G (which is a monopole-adjusted version[17] of
the Kuo-Brown interaction[18] ) in the pf -shell, one finds the full configuration-interaction wavefunction of 48Ca is 90%
a filled (0f7/2)

8 configuration; and in the sd-shell, using the phenomenological USDB (universal sd-shell interaction,
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version B) interaction[19], the ground state of 24O is 91% filled (0d5/2)
6(1s1/2)

2 configuration, and the ground state

of 22O is 75% filled (0d5/2)
6 configuration.

This simple success is not universal. In the sd-shell, with the same USDB phenomenological interaction, 28Si is
only 21% a filled (0d5/2)

12 configuration, and in the p-shell, using the Cohen-Kurath interaction [20], the ground state

of 8He is only 37% a filled (0p3/2)
4 configuration while 12C is about 51% a filled (0p3/2)

8 configuration. In fact, it
was known long ago, at least phenomenologically [21, 22], that p-shell nuclei are intermediate between j-j and L-S
coupling. In some p-shell cases the latter leads to a simpler description: the ground state of 8He is 96% L = 0 and
12C is 82% L = 0 (see also section 5 of [23]). For heavier nuclei, with stronger spin-orbit forces, L-S coupling is less
satisfactory: for the sd-shell cases given above have grounds states which are roughly only 35%L = 0 components,
and the 48Ca ground state has only about 20% L = 0 component. (How these decompositions are carried out will be
described in more detail below.)
This suggests L-S decomposition as a tool to investigate theoretical wavefunctions, even if it is not directly experi-

mentally measureable, especially for p-shell nuclei where phenomenological interactions suggest strong dominance by
a few L-S components. But what about more “realistic” interactions? The past two decades have seen tremendous
advances in ab initio calculations of nuclear structure, mostly for p-shell nuclides.
As I will show below, both the phenomenological and ab initio wavefunctions, despite separated by six orders of

magnitude in the basis dimensions, and over four decades in the origin of the interactions, show remarkable congruence
in their L-S decomposition. While L-S composition is not directly measureable, it does have an effect on transitions
such as Gamow-Teller, M1, and so on; furthermore this congruence suggests that both the old and the new calculations
are probably doing something right.
Of course, any spin-orbit force will play a big role in the L-S decomposition, and it is well-known that ab initio

three-body forces strongly influence spin-orbit interactions, for example to get the correct ground state spin for some
p-shell nuclides [24]. In this paper, intended as an introduction to and demonstration of the method, I only look at
two-body interactions, but in the near future will examine how these results change with the addition of three-body
forces.

II. METHODS

The tools used for this investigation come in three parts: the many-body method; the interactions used; and
decomposition of the wavefunctions into L and S components.
The many-body method I use is configuration-interaction (CI) diagonalization of the many-body Hamiltonian in

a shell-model basis [14–16], using the BIGSTICK code [25]. Here one defines a finite single-particle space and has
as input single-particle energies and two-body matrix elements; three-body interactions can also be used, but will be
investigated in future work. The calculations are carried out in occupation space, with occupation-representation of
Slater determinants built from single-particle states as the many-body basis states. In brief, one chooses a finite set
of single particle orbits with good orbital angular momentum l (and thus good parity) and good angular momentum
j and z-component m; with that it easy to build basis states with fixed total M ; thus BIGSTICK is termed an
M-scheme code. BIGSTICK computes the many-body Hamiltonian in this basis from the input interaction matrix
elements, i.e., it computes

Hab = 〈Ψa|Ĥ|Ψb〉, (5)

where |Ψa〉 is an occupation representation of a Slater determinant with fixed M , and finds the low-lying eigenpairs

H~vλ = Eλ~vλ (6)

by the Lanczos algorithm [26, 27].
Within this framework I use two different model spaces and interactions. First is the phenomenological Cohen-

Kurath interaction [20], which works entirely within the 0p3/2-0p1/2 space; it has two single-particle energies and 15
unique two-body matrix elements. Because the matrix elements were fitted to spectra, the radial component of the
single-particle wavefunctions have not been rigorously defined; fortunately for my purpose they are not needed. For
a given number of valence protons and neutrons, and for fixed total M , all possible configurations are used.
The second are ab initio interactions in the so-called no-core shell model (NCSM) framework [8]. Here one uses

harmonic oscillator single-particle states with a fixed frequency Ω, and utilizes the Nmax truncation on the many-body
states: one allows only many-body harmonic oscillator configurations which are a maximum of Nmaxh̄Ω in energy
above the lowest harmonic oscillator configuration. This allows one to exactly decouple the relative wavefunction
from center-of-mass motion [28–30], although that is not important to this study.



