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A solvable extended Hamiltonian that includes multi-pair interactions among s- and d-bosons up to infinite

order within the framework of the interacting boson model is proposed to gain a better description of E(5) model

results for finite-N systems. Numerical fits to low-lying energy levels and reduced E2 transition rates within this

extended version of the theory are presented for various N values. It shows that the extended Hamiltonian within

the IBM provides a better description of the E(5) model results for small N cases, while the results of the model

in the large-N cases are close to those of the E(5)-β 2n type models studied previously.

PACS numbers: 21.60.Fw, 21.60.Ev, 21.10.Re

I. Introduction

Quantum phase transitions signal important phenomena in

various quantum many-body systems [1]. In atomic nuclei,

the quantum phase transitions are often related to different ge-

ometrical shapes of the system, which can be described either

by the Bohr-Mottelson model (BMM) [2] or by the Interacting

Boson Model (IBM) [3]. Generally, in either the BMM or the

IBM, a Hamiltonian that is suitable to describe such (shape)

phase transitions can be solved numerically. However, with

suitable simplification, Iachello proposed an exactly solvable

model [4] within the BMM, which is called the E(5) (crit-

ical point symmetry) model suitable to describe the critical

phenomena in the vibration to γ-unstable (shape) phase tran-

sition. The potential used in the E(5) model only depends

on the β degree of freedom with an infinite square well. It

has been shown that there are many nuclei with the E(5) crit-

ical point symmetry, such as 134Ba [5], 104Ru [6], 102Pd [7],
108Pd [8], and 116Cd [9]. Inspired by the E(5) model, Lévai

and Arias studied the Bohr Hamiltonian with a sextic potential

and a centrifugal barrier, of which quasi-exact solutions can

be derived [10], while Bonatsos et al explored numerical so-

lutions for the γ-independent Bohr Hamiltonian with β 2n po-

tentials for n ≥ 1 called the confined γ-soft rotor model [11],

in which the spectra and transition rates for the β 2n poten-

tials for 2 ≤ n ≤ 4 are given explicitly and compared with the

original E(5) model.

Since the E(5) model is simple and suitable to describe the

critical point symmetry of the vibration to γ-unstable (shape)

phase transition in the BMM, it is interesting to seek a suitable

Hamiltonian near the critical point of the U(5)-O(6) transi-

tional region to describe this critical point symmetry because

the vibration to γ-unstable (shape) phase transition is equiv-

alently describable in the IBM along the integrable line from

U(5) to O(6) [3, 12]. Arias et al did initial work along this

line [13, 14], showing that for the low-lying part of the spec-

trum the results of the consistent-Q type U(5)-O(6) Hamilto-

nian in the IBM at the critical point are close to those of the

E(5) model for cases with a small number of bosons, while

the IBM Hamiltonian for large N cases reproduces low-lying

parts of the spectrum and electromagnetic transition rates of

a BMM Hamiltonian with a β 4 potential. A detailed study

on the connections between the E(5), E(5)-β 4, E(5)-β 6, and

E(5)-β 8 models based on particular solutions of the BMM

with such γ-unstable potentials and the IBM fit with relatively

large N (= 60) were also carried out [15], which further con-

firms the above conclusions.

As is well known, the number of bosons in the IBM is phe-

nomenologically regarded as the number of valence nucleon

pairs. In realistic nuclear systems, the number of bosons is

always finite. It is expected that a suitable IBM Hamiltonian,

like the U(5), O(6), and SU(3) limiting cases, may fit the E(5)

critical point nuclei better, especially when relatively higher

excited levels are taken into consideration, though it is com-

monly believed that the BMM may be regarded as the large-N

limit of the IBM [16–18]. The purpose of this work is to es-

tablish an extended Hamiltonian near the critical point of the

U(5)-O(6) transitional region of the IBM, of which the so-

lution should be closer to that of the E(5) model with finite

N. Namely, the model is suitable to describe the E(5) criti-

cal symmetry nuclei as reported in [5–9], while the model in

the large-N cases may be close to those of the E(5)-β 2n type

models similar to the results reported in [15].

II. A solvable Hamiltonian near the

U(5)-O(6) critical point

Similar to the well-known consistent-Q formalism in the

IBM [3, 13, 14], using up to two-body interactions the U(5)-
O(6) Hamiltonian may be schematically written as [12–14,

19]

Ĥ = g

(

xn̂d +
1− x

N
P̂†P̂

)

, (1)

where g is a real parameter, the control parameter x ∈ [0,1],

n̂d = ∑µ d
†
µdµ is the d-boson number operator, and

P† =
1

2
(d† ·d† − s†2) (2)
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is the boson pairing operator. As shown in [13, 14], the spec-

trum and E2 transition rates generated from (1) at the critical

point with x ∼ 1/2 approach those of the Bohr Hamiltonian

with a β 4 potential rather than to those of the E(5) model in

the large-N limit.

In order to clarify the structure of the U(5)-O(6) transi-

tional solutions, similar to [12–14], we introduce the s- and

d-boson SU(1,1) pairing algebras with

S+d = (S−d )
† =

1

2
d† ·d†, S0

d =
1

2
n̂d +

5

4
, (3)

S+s = (S−s )
† =

1

2
s†2, S0

s =
1

2
n̂s +

1

4
, (4)

where n̂s are the number operator for s-bosons, which satisfy

the following commutation relations:

[S+σ ,S
−
ρ ] =−2δσρS0

s , [S0
σ ,S

±
ρ ] =±δσρS±ρ . (5)

The Casimir operator of SUρ (1, 1) can be expressed as

C2(SUρ(1,1)) = S0
ρ(S

0
ρ − 1)−S+

ρ S−
ρ , (6)

in which the Casimir operator of SUd(1, 1) is related to the

Casimir operator of O(5) with

C2(SUd(1,1)) =
1

4
C2(O(5))+

5

16
. (7)

Thus, the pairing operators appearing in (1) can be regarded

as the results of the SU(1,1) coupling:

P† = S+d − S+s , P = S−d − S−s , (8)

which, together with

P0 = S0
d + S0

s , (9)

generate SUsd(1,1) algebra. The Casimir operator of SUsd(1,

1) is related to the Casimir operator of O(6) with

C2(SUsd(1,1)) = P0(P0 −1)−P†P =
1

4
C2(O(6))+

3

4
. (10)

Under the U(6) ⊃ U(5) ⊃ O(5) ⊃ O(3) basis, the gener-

ators of either SUd(1,1) or SUs(1,1) commute with all gen-

erators of O(5). Therefore, the basis vectors of U(6) ⊃
U(5) ⊃ O(5) ⊃ O(3) are simultaneously the basis vectors of

SUd(1,1). Let |κν〉 be basis vectors of an irreducible repre-

sentation (irrep) of SU(1,1), where κ can be any positive real

number, and ν = κ , κ + 1, · · ·. We have

C2(SU(1,1))|κν〉= κ(κ − 1)|κν〉,S0|κν〉= ν|κν〉. (11)

The complementary relation between the basis vectors of

U(6)⊃U(5)⊃O(5)⊃O(3) and those of SUd(1,1)⊗SUs(1,1)

can be expressed as

|NndταLM〉 = |κd = τ
2
+ 5

4
,νd = nd

2
+ 5

4
;

κs =
τs
2
+ 1

4
,νs =

ns
2
+ 1

4
;αLM〉, (12)

where N is the total number of bosons, nd is the number of d-

bosons, τ is the seniority quantum number labeling the irrep of

O(5), L is the angular momentum quantum number of O(3),
α is an additional quantum number needed to distinguish dif-

ferent states with the same L, M is the quantum number of the

third component of the angular momentum, τs = 0 or 1 ac-

cording to N−τ is even or odd, and ns =N−nd is the number

of s-bosons. Therefore, for given N, τ , α , L, and M, the or-

thonormalized basis vectors of U(6) ⊃ U(5) ⊃ O(5) ⊃ O(3)
can be equivalently expressed as those of SUd(1,1)⊗SUs(1,1)

with

|ξ 〉 ≡ |τs;ξ ;ταLM〉 =
N (S+s )

N−τ−τs
2 −ξ (S+d )

ξ |τs;ταLM〉, (13)

of which nd = 2ξ + τ , where the normalization constant

N =

(

2N−τ−τs−2ξ (2τ + 3)!!