3

High-precision ab initio interactions are fitted to low-energy nucleon-nucleon scattering phase shifts and to deuteron
properties. Among the first was the Argonne V18 [31], while more recent ones, such as the one used in this study
[32], are derived from chiral effective field theory [33–36].
These interactions generally have a large coupling between high- and low-momentum components, which is often

interpreted as a ‘hard core;’ such a hard core can be seen directly in local interactions fitted to scattering data such
as the Argonne V18 and related potentials. While such interactions can be used directly in coupled-cluster (CC)
calculations [6, 7] and, when local or nearly so, in Green’s function Monte Carlo (GFMC) calculations [4, 5], both
of those very powerful methodologies favor the ground state. Finding excited states are challenging, though not
impossible, for CC and GFMC calculations, and the technology for projecting out the L and S components in those
methods has not yet been developed.
For configuration-interaction (CI) calculations, on the other hand, obtaining excited states and decomposition into

L and S components is hardly more difficult than finding the ground state. On the other hand, unlike CC calculations,
CI calculations include unlinked diagrams [37], and because of the strong coupling between low- and high-momentum
states, the basis for CI grows exponentially and convergence with the size of the space is very slow in all but the
smallest nuclides. Therefore for ab initio CI calculations in computationally tractable spaces one usually softens or
renormalizes the interaction via a unitary transformation. A very popular unitary transformation is the similarity
renormalization group (SRG) [38–41], whereby the Hamiltonian is evolved by a flow equation:

dĤ(s)

ds
=

[

η̂(s), Ĥ(s)
]

, (7)

where one commonly chooses the generator of the flow to be η̂(s) =
[

T̂ , Ĥ(s)
]

, with T̂ the kinetic energy; this drives the

Hamiltonian in momentum space towards the diagonal and weakens the coupling between low- and high-momentum
states. Because the transformation is unitary, any quantity represented by an eigenvalue, such as scattering phase
shifts or the on-shell T-matrix elements if evolved in free space, remains unchanged. What do change are, for example,
the off-shell T-matrix elements, but exploring that topic further is beyond the focus of this paper; furthermore, 3-body
forces are induced by the evolution [42, 43]. I follow the convention of parameterizing the evolution not by s but by
λ = (m2

N/h̄4s)1/4, with mN the nucleon mass; then λ has units of fm−1. Other authors follow s, which is sometimes
written as α.

A. L-S decomposition

It is worth describing in a little detail how the L-S decomposition is carried out. Suppose one wants to find the
fraction of a CI wavefunction with a given L, that is, to expand

|Ψ〉 =
∑

L

c(L)|L〉 (8)

but in general, the dimension of the subspace of states with a given L is greater than one. One naive method then is
to generate all many-body states of a given L or S, that is, {|L; a〉} where a carries any additional information needed
to label such states. Then the fraction of a state with that L is

|〈L|Ψ〉|2 =
∑

a∈L

|〈L; a|Ψ〉|2. (9)

This presupposes one can generate all the {|L; a〉}, for example by diagonalize the operator L̂2, but that is easy only
in small spaces.
Instead I turn to a modification of the ‘Lanczos trick’, invented for generating strength functions [44–46] and which

has been previously used to analyze phenomenological states in terms of their SU(3) irreps [47].
Let |Ψ〉 be a CI wavefunction I wish to decompose in components labled by the eigenvalues of a Hermitian operator,

in this case L̂2 . I carry out the Lanczos algorithm with |Ψ〉 as my pivot, that is the starting vector |v1〉:

L̂2|v1〉 = α1|v1〉 +β1|v2〉

L̂2|v2〉 = β1|v1〉 +α2|v2〉 +β2|v3〉

L̂2|v3〉 = β2|v2〉 +α3|v3〉 +β3|v4〉
. . .