ξ !(N − τ − 2ξ )!(2τ + 2ξ + 3)!!

) 1
2

, (14)

and ξ = 0,1,2, · · · , 1
2
(N − τ − τs). The matrix representations

of SUd(1,1) and SUs(1,1) under the basis vectors (13) are

given by

S+d |ξ 〉= 1
2

√

(2ξ + 2)(2τ + 2ξ + 5)|ξ + 1〉,
S−d |ξ 〉= 1

2

√

2ξ (2τ + 2ξ + 3)|ξ − 1〉,
S0

d|ξ 〉= 1
2
(τ + 2ξ + 5

2
)|ξ 〉, (15)

and

S+s |ξ 〉= 1
2

√

(N − τ − 2ξ )(N− τ − 2ξ − 1)|ξ + 1〉,
S−s |ξ 〉= 1

2

√

(N − τ − 2ξ + 2)(N − τ − 2ξ + 1)|ξ − 1〉,
S0

s |ξ 〉= 1
2
(N − τ − 2ξ + 1

2
)|ξ 〉. (16)

Thus, P†P under the basis vectors (13) is tridiagonal. The

matrix elements of the diagonal part can be expressed as

〈ξ |
(

S+d S−d + S+s S−s
)

|ξ 〉= 1
4
(2ξ )(2τ + 2ξ + 3)+

1
4
(N − τ − 2ξ )(N− τ − 2ξ − 1), (17)

while those of the nonzero non-diagonal parts are given by

〈ξ + 1|S+d S−s |ξ 〉= 1
4
((N − τ − 2ξ )(N− τ − 2ξ − 1)×

(2ξ + 2)(2τ + 2ξ + 5))
1
2 , (18)
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〈ξ − 1|S+s S−d |ξ 〉= 1
4
((N − τ − 2ξ + 2)(N − τ − 2ξ + 1)×

(2ξ )(2τ + 2ξ + 3))
1
2 . (19)

It is clear that the U(5)-O(6) transitional phase is mainly

driven by the nonzero non-diagonal part of P†P. The critical

value of the control parameter xc ∼ 0.5 in this case as shown

in [14, 19].

Using the SUd(1,1) and SUs(1,1) generators, we can build

an extended IBM Hamiltonian (EXT) as

Ĥc = ∆n̂d +
λ
N
(S+s S−s + S+d S−d )−

g2 ∑∞
k=1(S̃

+k
s S̃−k

d + S̃+k
d S̃−k

s ), (20)

where ∆ = εd − εs > 0 is the energy gap of s- and d-bosons,

λ > 0 and g2 > 0 are real parameters. Obviously, (20) be-

comes (1) when g2 = λ/N and only the k = 1 term with the

replacement S̃±ρ → S±ρ is included in the third term of (20).

The second term in (20) is the same as the diagonal part of

the boson pairing interactions included in (1), while the third

term contributes to the non-diagonal part of the boson pairing

interactions but not restricted with the tridiagonal form shown

by (18) and (19) when it is diagonalized within the subspace

spanned by basis vectors shown in (13), in which

S̃+d = S+d
1

√

(Sd+S0
d
)(S0

d
−Sd+1)

, S̃−d =
(

S+d

)†
,

S̃+s = S+s
1√

(Ss+S0
s )(S

0
s−Ss+1)

, S̃−s = (S+s )
†
. (21)

Instead of the operators {S̃±ρ }, one can also use the usual bo-

son pairing operators {S±ρ } to construct the multi-pair interac-

tions similar to the third term of (20). In this case, the prob-

lem, however, is no longer exactly solvable.

It should be noted that the quantum numbers of Sd , S0
d , and

Ss, S0
s in (21) are κd , νd , and κs, νs, respectively, under the

U(6)⊃U(5)⊃ O(5)⊃ O(3) basis shown in (12). Therefore,

the operators appearing in (21) are well-defined under the ba-

sis vectors (13). Since S̃±d and S̃±s are built from the original

SUρ (1,1) algebras, of which the irreducible representations

(irreps) are still lower bound. For a given irrep |κν〉 of the

SU(1,1), S̃± behave like the unit shift operators:

S̃±|κν〉= |κν ± 1〉. (22)

Thus, in contrast to (5), the operators {S̃+d , S̃
−
d ,S

0
d} and

{S̃+s , S̃
−
s ,S

0
s} under the corresponding SU(1,1) irreps satisfy

the following commutation relations:

[S̃+σ , S̃
−
ρ ] =−δρσ δSρ S0

ρ
, [S0

σ , S̃
±
ρ ] =±δσρS±ρ . (23)

Hence, {S̃+d , S̃
−
d ,S

0
d} and {S̃+s , S̃

−
s ,S

0
s} are two copies of the

generators of E2 algebra when S0
ρ 6= Sρ , which become those

of the Heisenberg algebra only when S0
ρ = Sρ . They will be

called as the Ẽ2 algebra.

Similar to the consistent-Q formulism [12] in describing

the U(5)-O(6) transitional nuclei, the Hamiltonian (20) is also

exactly solvable. To digonalize the Hamiltonian (20), we use

the simple algebraic Bethe ansatz with

|N,ζ ,ταL〉 =
1
2 (N−τ−τs)

∑
ξ=0

C
(ζ )
ξ

|ξ 〉, (24)

where |ξ 〉 ≡ |τs;ξ ;ταLM〉 as given in (13), and C
(ζ )
ξ

is the

expansion coefficient to be determined. Similar to the proce-

dures used in [20], it can be proven that the expansion coeffi-

cient C
(ζ )
ξ

can be expressed as

C
(ζ )
ξ

=
1

F (ζ )(ξ )
, (25)

where

F(ζ )(ξ ) = E
(ζ )
τ,L − g2 − λ

2N
ξ (2τ + 2ξ + 3)−

λ
4N

(N − τ − 2ξ )(N− τ − 2ξ − 1)−∆(τ+ 2ξ ), (26)

in which E
(ζ )
τ,L is the ζ -th eigen-energy for given τ and L. To

show that (24) and (25) are indeed consistent, one may di-

rectly apply the Hamiltonian (20) on the N-particle state (24)

to establish the eigen-equation Ĥc|N,ζ 〉 = E
(ζ )
τ,L |N,ζ 〉. After

simple algebraic manipulation, one can easily find that

−g2

∞

∑
k=1

(S̃+k
s S̃−k

d + S̃+k
d S̃−k

s )|N,ζ ,τα,LM〉 =

g2|N,ζ ,τα,LM〉− g2 ∑
ξ ′

C
ζ
ξ ′ ∑

ξ

|ξ 〉. (27)

Once the expansion coefficients are chosen as those shown

in (25), the eigen-equation Ĥc|N,ζ 〉 = E
(ζ )
τ,L |N,ζ 〉 is fulfilled

when and only when

−g2 ∑
ξ

1

F (ζ )(ξ )
= 1. (28)

Solutions of (28) provide eigenvalues E
(ζ )
τ,L and the corre-

sponding eigenstates (24) simultaneously.

For given N, τ , and L, let F (ζ )(ξ ) = E
(ζ )
τ,L − xξ according

to (26). Generally, x0 6= x1 6= x2 6= · · · 6= x 1
2 (N−τ−τs)

is al-

ways satisfied. Let Vq(xi) be exact value of xi with the or-

dering V0 < V1 < · · · < V1
2 (N−τ−τs)

. Zeros of the polynomial

related with (28), E
(ζ )
τ,L , satisfy either the interlacing condi-

tion V0 < E
(1)
τ,L < V1 < E

(2)
τ,L < V2 < · · · or −∞ < E

(1)
τ,L < V0 <
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E
(2)
τ,L < V1 < · · ·, which is very much helpful in finding roots

of Eq. (28). Actually, the polynomials related with Eq. (28)

is a special case of the extended Stieltjes polynomials [21].

Since V0,V1, · · · ,V1
2 (N−τ−τs)

are real and not equal one another,

the zeros of the polynomials related with Eq. (28) are either

within 1
2
(N − τ − τs) + 1 open intervals (−∞,V0), (V1,V2),

· · ·, (V1
2 (N−τ−τs)−1

,V1
2 (N−τ−τs)

) or within (V0,V1), (V1,V2),· · ·,
(V1

2 (N−τ−τs)
,+∞). Binomials F (ζ )(ξ ) with variable E

(ζ )
τ,L in

the denominators of terms in the sum of (28) are all differ-

ent. Therefore, (28) in this case results in a polynomial equa-

tion with variable E
(ζ )
τ,L . The degree of the polynomial equals

exactly to the dimension 1
2
(N − τ − τs)+ 1 of the concerned

Hilbert subspace. There are exactly 1
2
(N − τ − τs)+1 distinct

roots E
(ζ )
τ,L of (28) in this case. Hence, the model is exactly

solved.

III. Fit to the E(5) results

In comparison to the consistent-Q Hamiltonian (1), which de-

scribes the U(5)-O(6) phase transition, the EXT is in the U(5)

phase when g2 = 0, while there is no pure O(6) phase for

finite-N cases even when ∆ = 0 and g2 6= 0. When ∆ = λ = 0,

by using the exact solutions shown in the previous section, the

state corresponding to the lowest level for given τ of (20) in

this case can simply be written as

|N,1,ταL〉 =
√

2

N − τ − τs + 2

1
2 (N−τ−τs)

∑
ξ=0

|ξ 〉 (29)

with energy

E
(1)
τ,L =−1

2
g2(N − τ − τs), (30)

while all other excited states for given τ and L are degener-

ate with E
(ζ 6=1)
τ,L = 0, of which the corresponding eigenstates

are not provided by the exact solution shown in (28). The

results shown in (29) and (30) are only relevant to nuclear

system in the large-N limit with equidistant spectrum in τ:

E
(1)
1,2 − E

(1)
0,0 = E

(1)
2,L − E

(1)
0,0 = g2, E

(1)
3,L −E

(1)
0,0 = E

(1)
4,L −E

(1)
0,0 =

2g2, · · ·, where the situation is quite similar to the spectrum in

the O(6) limit after adding the Casimir operators (20) of the

subalgebras O(5)⊃ O(3) as is done in [4] for the E(5) model.

According to the concept of quasidynamical symme-

try [22–26], the system described by the consistent-Q Hamil-

tonian (1) remains in the U(5) phase until the control param-

eter reaches the critical point. Since the EXT is only used to

describe the phase transition from the U(5) phase to the E(5)-

like critical point in the IBM, this is what we intend here as

well. Anyway, when all parameters in (20) are nonzero, the

system remains within the U(5)-O(6) transitional phase since

the seniority number τ of the common subgroup O(5) is al-

ways a good quantum number of the system. In this case, the

FIG. 1: The ratio of the parameters ∆/λ used in the fits as a function

of N.

system, similar to that described by the consistent-Q Hamilto-

nian, remains in the U(5) (vibrational) quasidynamical sym-

metry phase when g2 is small, while the E(5) model results

can be better described by the EXT with the increasing of g2.

In this section, it will be shown that the Hamiltonian (20) is in-

deed suitable to describe nuclei around the E(5) critical point

when N is small.

In the original E(5) model [4], the excitation energies

E
(ζ )
τ,L −E

(1)
0,0 are determined by the ζ -th zero of the Bessel func-

tion Jτ+3/2(z), which are L-independent. For any reasonable

value of N, we shall compare fitting results of the EXT with

those of the E(5) model up to the level of ζ = 4 and τ = 1.

In the fitting, the energies are in unit of the energy of the first

excited state, E
(1)
1,2 −E

(1)
0,0 . It is known that nuclei at or near

the E(5) critical point are in the vibration to γ-soft transitional

region with mass number A ∼ 100–130, of which the boson

number in the IBM is always small with N ∼ 5–10. In fitting

the low-lying level energies of the E(5) model, we fix the pa-

rameter g2 to be a nonzero scale factor and adjust parameters

∆ and λ in (20), from which the best fits to the E(5) model

results were obtained. The fitting results of the level energies

are shown in Table I, in which the corresponding level ener-

gies obtained from the consistent-Q IBM Hamiltonian at the

critical point (CQ) were also provided. We observe that the

ratio of the parameters ∆ and λ must be within a reasonable

range with ∆/λ ∼ 0.5–1.0 as shown in Fig. 1, and the mag-

nitude of ∆ and λ relative to g2 should not be too large in

order to reproduce the best fit not only to the level energies,

but also to the B(E2) values. These parameters used in the fits

are shown in Table II. In the fitting, the E2 transition operator

is simply chosen as

T̂
(E2)

q = e2(s
†d̃+ d†s̃)2

q, (31)

where e2 is the boson effective charge, which is a global scale

and is fixed to give B(E2,2+1 → 0+1 ) = 100 in all cases.

In the fitting,

χ2 =
1

NE(5)−N par

NE(5)

∑
i=1

(X
E(5)
i −Xi)

2 (32)

is used, where NE(5) is the number of data taken from the E(5)
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model used in the fitting, N par is the number of parameters in

the model, and Xi is a level energy obtained from either the

EXT or the CQ corresponding to X
E(5)
i in the E(5) model.

Since the energies are in unit of E
(1)
1,2 −E

(1)
0,0 and the ground

state energy is thus set to be zero, the energies of the ground

and the first excited level are not included in (32). As the con-

sequence, the number of parameters in the EXT are 2, while

there is no free parameter in the CQ. Once the level energies

are fit, the B(E2) values are fixed. In the EXT, we adjust the

parameters to keep

χ2
E2 =

1

NE(5)(E2)

NE(5)(E2)

∑
i=1

(X
E(5)
i (E2)−Xi(E2))2 (33)

less than that of the CQ and then to keep χ2 to be as small

as possible, where NE(5)(E2) is the number of B(E2) val-

ues taken from the E(5) model used in the fitting, Xi(E2)
is a B(E2) value obtained from either the EXT or the CQ

corresponding to X
E(5)
i (E2) in the E(5) model. The fitted

B(E2) values are those among the low-lying excited states

shown in [15] except B(E2,4+4 → 2+3 ) and B(E2,0+4 → 2+3 )

between relatively higher excited states, where we use 0+1
(ζ = 1,τ = 0), 2+1 (ζ = 1,τ = 1), 2+2 and 4+1 (ζ = 1,τ = 2),

0+
ζ

(ζ = 2,τ = 0), 0+τ , 3+1 , 4+2 , and 6+1 (ζ = 1,τ = 3), 2+3

(ζ = 2,τ = 1), 4+4 (ζ = 2,τ = 2), and 0+4 (ζ = 3,τ = 0) to

label the corresponding excited states in the models. Though

B(E2,4+4 → 2+3 ) and B(E2,0+4 → 2+3 ) are listed for compar-

ison, they are excluded in χ2
E2 because these two values do

not approach to the corresponding E(5) results with the in-

creasing of N. Moreover, B(E2,2+2 → 0+1 ), B(E2,4+2 → 2+1 ),
B(E2,0+τ → 2+1 ), and B(E2,2+1 → 0+1 ) are also excluded in

χ2
E2 since the former three B(E2) values are obviously zero,

while B(E2,2+1 → 0+1 ) = 100 is set for all the cases studied.