(10)
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FIG. 1: Low-lying excitation spectrum of 11B, comparing experiment, the Cohen-Kurath interaction, and the no-core
shell model (NCSM) using an chiral two-body force evolved via SRG to λ = 2.0 fm−1 . All the states have T = 1/2.

As is well-known for the Lanczos algorithm [27], this procedure generates a Krylov subspace and the eigenvalues of

the tridiagonal matrix given by αi, βi will converge to the extremal eigenpairs of L̂2, of which the eigenvectors are a
linear combination of the Lanczos vectors,

|L〉 =
∑

i

di(L)|vi〉, (11)

which is an inversion of (8). In fact the Krylov space is exhausted by the eigenvectors of L̂2 contained in the pivot,
so that to get the fraction of |Ψ〉 = |v1〉 with orbital angular momentum L, it is just

|〈L|Ψ〉|2 = |d1(L)|
2 (12)

so that no sum is needed and one can simply read off the amplitude.
One can decompose using any Hermitian operator, and the procedure for decomposition with spin S is identical to

the above. One can do joint decomposition, that is decompose a wavefunction into states of specific L and S, but I
do not carry out such fine-grained analysis here.

III. RESULTS

I give results for four nuclides from roughly the middle of the p-shell: 9Be, 10,11B, and 12C. In particular I look at
states in 12C known to be problematic, and at rotational bands in 9Be. For all NCSM calculations I used Nmax = 6
(chosen so all the calculations could be easily carried out on a desktop computer using the BIGSTICK code), an
oscillator frequency h̄Ω = 20 MeV for 9Be and 22 MeV for the other nuclides for the single-particle basis, which
roughly minimized the ground state energies, and an SRG evolution parameter of λ = 2.0 fm−1. I also carried out
an Nmax = 8 calculation for 10B which required supercomputer time, for reasons discussed below in section III B.
Because the phenomenological calculations with the Cohen-Kurath force only include “normal” parity states, i.e., the
same parity as the ground state, I only show those, although there is no barrier to dissecting unnatural parity states
using the method described in Section IIA
In standard NCSM procedures one carefully finds the variational minimum as a function of h̄Ω and studies the

convergence as a function of the model space parameterNmax. Instead, I demonstrate selected 12C results are relatively
robust under variation of both h̄Ω and λ. Using a fifth light nuclide, 7Li, I demonstrate robustness as Nmax is varied
from 6 to 12. Thus one can have good confidence in the general results obtained here.
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FIG. 2: (Color online) Decomposition of low-lying states of 11B into components of good L (total orbital angular
momentum), comparing wavfunction computed from the Cohen-Kurath interaction (black/dark shaded), and from

the NCSM (red/cross-hatched). All the states have T = 1/2.
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FIG. 3: (Color online) Decomposition of low-lying states of 11B into components of good S (total spin), comparing
wavfunction computed from the Cohen-Kurath interaction (black/dark shaded), and from the NCSM

(red/cross-hatched). All the states have T = 1/2.

A. 11B

Let’s begin with an odd-A nucleus. Fig. 1 compares the low-lying excitation energies from experiment (experimental
spectra for all cases in this paper are taken from the National Nuclear Data Center [48]) , from the Cohen-Kurath
interaction in the 0p space, with a dimension of 62, and a NCSM calculation, with a dimension of 20 million, using
λ = 2 fm−1 and h̄Ω = 22 MeV; the latter choice approximately minimizes the ground state energy in this space.
All the low-lying states have T = 1/2, exactly in the case of Cohen-Kurath; the NCSM interaction includes isospin
breaking terms but for all the cases in this paper the isospin assignments are very good.
The L-decomposition is displayed in Fig. 2. Here both the first and second 3/2− show contrasting patterns, with
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oscillator basis frequency h̄Ω = 22 MeV, for Nmax = 6, 8 .