As shown in Table I, not only the first a few low-lying level

energies, but also the existing higher-lying level energies up to

ξ = 4 and τ = 1 produced by the EXT are in good agreement

with those of E(5) model. Actually, all excitation energies

obtained from the EXT are much closer to the corresponding

E(5) results though they are not fully listed in Table I. It is

obvious that the CQ results are globally worse due to the fact

that the higher lying levels produced by the CQ are too low in

energy in comparison to the corresponding E(5) results. Some

B(E2) values of the transitions among the low-lying states in

the model in comparison with the corresponding E(5) results

and those in the CQ are shown in Table III. It can be ob-

served in Table III that these transitional rates increase with

the increasing of N, of which the pattern is similar to that pro-

duced by the CQ. These transitional rates become closer to

the corresponding E(5) results with the increasing of N ex-

cept B(E2,0+4 → 2+3 ) not included in (33), which is about 1.5
times larger than the corresponding E(5) value when N = 10.

Except B(E2,0+4 → 2+3 ), other B(E2) values of the EXT are

slightly closer to the corresponding E(5) results than those of

the CQ with the increasing of N for N = 5–10.

Similar to the CQ [14], of which the Hamiltonian (1) can

be diagonalized easily, large-N cases of the EXT can also be

worked out. We present results of the low-lying level ener-

gies and the reduced E2 transitional rates of the model with

N = 1000 bosons in Tables IV and V, respectively. Since nu-

merical results of the IBM fit to the E(5) results with N = 60

are also available [15], the EXT results with N = 60 are also

shown in Tables IV and V in comparison with the correspond-

ing results of the IBM fit provided in [15]. It can be observed

from Table IV that the EXT results are always better than

those of the CQ, especially for higher excited states. In fact,

the tendency that higher levels become too low in energy in

the CQ in comparison to the corresponding E(5) results is not

altered in the IBM fits shown in [15], while it is overcome in

the EXT. The quality of the EXT fit becomes better with the

increasing of N when N ≤ 60. However, similar to the CQ,

both χ2 and χ2
E2 of the EXT also increase with the increasing

of N when N is sufficiently large. It is clearly shown in Table

V that the reduced E2 transitional rates is closest to the cor-

responding E(5) results when N = 60 except B(E2,4+4 → 2+3 )

and B(E2,0+4 → 2+3 ), which are about 1.45 and 2.22 times

larger than the corresponding E(5) results, respectively. With

the increasing of N, e. g., N = 1000, these transitional rates all

become larger than the corresponding E(5) results, but closer

to those of the E(5)-β 2n model with n ≥ 2 shown in Table V

of Ref. [15]. Anyway, the EXT does not provide with results

of the E(5) model in finite-N cases.

IV. The classical energy surface

The classical limit of the IBM may be found by using the

coherent state or intrinsic state formulism [16, 17, 27]. Usu-

ally, the ground state of a system described by the IBM is

written as a condensate of bosons with

|c〉=
√

1

N!

(

Γ†
c

)N |0〉, (34)

where

Γ†
c =

1
√

1+β 2

(

s† +β cosγd
†
0 +

1

2
β sinγ(d†

2 + d
†
−2)

)

, (35)

in which the parameters β and γ are Bohr variables defined in

the classical limit of the IBM. By using the method proposed

in [27], it can easily be found that

〈c|n̂d |c〉=
Nβ 2

1+β 2
, (36)

and

〈c|P̂†P̂|c〉= N(N − 1)

4(1+β 2)2
(1−β 2)2, (37)

with which one can observe that the critical point of the U(5)–

O(6) phase transition described by the CQ Hamiltonian is at
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x = 1/2 in the large-N limit since there is a minimum in the

energy surface at β = 0 and ∂ 2E(β ,γ)/∂β 2 = 0 at β = 0 when

x= 1/2. This type of analysis shows that the U(5)–O(6) phase

transition is of the second order, and the energy surface is in-

dependent of γ since the system is γ unstable.

However, the operators S̃+ρ and S̃−ρ used in the third term

of (20) are only well defined in the U(6)⊃ U(5)⊃ O(5) ba-

sis, and there is the O(5) seniority number τ mixing in the

coherent state |c〉. Therefore, one can not derive the energy

surface described by (20) in the classical limit using (34) or

using the method proposed in [27] directly. Moreover, since

the quantum number of the angular momentum is also not a

good quantum number in (34), the coherent state (34) may be

expanded in terms of any complete set of U(6)⊃U(5)⊃O(5)
basis vectors for given N. Due to the multiplicity occurring

in the O(5) ↓ O(3) reduction, we expand (34) in terms of

the U(6) ⊃ U(5) ⊃ O(5) ⊃ O1(3)⊗U(1) ⊃ O1(2)⊗U(1)
basis vectors [28], which are orthonormal and multiplicity-

free. Specifically, for given N, nd , and τ , the U(6)⊃U(5)⊃
O(5) ⊃ O1(3)⊗U(1) ⊃ O1(2)⊗U(1) basis vectors may be

expressed as [28]

|N,nd ,τ,r,mr,mJ〉=
(

(2τ+3)!!

(N−nd)!(
nd−τ

2 )!(nd+τ+3)!!

)1/2

×

s†N−nd P
†

nd−τ
2

2 ∑
t/2

η=0

(

2r+mr (2r+1)!!(r+mr)!(r−mr)!r!

η!(2r+2η+1)!!(2r)!

)
1
2

P
†η
1 ×

b
τ,t,r,mJ
η ∑x

d
†x
1 d

†r+mr−2x
0 d

†x−mr
−1

2x(x−mr)!(r+mr−2x)!x!

∣

∣

∣

∣

|mJ|+ t/2−η
mJ

〉

(38)

with τ = r + 2|mJ|+ t, where t = 0,2,4, · · ·, r can be taken

as zero or positive integer, the U(1) quantum number mJ can

be taken as zero, integer, or half-integer, the O1(2) quantum

number mr = r,r−1, · · · ,−r for given O1(3) quantum number

r,

P
†
2 =

√
2P†, P

†
1 =

1√
2

(

2d
†
1d

†
−1 − d

† 2
0

)

, (39)

b
τ,t,r,mJ
η =

[

(2τ+1−t)!! (4|mJ |+t)!! (2r+t+1)!! t!!

(2τ+1)!! (4|mJ |+t−2η)!! (2η)!! (2r+2η+1)!! (t−2η)!!