agreement between Cohen-Kurath and the NCSM. I also show the spin S-decomposition in Fig. 3, which displays
good qualitative agreement between the two calculations.
One can take this kind of decomposition farther, for example decompose the spin S into the proton and neutron

components Sp and Sn, respectively. The low-lying states discussed here are all dominated (> 80%) by an Sp = 1/2,
coupling primarily to Sn = 0 to form S = 1/2 and Sn = 1 to form S = 3/2. Both the NCSM calculation and the
phenomenological Cohen-Kurath agree, with the exception of the S = 3/2 component of the second 3/2− state; here
the Cohen-Kurath wavefunction is roughly equally divided between the two subcomponents, but I note that in this
space four neutrons form only two S = 0 states and 3 S = 1 states, severely constraining the results.

B. 10B

Now I turn to the case of 10B. Prior work demonstrated that ab initio calculations with two-body forces alone
yielded the wrong ground state spin, and only the introduction of three-body forces produced the corrected ordering
of the low-lying states [43, 49]. For this work I carried out NCSM calculations (2-body only) both at Nmax = 6 and
8, with dimensions of 12 million and 166 million, respectively, using λ = 2 fm−1 and h̄Ω = 22 MeV. These spectra,
along with the experimental spectrum and from the Cohen-Kurath interaction in the 0p space, with a dimension of
84, are shown in Fig. 4. Although the 3+ state is the ground state in the Nmax calculation, the 1+, which is well
known to be slow to converge [43], drops below it for the Nmax = 8 calculation.
Figure 5 shows the decomposition of selected states into their components with good L. Of particular interest

are the first and second 1+; 0 states, which show contrasting patterns (1+; 01 is dominated by L = 0 while 1+; 02 is
dominated by L = 2), with both the the Cohen-Kurath and NCSM wavefunctions giving good agreement, even in
minor components, despite the vast difference in model space sizes and the origin of the forces. Note that even though
the 1+1 state drops below the 3+ as one goes from Nmax = 6 to Nmax = 8, the L-decomposition is nearly identical.
Other low-lying states show similar agreement. The decomposition according to spin S is of similar quality and not
shown.
Agreement between the Cohen-Kurath and the ab initio NCSM calculations does not mean they are both right,

but it does certainly bolster confidence in the calculations. Below, in the case of 12C, I will show some cases where
there are discrepancies, which happen to occur in states known to be problematic.

C. 12C

Of particular interest is 12C, in part because it it so difficult to get its spectrum correct. As seen in Figure 6,
neither the phenomenological Cohen-Kurath calculation nor the NCSM calculations get the second 0+ state and the
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FIG. 5: (Color online) Decomposition of low-lying states of 10B into components of good L (total orbital angular
momentum), comparing wavfunction computed from the Cohen-Kurath interaction (black/dark shaded), and from

the NCSM for both Nmax = 6 (red/cross-hatched) and Nmax = 8 (blue/checkered).

subsequent band near the correct energy. This is the famous Hoyle state [50] and is known to have predominantly
four-particle, four-hole structure, with similar states found in 16O. Recent calculations have suggested that, in a
harmonic oscillator basis, the Hoyle state mixes in many states of high N [51], making it difficult to access in standard
CI shell-model calculations.
The Hoyle state is far from the only problem, not least because recent calculations [52] get the excitation energy of

the first 1+; 0 state wrong while obtaining a good value of the B(M1) from the first 1+; 1 state to the ground state.
This problem in particular inspired this work.
Fig. 7 shows the L-decomposition of the ground state band 0+ and 2+ states, as well as the excited band 0+2 and