]
1
2
, (40)

and

∣

∣

∣

∣

|mJ|+ t/2−η
mJ

〉

=



















d
† 2|mJ |+t/2−η
2 d

† t/2−η
−2√

(2|mJ |+t/2−η)!(t/2−η)!
|0〉 for mJ ≥ 0,

d
† t/2−η
2 d

† 2|mJ |+t/2−η
−2√

(2|mJ |+t/2−η)!(t/2−η)!
|0〉 for mJ < 0.

(41)

For given N, by using the U(6)⊃U(5)⊃ O(5)⊃ O1(3)⊗
U(1)⊃O1(2)⊗U(1) basis vectors shown in (38), expectation

value of any operator Ô under the intrinsic state (34) may be

expressed as

〈c|Ô|c〉= ∑〈N,nd ,τ,r,mr,mJ |Ô|N,n′d ,τ
′,r′,m′

r,m
′
J〉

〈c|Nndτr mrmJ〉〈c|Nn′dτ ′r′m′
rm′

J〉, (42)

where the summation should run over all possible

nd,τ,r,mr ,mJ and n′d,τ
′,r′,m′

r,m
′
J . Since the Hamilto-

nian (20) keeps τ unchanged, and is independent of quantum

numbers of the O(5) subgroups, (42) can be simplified as

〈c|Ô|c〉= ∑nd ,n
′
d
,τ O

N,τ
nd ,n

′
d

×

∑r,mr ,mJ
〈c|Nndτr mrmJ〉〈c|Nn′dτr mrmJ〉 (43)

when Ô is any term in (20), where O
N,τ
nd ,n

′
d

≡
〈Nndτr mrmJ|Ô|Nn′dτr mrmJ〉. The real expansion coef-

ficient 〈c|Nndτr mrmJ〉 can be obtained by using the explicit

form shown in (34), (38), and the method proposed in [27].

Generally speaking, the classical limit should be defined in

the infinite N limit. Though analytical expression of (43) in

terms of arbitrary N is impossible, one can numerically cal-

culate (43) for finite N cases. For example, one can verify

that the expressions shown in (36) and (37) are indeed valid

by using (43) and the basis vectors shown in (38). The matrix

elements of Ĥext =−g2 ∑∞
k=1(S̃

+k
s S̃−k

d + S̃+k
d S̃−k

s ) appearing in

(20) can then be expressed simply as

(

Ĥext

)N,τ

nd ,n
′
d
=

{

0, when nd = n′d ,
−g2, when nd 6= n′d .

(44)

We have verified numerically that

〈c|Ĥext|c〉=−g2
1

(1+β 2)N
fN−1(β

2), (45)

which is indeed γ-independent, where fN−1(β
2) is a polyno-

mial in β 2 of degree N − 1. Thus, we calculated 〈c|Ĥc|c〉 us-

ing the explicit form shown in (34) and (38) for some finite

N cases with the parameters of (20) in fitting the E(5) results.

When N = 10 for example, we obtain

u(β ) = 〈c|Ĥc|c〉= ∆ Nβ 2

1+β 2 +λ (N−1)(1−β 2)2

4(1+β 2)2 +λ (N−1)β 2

2(1+β 2)2 −

g2(6β 2 + 53.84β 4+ 207.8β 6+ 453.7β 8+

617.2β 10+ 538.7β 12+ 295.9β 14+ 93.7β 16+

13.2β 18)/(1+β 2)10 (46)

with the parameters shown in Table II for the N = 10 case,

which answers why the results of the EXT are in between

those of the E(5)-β 2n models in the large N cases shown in the

previous section. Actually, the B(E2) values B(E2,4+4 → 2+3 )

and B(E2,0+4 → 2+3 ) in the EXT are indeed close to those of

the E(5)-β 2n models with n = 2 or n = 3 when N = 60 as

shown in [15]. Fig. 2 shows various potential energy surfaces
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FIG. 2: (Color online) Panel (a) shows potential energy surface (in

unit of 10g2) of the EXT (solid curve) and that derived from the

CQ in unit of g = g2 (dashed curve) as functions of β with N = 10,

where the potential energy is set with u(0) = 0, while panel (b) shows

potential energy surfaces (in unit of g2) as functions of β for various

N cases, in which the curves from bottom to the top are those with

N = 5–10, respectively.

FIG. 3: (Color online) Panel (a) shows potential energy surface (in

unit of g2) of the EXT (solid curve) and that derived from the CQ

in unit of g = g2/40 (dashed curve) as functions of β with N = 16,

while panel (b) shows the second derivative of u(β ) at and near β = 0

with the same conditions as indicated for the left panel.

in unit of g2 as function of β , which is typical for nuclei near

or at the E(5) critical point. These energy potential surfaces

have been determined by using the parameters of (20) in fit-

ting the E(5) results for these N cases shown previously. In

order to compare the energy surface derived from the EXT

with that of the CQ, Fig. 3 shows the energy surface for the

N = 16 case of the EXT in unit of g2 and that derived from

the CQ, of which the latter is derived from (1) with g = g2/40

and x = 1/2. The results show that, even though the two de-

scriptions are different, they behavior similarly in the classical

limit. Most importantly, similar to the CQ, the energy surface

of the EXT indeed presents a single minimum at β = 0 and

satisfies the condition
(

∂ 2u(β )/∂β 2
)

β=0
= 0 as shown in Fig

3.

In order to find exact critical point in the EXT, we rewrite

the Hamiltonian (20) as

Ĥc = ∆n̂d +
λ
N
(S+s S−s + S+d S−d )−

z g2 ∑∞
k=1(S̃

+k
s S̃−k

d + S̃+k
d S̃−k

s ). (47)

Actually, similar to the CQ, the position of the critical point

will be different when the scale of the parameters in the model

is changed. In present analysis, we use (47) with z = 1.0 to

fit the E(5) results by adjusting the parameters ∆ and λ in

unit of g2. Then, for given N, ∆, and λ , the critical point

value of the dimensionless parameter z can easily be deter-

mined. We found the critical point value of z always satisfies

zc ≥ 1.0 when N is finite, which approaches to 1.0 in the large

N limit. We have verified that
(

∂ 2u(β )/∂β 2
)

β=0,z>zc
> 0,

(

∂ 2u(β )/∂β 2
)

β=0,z<zc
< 0, and

(

∂ 2u(β )/∂β 2
)

β=0,z=zc
= 0,

which shows the phase transition in the EXT is also of the sec-

ond order. When z ≤ zc the model is in the spherical (U(5)) to

the E(5)-like critical point phase, while the model with z ≫ zc

may be not physical for finite N cases, and is not studied in

this paper. For simplicity, we always set z = 1.0 in the fitting

shown in Sec. III, which ensures the model in the fitting al-

ways remain in the U(5) to the E(5) like critical point phase.

In conclusion, the E(5) results can be approximately described

by the EXT in U(5) to the E(5)-like critical point phase with

results better than the CQ description.

V. Comparison with experimental results

As shown in [29], there are many nuclei in A = 100–130

mass region near the E(5) critical point. It was confirmed in

[9] that 102Pd, 104Ru, and 116Cd are good candidates near the

E(5) critical point. In this section, we use the EXT to fit low-

lying energy levels and some B(E2) values for 102Pd (N = 5),
134Ba (N = 5), 128Xe (N = 6), 104Ru (N = 8), 108Pd (N = 8),
116Cd (N = 8), and 114Cd (N = 9). The levels of the nuclei

fitted have been confirmed in experiment with relatively abun-

dant B(E2) data except 128Xe, of which only four B(E2) val-

ues are available. These nuclei have also been well studied in

the original E(5) model [5–8], the model with the sextic type

potential in β [9], and the confined γ-soft rotor model [11].

The fitting results of the EXT and the CQ to the level ener-

gies and experimentally deduced B(E2) values for these nuclei

are shown in Tables VII and VIII, in which the fitting results

of the model with the sextic potential in β (SET) shown in

[9] for 102Pd, 104Ru, 108Pd, 116Cd, and 114Cd are also pro-

vided for comparison. The quantities χ2 and χ2
E2 are used

to measure the quality of the fits, which are calculated from

(32) and (33), respectively, with NE(5), X
E(5)
i , NE(5)(E2), and

X
E(5)
i (E2) being replaced by the corresponding experimental

data. As shown in Tables VII-IX, the level patterns of 102Pd

and 128Xe are closest to the SET and the E(5) prediction, re-

spectively, while their B(E2) values are best fitted by the E(5)

and the EXT, respectively, from which 102Pd may be recog-

nized as the best E(5) candidate. The overall fitting quality is

measured by the average of χ2 and χ2
E2 over these seven nu-

clei as listed in Table X, from which we conclude that these

nuclei are best fitted by the EXT. It can be expected that the

EXT should fit the vibration to γ-soft transitional nuclei much

better than the CQ if higher excited levels are taken into ac-

count though we did not done so in this paper due to in lack

of experimental data of relatively higher excited states.

VI. Summary

In this paper, an alternative solvable extended Hamiltonian

that includes multi-pair interactions among s- and d-bosons
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up to infinite order within the framework of the interacting

boson model is proposed to provide a better description of the

E(5) model results for finite-N cases. Numerical fits to low-

lying level energies and B(E2) values of the E(5) model for

various N cases were carried out to test the theory. The results

show that the extended Hamiltonian within the IBM provides

a better description of the E(5) model results, especially when

higher excited states are taken into account. However, B(E2)

values of the transitions among higher excited states, e. g.,

B(E2,4+4 → 2+3 ) and B(E2,0+4 → 2+3 ), do not approach the

corresponding E(5) results with increasing N. Moreover, sim-

ilar to the results of the consistent-Q formalism, the χ2 and

χ2
E2 increase with the increasing of N. Specifically, the results

of the extended model proposed in this paper do not approach

to those of the E(5) model in the large-N limit, but approach

to those of the E(5)-β 2n model with n ≥ 2 studied in [15], for

example when N = 60. And indeed, as analyzed by using the

coherent state method, the classical energy surface of the ex-

tended model can be described by a polynomial function of

β 2. Low-lying level energies and B(E2) values of the transi-

tions among these levels for 102Pd, 134Ba, 128Xe, 104Ru, 108Pd,

and 114,116Cd are fitted by the extended model and compared

with the results of the E(5) model and those of the consistent-

Q formalism. The overall fitting results show that these nu-

clei are best fitted by the EXT. It can be expected that the

extended model should fit the vibration to γ-soft transitional

nuclei much better than the original consistent-Q formalism if

higher excited states are taken into account, which will be our

future work when experimental data for higher excited states,

especially the relevant B(E2) values of nuclei in the U(5)-O(6)

transitional region are available.
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TABLE I: Comparison of low-lying level energies generated by the extended IBM Hamiltonian (EXT) and the IBM consistent-Q Hamiltonian

at the critical point with x = 1/2 (CQ) for serval values of N with those provided by the E(5) model, where “—” denotes that the corresponding

level in the IBM does not exist due to the fact that N is finite.

ζ , τ E(5) EXT CQ

N=5 N=6 N=7 N=8 N=9 N=10 N=5 N=6 N=7 N=8 N=9 N=10

1, 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1, 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1, 2 2.20 2.19 2.12 2.20 2.12 2.19 2.13 2.15 2.15 2.15 2.14 2.14 2.14

2, 0 3.03 3.14 3.19 3.33 3.34 3.38 3.37 3.18 3.10 3.04 3.00 2.96 2.92

1, 3 3.59 3.50 3.46 3.52 3.46 3.51 3.47 3.43 3.42 3.42 3.41 3.40 3.40

2, 1 4.80 4.74 4.83 4.97 4.98 4.99 5.02 4.70 4.59 4.51 4.45 4.40 4.35

1, 4 5.17 5.02 4.92 5.08 4.93 5.03 4.96 4.82 4.79 4.78 4.77 4.76 4.76

2, 2 6.78 6.56 6.63 6.83 6.80 6.82 6.86 6.30 6.17 6.06 5.99 5.92 5.87

3, 0 7.58 7.41 7.58 7.79 7.82 7.79 7.88 7.13 6.93 6.79 6.67 6.58 6.50

1, 5 6.93 6.64 6.62 6.75 6.64 6.69 6.67 6.30 6.27 6.25 6.23 6.21 6.20

1, 6 8.88 — 8.44 8.67 8.49 8.57 8.53 — 7.82 7.79 7.76 7.74 7.72

2, 3 8.97 8.49 8.67 8.85 8.85 8.81 8.91 7.98 7.82 7.70 7.60 7.53 7.45

3, 1 10.11 9.66 9.95 10.16 10.24 10.13 10.31 9.05 8.81 8.72 8.49 8.37 8.27

2, 4 11.36 — 10.83 11.09 11.07 11.02 11.15 — 9.55 9.41 9.29 9.20 9.11

3, 2 12.85 — 12.48 12.76 12.83 12.69 12.93 — 10.75 10.52 10.36 10.21 10.09

4, 0 13.64 — 13.40 13.68 13.81 13.62 13.92 — 11.42 11.15 10.95 10.78 10.64

2, 5 13.95 — — 13.47 13.52 13.38 13.60 — — 11.18 11.05 11.00 10.84

3, 3 15.81 — — 15.49 15.65 15.41 15.76 — — 12.48 12.28 12.11 11.97

2, 6 16.73 — — — 16.11 15.97 16.21 — — — 12.87 12.74 12.63

4, 1 16.93 — — 16.78 17.01 16.69 17.13 — — 13.31 13.06 12.86 12.69

χ2 0.08 0.08 0.04 0.07 0.09 0.06 0.18 0.30 0.43 0.48 0.51 0.53

TABLE II: Parameters of the EXT used in the fitting.

∆/g2 λ/g2

N = 5 2.90 2.91

N = 6 3.00 3.56

N = 7 2.93 3.66

N = 8 3.10 4.26

N = 9 3.24 4.45

N = 10 3.69 5.42

N = 60 15.70 29.74

N = 1000 333.80 665.40
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TABLE III: Some B(E2) values in the EXT and the CQ for serval values of N compared with those provided by the E(5) model, where the

B(E2) values with ∗ are not included in χ2
E2.