2+2 and the first 1+; 0 and 1+; 1 states. While the ground state band finds agreement between Cohen-Kurath and
NCSM, and is rather simple (the 4+1 state continues this trend), the excited band does not show as much agreement;
and given the above problem with the Hoyle state, one cannot be certain which, if either, calculation is better. For
the 1+ states, the 1+; 1 has good agreement between Cohen-Kurath and the NCSM, while the troublesome 1+; 0 does
not. It will be particularly interesting to examine how the latter changes when an ab initio 3-body force is included
in the calculation.
Given the importance and difficulty of this nuclide, I also show the S-decomposition in Fig. 8. The decomposition

for the 0+ states must perforce mirror the L-decomposition, so I do not show those. For the remaining states, the
S-decomposition echoes that of the L-decomposition: the 2+; 01 and 1+; 1 show good agreement, while there are
significant discrepancies for the 2+; 02 and 1+; 1 states.
Again, agreement does not mean the calculations are correct, nor does a discrepancy make any calculation illegiti-

mate. After all, the L-S decomposition is not something directly measurable by experiment. On the other hand, it is
striking that the states with the clearest discrepancy between the two calculations are states known to be problem-
atic in CI calculations, particular for the ab initio NCSM. Thus I suggest that L-S decompositions can be useful in
comparing and contrasting calculations.

D. 9Be and rotational bands

There have been recent studies of rotational band structure in NCSM calculations of light nuclides [53] using not
only excitation spectra but also E2 and M1 transition strengths and electric quadrupole and magnetic dipole moments
to identify band structure. As a complement to those studies, I use L-S decomposition to analyze rotational bands.
Fig. 9 compares the low-lying excitation energies of 9Be from experiment, from the Cohen-Kurath interaction in the
0p space, with a dimension of 62, and a NCSM calculation, with a dimension of 5.2 million, using λ = 2 fm−1 and
h̄Ω = 20 MeV. All the low-lying states have T = 1/2. Following [53] the states are plotted with J(J + 1) along
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the x-axis and excitation energy along the y-axis, to better pick out rotational bands; I include lines for the reader’s
convenience.
Figs. 10 and 11 show the L- and S-decomposition for the ground-state and excited-state bands, respectively. The

top rows of plots are for the NCSM calculation, while the bottom rows are for the Cohen-Kurath calculations; one
can see they are qualitatively indistinguishable. The left-hand columns of plots are the L-decomposition. All these
states have negligible L = 0 fraction. I show the fraction of the wavefunction with L = 1 (red circles), L = 2 (blue
squares), L = 3 (green diamonds), and L = 4 (violet triangles). There is a clear evolution, as one would expect for a
rotational band: in the ground state band, 3/2−1 dominated by L = 1, the 5/2−1 dominated by L = 2, 7/2−1 by L = 3,
and 9/2−1 by L = 4, while for the excited state band 1/2−1 is dominated by L = 1, 3/2−2 is dominated by L = 2, 5/2−2
dominated by L = 3, and 7/2−3 by L = 4. The right-hand columns of plots are the S-decomposition, showing the
fraction of the wavefunction with S = 1/2 (black solid line), S = 3/2 (red dashed line), and S = 5/2 (blue dotted
line, only for the NCSM). The S = 1/2 consistently dominates. These patterns are consistent with a particle-rotor
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illustrate rotational bands. Shown are experimental data (blue diamonds) [48], phenomenological Cohen-Kurath

calculations (red squares), and NCSM calculations (black circles); the latter were calculated with an SRG evolution
parameter λ = 2 fm−1 and a harmonic oscillator basis frequency of Ω = 20 MeV. In order to guide the eye, I have

added solid lines for the ground state NCSM band and dashed lines for the excited state NCSM band.

picture.
As with 11B, one can further decompose into proton and neutron contributions. In the rotational bands, the S = 1/2

components are dominated (> 95%) by Sp = 0, Sn = 1/2) while the S = 3/2 components are dominated (≥ 80%) by
Sp = 1, Sn = 1/2).
The reader will note the excited-state band contains the 7/2−3 state, not the 7/2−2 state. Caprio et al. [53] determined

this on the basis of B(E2)s, B(M1), and moments, but here it becomes clear on the basis of the L-S decomposition.
Although I do not plot it, the 7/2−2 state is dominated by S = 3/2 rather than 1/2 for both NCSM and Cohen-Kurath,
and by L = 2 for the NCSM and by a roughly equal mixture of L = 1 and 2 for Cohen-Kurath wavefunctions rather
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FIG. 10: (Color online) Decomposition of the ground-state rotation band for 9Be, for NCSM calculation (top row),
with the parameters the same as in Fig. 9, and for Cohen-Kurath calculation (bottom row). For the