E(5) EXT CQ

N=5 N=6 N=7 N=8 N=9 N=10 N=5 N=6 N=7 N=8 N=9 N=10

B(E2 : 2+1 → 0+1 ) 100 100 100 100 100 100 100 100 100 100 100 100 100

B(E2 : 4+1 → 2+1 ) 167.4 148.7 152.3 155.6 156.4 159.2 160.4 140.8 147.2 151.4 154.7 157.2 159.2

B(E2 : 6+1 → 4+1 ) 216.9 157.6 174.2 182.9 189.4 195.4 200.8 143.8 161.7 173.2 181.9 188.7 194.2

B(E2 : 2+2 → 2+1 ) 167.4 148.7 152.3 155.6 156.4 159.2 160.4 140.8 147.2 151.4 154.7 157.2 159.2

B(E2 : 2+2 → 0+1 ) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

B(E2 : 4+2 → 2+1 ) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

B(E2 : 4+2 → 2+2 ) 113.6 82.5 91.2 95.8 99.2 102.4 105.2 75.3 84.7 90.7 95.3 98.8 101.7

B(E2 : 4+2 → 4+1 ) 103.3 75.0 82.9 87.1 90.2 93.1 95.6 68.5 77.0 82.5 86.6 89.8 92.5

B(E2 : 3+1 → 2+2 ) 154.9 112.5 124.4 130.6 135.3 139.6 143.5 102.7 115.5 123.7 129.9 134.8 138.7

B(E2 : 3+1 → 4+1 ) 62.0 45.0 49.8 52.3 54.1 55.8 57.4 41.1 46.2 49.5 52.0 53.9 55.4

B(E2 : 0+τ → 2+2 ) 216.9 157.6 174.2 182.9 189.4 195.4 200.8 143.8 161.7 173.2 181.9 188.7 194.2

B(E2 : 0+τ → 2+1 ) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

B(E2 : 2+3 → 0+
ζ
) 72.2 62.7 68.4 69.4 70.6 71.6 74.9 56.6 64.6 69.7 73.4 76.1 79.4

B(E2 : 4+4 → 2+3 )
∗ 124.3 72.3 95.4 105.6 110.8 117.7 124.0 60.4 85.7 98.1 108.1 115.6 122.2

B(E2 : 0+
ζ
→ 2+1 ) 86.8 100.2 97.8 99.0 94.3 99.3 99.5 64.5 72.3 77.1 81.1 84.4 87.2

B(E2 : 0+4 → 2+3 )
∗ 123.2 88.4 134.8 151.8 161.1 172.6 181.5 42.8 83.4 97.0 109.7 119.2 127.2

χ2
E2 10.9 7.9 6.3 5.1 4.1 3.3 13.6 10.2 8.1 6.4 5.2 4.2

TABLE IV: Comparison of low-lying level energies generated by the EXT and the CQ with N = 60 and 1000, respectively, and those generated

by the IBM fit for N = 60 [15] with those provided by the E(5) model, where “—” denotes that the corresponding level energy in the IBM fit

was not provided in [15].

ζ , τ E(5) EXT CQ IBM fit [15]

N=60 N=1000 N=60 N=1000 N=60

1, 0 0.00 0.00 0.00 0.00 0.00 0.00

1, 1 1.00 1.00 1.00 1.00 1.00 1.00

1, 2 2.20 2.14 2.18 2.12 2.10 2.21

2, 0 3.03 3.59 3.50 2.60 2.45 3.05

1, 3 3.59 3.45 3.55 3.33 3.29 3.61

2, 1 4.80 5.16 5.23 3.91 3.71 4.51

1, 4 5.17 4.93 5.13 4.64 4.56 5.16

2, 2 6.78 6.95 7.19 5.30 5.03 6.11

3, 0 7.58 8.02 8.31 5.68 5.30 6.68

1, 5 6.93 6.59 6.91 6.02 5.89 6.85

1, 6 8.88 8.44 8.91 7.46 7.28 —

2, 3 8.97 8.95 9.37 6.76 6.41 8.67

3, 1 10.11 10.39 10.90 7.24 6.75 8.51

2, 4 11.36 11.15 11.75 8.27 7.85 —

3, 2 12.85 12.96 13.71 8.85 8.25 10.44

4, 0 13.64 13.98 14.79 9.16 8.48 —

2, 5 13.95 13.54 14.36 9.85 9.34 —

3, 3 15.81 15.74 16.73 10.50 9.79 —

2, 6 16.73 16.13 17.18 11.48 10.88 —

4, 1 16.93 17.13 18.23 10.92 10.09 —

χ2 0.09 0.17 0.75 0.86 0.40
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TABLE V: Some B(E2) values in the EXT and the CQ with N = 60 and 1000 and those from the IBM fit with N = 60 [15] compared with

those provided by the E(5) model, where the B(E2) values with ∗ are not included in χ2
E2.

E(5) EXT CQ IBM fit [15]

N=60 N=1000 N=60 N=1000 N=60

B(E2 : 2+1 → 0+1 ) 100 100 100 100 0.00 100

B(E2 : 4+1 → 2+1 ) 167.4 167.3 176.3 175.8 181.3 165.2

B(E2 : 6+1 → 4+1 ) 216.9 224.5 246.1 238.1 251.8 215.2

B(E2 : 2+2 → 2+1 ) 167.4 167.3 176.3 175.8 181.3 165.2

B(E2 : 2+2 → 0+1 ) 0.0 0.0 0.0 0.0 0.0 0.0

B(E2 : 4+2 → 2+1 ) 0.0 0.0 0.0 0.0 0.0 0.0

B(E2 : 4+2 → 2+2 ) 113.6 117.6 128.9 124.7 131.9 112.8

B(E2 : 4+2 → 4+1 ) 103.3 106.9 117.2 113.4 119.9 102.6

B(E2 : 3+1 → 2+2 ) 154.9 160.4 175.8 170.0 179.9 153.8

B(E2 : 3+1 → 4+1 ) 62.0 64.1 70.3 68.0 71.9 61.5

B(E2 : 0+τ → 2+2 ) 216.9 224.5 246.1 238.1 251.8 215.4

B(E2 : 0+τ → 2+1 ) 0.0 0.0 0.0 0.0 0.0 0.0

B(E2 : 2+3 → 0+
ζ
) 75.2 75.2 92.7 101.9 109.9 90.2

B(E2 : 4+4 → 2+3 )
∗ 124.3 143.2 175.2 174.8 192.3 152.3

B(E2 : 0+
ζ
→ 2+1 ) 86.8 99.8 124.5 118.6 135.2 81.6

B(E2 : 0+4 → 2+3 )
∗ 123.2 215.4 265.0 208.6 245.0 155.0

χ2
E2 1.9 6.7 5.7 8.8 2.3

TABLE VI: zc of the EXT defined in (47) for various N cases with the parameters ∆ and λ shown in Table II in fitting the E(5) results.

zc

N = 5 2.413

N = 6 1.957

N = 7 1.880

N = 8 1.640

N = 9 1.631

N = 10 1.630

N = 16 1.053
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TABLE VII: Comparison of low-lying level energies and relevant B(E2) values of 102Pd, 134Ba, and 128Xe with those obtained from the EXT,

the CQ, the model with the sextic potential in β (SET) [9], and the E(5) model, where the experimental data of 102Pd were taken from [7],

those of 134Ba were taken from [5] and [30], those of 128Xe were taken from [31], CQN denotes the consistent-Q description at the critical

point with N bosons, and “—” denotes that the corresponding B(E2) value was not determined experimentally.