L-decomposition plots on the left, for each of the members of the rotational band 3/2−1 , 5/2
−

1 , 7/2
−

1 , and 9/2−1 , I
give the fraction of the wavefunction with L = 1 (red circles), L = 2 (blue squares), L = 3 (green diamonds), and
L = 4 (violet triangles). For the S-decomposition plots on the right, I give the fraction of the wavefunction with

S = 1/2 (black solid line), S = 3/2 (red dashed line), and S = 5/2 (blue dotted line).

than L = 4 as found in the 7/2−3 state, a clear violation of the rotational band pattern.
Once again, the qualitative agreement between the NCSM and Cohen-Kurath calculations is striking. I propose

L-S decomposition as another tool for disentangling calculations of band structures.

E. Robustness

Above I chose specific values of h̄Ω for the harmonic oscillator basis, Nmax for the truncation of the many-body
basis, and for the SRG evolution parameter λ. These results are not very sensitive to the choice of these parameters,
which can be demonstrated.
Starting with a baseline 12C with Nmax = 6 and a baseline of λ = 2 fm−1 and h̄Ω = 22 MeV, I first studied the

dependence on the basis scaling. Fig. 12 shows how the L-decomposition changes with the basis frequency Ω as it is
varied from 12 to 28 MeV. Although this corresponds to scaling the basis length parameter by a factor of 1.5, the
decomposition is mostly robust,. Once again the states most sensitive are the problematic 1+; 01 and the 0+; 02 states;
in fact, with the latter the third 0+; 0 state grows lower in energy as Ω increases and eventually switches places.
The second study, Fig. 13 was the dependence of the L-decomposition on the SRG evolution parameter λ, as it goes

from 10 fm−1, which is almost the bare interaction, down to 1.8 fm−1. Values in the range 1.8 to 2.2 fm−1 are typically
used for NCSM calculations. Although there is some evolution as λ goes below 4 fm−1, overall the dependence on λ
is modest.
Finally, I studied how well the L-decomposition had converged in Nmax. Above, in section III B I already demon-

strated the the L-decomposition is unchanged for 10B as one goes from Nmax = 6 to 8, even though the ground
state angular momentum changes. To study a broader range of Nmax , I chose a lighter system, 7Li, where I could
compute models spaces up from Nmax (dimension =663,527) up to Nmax = 12 (dimension =252 million) on a desktop
computer. Fig. 14 shows the L-decomposition does not change much even as the model space increases nearly three
orders of magnitude.
As a final note, the mirror nuclide 7Be has been identified as having a rotational band in the yrast 1/21, 3/21, 5/21,

7/21 . . . states [53]. I find these states dominated by S = 1/2, though the 1/21 and 3/21 states are dominated by
L = 1 while the 5/21, 7/21 states dominated by L = 3, as seen above. This differs from the rotational structure seen
in 9Be above, where the states in both the ground and excited bands (Figs. 10,11) are dominated by L = 1, 2, 3, 4,
successively. This may be due to the difference between the chiral nucleon-nucleon force used here [32] and the
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FIG. 11: (Color online) Decomposition of the excited-state rotation band for 9Be, for NCSM calculation (top row),
with the parameters the same as in Fig. 9, and for Cohen-Kurath calculation (bottom row). For the

L-decomposition plots on the left, for each of the members of the rotational band 1/2−1 , 3/2
−

2 , 5/2
−

2 , and 7/2−3 , I
give the fraction of the wavefunction with L = 1 (red circles), L = 2 (blue squares), L = 3 (green diamonds), and
L = 4 (violet triangles). For the S-decomposition plots on the right, I give the fraction of the wavefunction with

S = 1/2 (black solid line), S = 3/2 (red dashed line), and S = 5/2 (blue dotted line).
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FIG. 12: (Color online) The L-decomposition for selected 12C NCSM states as a function of the harmonic oscillator
basis frequency Ω. The states are (a) 0; 01, (b) 1; 01; (c) 0; 02, and (d) 1; 11. Shown are the fraction of the

wavefunctions for L = 0 (black circles), L = 1 (red squares), and L = 2 (blue diamonds).

JISP16 force [54] used in [53] (although I include isospin breaking in my calculation, both 7Li and 7Be yield very
similar results); but also, of all the Be isotopes in [53], the ground band of 7Be exhibits the most irregular behavior
with regards to the magnetic dipole moment and M1 transition strengths. ( I find the 3/22, 5/22, and 7/22 are all
dominated by S = 3/2, with L = 1 for 3/22, 5/22, and L = 2 for 7/22; a second band is not investigated in [53].)
Further investigation may be warranted in future.
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FIG. 13: (Color online) The L-decomposition for selected 12C NCSM states as a function of the SRG evolution
parameter λ. The states are (a) 0; 01, (b) 1; 01; (c) 0; 02, and (d) 1; 11. Shown are the fraction of the wavefunctions

for L = 0, (black circles), L = 1 (red squares), L = 2 (blue diamonds) and L = 3 (violet triangles).

0

0.2

0.4

0.6

0.8

L = 1
L = 2
L = 3
L = 4

6 8 10 12

N
max

0

0.2

0.4

0.6

0.8

fr
ac

tio
n 

of
 w

av
ef

un
ct

io
n

6 8 10 12

(a) (b)

(c) (d)

7/2
-

1
5/2

-

1

7/2
-

2 5/2
-

2

FIG. 14: (Color online) The L-decomposition for selected 7Li NCSM states as a function of model space truncation
Nmax, with SRG evolution parameter λ fixed at 2 fm−1 and the harmonic oscillator basis frequency fixed at 22 MeV.
All states have T = 1/2. The states are (a) 7/2−1 , (b) 5/2

−

1 ; (c) 7/2
−

2 , and (d) 5/2−2 . Shown are the fraction of the
wavefunctions for L = 1 (red squares), L = 2 (blue diamonds), L = 3 (violet up triangles), and L = 4 (black down

triangles).

IV. CONCLUSIONS AND ACKNOWLEDGEMENTS

I have taken NCSM wave functions computed with ab initio two-body interactions from chiral effective field theory,
softened with SRG, and decomposed them into their L (total orbital angular momentum) and S (total spin) compo-
nents, for selected p-shell nuclides. Somewhat remarkably, there is rather good agreement with the decomposition of
wavefunctions for the same nuclides using the phenomenological Cohen-Kurath force, despite vastly different origins
and nearly six orders of magnitude difference in the dimensions of the model spaces. I think this helps assure us, if
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we need such assurance, that both the old guard and the new have mostly captured the correct physics.
As examples of the utility of L-S decomposition, I looked at states in 12C known to be difficult to calculate, where

the strongest discrepancies between the NCSM and Cohen-Kurath wavefunctions showed up, and also showed how in
9Be rotational band structure showed with a clear pattern consistent with a particle-rotor model. It will be interesting
in the future to investigate other rotational bands in more detail, in particular 7Li/Be.
The results are fairly robust even when the basis is changed, and not very sensitive to the SRG evolution–although

there is some sensitive at the end of SRG evolution. It will be very interesting therefore to use three-body forces,
both “true” three-body forces and those induced by SRG. The former are known to affect spin-orbit coupling, and it
will be interesting to see if it brings the NCSM results closer to or further apart from the Cohen-Kurath; the latter
should decrease sensitivity to SRG evolution. In principal of course, one should also evolve the L̂2 and Ŝ2 operators
which should also decrease sensitivity to SRG evolution [55].
Therefore an important future step will be to look at chiral interactions including ab initio three-body forces [42, 43],

and alternate ab initio approaches such as the JISP16 interaction[54] which has off-shell matrix elements tuned to
best match binding energies, and thus reduce the need for three-body forces.
I thank P. Navrátil and R. Roth for helpful and encouraging discussions, and P. Navrátil for the code generating

and evolving via SRG the N3LO nucleon-nucleon matrix elements.
This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear

Physics, under Award Number DE-FG02-96ER40985. Additional supercomputing support for this work came from
the Lawrence LIvermore National Laboratory institutional Computing Grand Challenge program.
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