E(5) 102Pd EXT SET 134Ba EXT CQ5
128Xe EXT CQ6

0+1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2+1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2+2 2.20 2.76 2.21 2.58 1.93 2.31 2.15 2.29 2.14 2.15

4+1 2.20 2.29 2.21 2.58 2.32 2.31 2.15 2.44 2.14 2.15

0+
ζ

3.03 2.98 2.69 2.92 3.57 2.92 3.18 3.74 3.38 3.10

0+τ 3.59 2.87 3.23 3.70 2.91 3.31 3.43 4.44 3.52 3.42

3+1 3.59 3.79 3.23 3.70 2.72 3.31 3.43 3.38 3.52 3.42

4+2 3.59 3.84 3.23 3.70 3.26 3.31 3.43 3.79 3.52 3.42

6+1 3.59 3.72 3.23 3.70 3.66 3.31 3.43 4.11 3.52 3.42

2+3 4.80 3.49 3.72 4.14 3.36 3.92 4.70 4.73 5.11 4.59

B(E2 : 4+1 → 2+1 ) 167.4 154.5 143.9 187.8 154.8 141.9 140.8 146.7 151.3 147.2

B(E2 : 6+1 → 4+1 ) 216.9 – 137.5 257.6 – 129.6 143.8 181.6 172.5 161.7

B(E2 : 2+2 → 2+1 ) 167.4 45.0 143.9 187.8 217.2 141.9 140.8 119.4 151.3 147.2

B(E2 : 2+2 → 0+1 ) 0.0 6.0 0.0 0.0 1.25 0.0 0.0 1.6 0.0 0.0

B(E2 : 4+2 → 2+1 ) 0.0 9.0 0.0 0.0 – 0.0 0.0 – 0.0 0.0

B(E2 : 4+2 → 2+2 ) 113.6 136.4 72.0 136.4 – 67.9 75.3 – 90.4 84.7

B(E2 : 4+2 → 4+1 ) 103.3 <24.0 65.5 121.2 – 61.7 68.5 – 82.1 77.0

B(E2 : 3+1 → 2+2 ) 154.9 – 98.2 184.8 12.8 92.5 102.7 – 123.2 115.5

B(E2 : 3+1 → 4+1 ) 62.0 – 39.3 72.7 – 37.0 41.1 – 49.3 46.2

B(E2 : 0+τ → 2+2 ) 216.9 291.0 137.5 257.6 – 129.6 143.8 – 172.5 161.7

B(E2 : 0+τ → 2+1 ) 0.0 <0.001 0.0 0.0 3.0 0.0 0.0 – 0.0 0.0

B(E2 : 2+3 → 0+
ζ
) 72.2 – 47.2 109.1 – 43.7 56.6 – 66.8 64.6

B(E2 : 0+
ζ
→ 2+1 ) 86.8 39.4 68.5 163.6 41.7 57.3 64.5 – 93.4 72.3
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TABLE VIII: The same as Table VII but for 104Ru, 108Pd, and 114,116Cd, where “—” denotes either that the corresponding B(E2) value was

not determined experimentally, or that the theoretical value was not provided in [9], the experimental data of 104Ru were taken from [32–34],

those of 108Pd were taken from [35], those of 114Cd were taken from [36], and those of 116Cd were taken from [37, 38], CQN denotes the

consistent-Q description at the critical point with N bosons.

E(5) 104Ru EXT SET 108Pd EXT SET 116Cd EXT SET CQ8
114Cd EXT SET CQ9

0+1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2+1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2+2 2.20 2.49 2.03 2.22 2.14 2.03 2.20 2.36 2.07 2.66 2.14 2.17 2.00 2.00 2.14

4+1 2.20 2.48 2.03 2.22 2.42 2.03 2.20 2.37 2.07 2.66 2.14 2.30 2.00 2.00 2.14

0+
ζ

3.03 2.76 3.04 2.34 2.43 2.41 2.30 2.69 2.43 3.09 3.00 2.03 2.00 2.00 2.96

0+τ 3.59 3.73 3.25 3.27 3.03 3.21 3.23 2.50 3.22 3.80 3.41 2.33 3.00 3.00 3.40

3+1 3.59 3.47 3.25 3.27 3.08 3.13 3.23 3.73 3.22 3.80 3.41 3.34 3.00 3.00 3.40

4+2 3.59 4.20 3.25 3.27 3.75 3.13 3.23 3.98 3.22 3.80 3.41 3.10 3.00 3.00 3.40

6+1 3.59 4.35 3.25 3.27 4.08 3.13 3.23 3.95 3.22 3.80 3.41 3.56 3.00 3.00 3.40

2+3 4.80 4.23 4.41 3.66 3.32 3.60 4.36 3.20 3.72 4.41 4.45 2.44 3.00 – 4.40

B(E2 : 4+1 → 2+1 ) 167.4 134.5 154.3 195.2 147.5 163.5 – 163.9 175.0 188.1 154.7 199.4 177.8 – 157.2

B(E2 : 6+1 → 4+1 ) 216.9 190.4 184.8 276.8 216.2 202.1 – 327.8 215.0 250.7 181.9 382.6 233.3 – 188.7

B(E2 : 2+2 → 2+1 ) 167.4 67.3 154.3 195.2 143.4 163.5 – 74.5 175.0 188.1 154.7 70.7 177.8 – 157.2

B(E2 : 2+2 → 0+1 ) 0.0 4.8 0.0 0.0 0.01 0.00 0.0 – 0.0 0.0 0.0 – 0.0 0.0 0.0

B(E2 : 4+2 → 2+1 ) 0.0 – 0.0 0.0 – 0.0 0.0 – 0.0 0.0 0.0 1.6 0.0 0.0 0.0

B(E2 : 4+2 → 2+2 ) 113.6 82.7 96.8 145.2 111.1 105.7 – – 117.9 131.3 95.3 102.9 122.2 – 98.8

B(E2 : 4+2 → 4+1 ) 103.3 45.2 88.0 132.1 60.6 96.2 – – 107.1 119.4 86.6 54.7 111.1 – 89.9

B(E2 : 3+1 → 2+2 ) 154.9 126.8 132.0 198.2 – 144.4 – 181.8 160.7 179.1 129.9 – 166.7 – 134.8

B(E2 : 3+1 → 4+1 ) 62.0 27.4 52.8 79.2 – 57.7 – 53.6 62.1 71.6 52.0 – 66.7 – 53.9

B(E2 : 0+τ → 2+2 ) 216.9 – 184.8 276.8 <36.4 202.1 – – 225.0 250.7 181.9 408.4 233.3 – 188.7

B(E2 : 0+τ → 2+1 ) 0.0 – 0.0 0.0 <0.02 0.0 0.0 1.64 0.0 0.0 0.0 0.01 0.0 0.0 0.0

B(E2 : 2+3 → 0+
ζ
) 72.2 60.1 64.3 122.0 119.2 79.5 – 256.3 105.0 104.5 73.4 209.0 108.9 – 76.1

B(E2 : 0+
ζ
→ 2+1 ) 86.8 42.3 83.7 182.7 105.1 121.8 – 89.4 175.0 158.2 81.1 88.1 177.8 – 84.4

TABLE IX: χ2 and χ2
E2 values of the models in fitting the low-lying level energies and the B(E2) values shown in Tables VII and VIII for

102Pd, 134Ba, 128Xe, 104Ru, 108Pd, and 114,116Cd.

102Pd 134Ba 128Xe 104Ru

EXT CQ E(5) SET EXT CQ E(5) EXT CQ E(5) EXT CQ E(5) SET

χ2 0.20 0.20 0.20 0.16 0.20 0.21 0.24 0.21 0.18 0.16 0.28 0.18 0.16 0.24

χ2
E2 19.4 20.4 19.0 24.2 18.6 20.2 26.3 8.4 8.6 15.8 11.1 11.1 14.2 25.2

108Pd 116Cd 114Cd

EXT CQ E(5) SET EXT CQ E(5) SET EXT CQ E(5)

χ2 0.20 0.20 0.23 0.18 0.26 0.23 0.24 0.27 0.19 0.31 0.36

χ2
E2 6.5 16.2 19.5 — 28.4 31.6 29.5 27.3 33.8 33.8 30.9

TABLE X: Average χ2 and χ2
E2 over the number of nuclei fitted according to the results shown in Table IX.

EXT CQ E(5)

χ2 0.22 0.22 0.23

χ2
E2 18.0 20.3 22.2


