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A solvable extended Hamiltonian that includes multi-pair interactions among s- and d-bosons up to infinite
order within the framework of the interacting boson model is proposed to gain a better description of E(5) model
results for finite-N systems. Numerical fits to low-lying energy levels and reduced E2 transition rates within this
extended version of the theory are presented for various N values. It shows that the extended Hamiltonian within
the IBM provides a better description of the E(5) model results for small N cases, while the results of the model
in the large-N cases are close to those of the E(5)-82" type models studied previously.
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L. Introduction

Quantum phase transitions signal important phenomena in
various quantum many-body systems [1]. In atomic nuclei,
the quantum phase transitions are often related to different ge-
ometrical shapes of the system, which can be described either
by the Bohr-Mottelson model (BMM) [2] or by the Interacting
Boson Model (IBM) [3]. Generally, in either the BMM or the
IBM, a Hamiltonian that is suitable to describe such (shape)
phase transitions can be solved numerically. However, with
suitable simplification, Iachello proposed an exactly solvable
model [4] within the BMM, which is called the E(5) (crit-
ical point symmetry) model suitable to describe the critical
phenomena in the vibration to y-unstable (shape) phase tran-
sition. The potential used in the E(5) model only depends
on the B degree of freedom with an infinite square well. It
has been shown that there are many nuclei with the E(5) crit-
ical point symmetry, such as 134Ba [5], 1%Ru [6], 1°2Pd [7],
108pq [8], and ''°Cd [9]. Inspired by the E(5) model, Lévai
and Arias studied the Bohr Hamiltonian with a sextic potential
and a centrifugal barrier, of which quasi-exact solutions can
be derived [10], while Bonatsos et al explored numerical so-
lutions for the y-independent Bohr Hamiltonian with 2" po-
tentials for n > 1 called the confined 7y-soft rotor model [11],
in which the spectra and transition rates for the 2" poten-
tials for 2 <n <4 are given explicitly and compared with the
original E(5) model.

Since the E(5) model is simple and suitable to describe the
critical point symmetry of the vibration to y-unstable (shape)
phase transition in the BMM, it is interesting to seek a suitable
Hamiltonian near the critical point of the U(5)-O(6) transi-
tional region to describe this critical point symmetry because
the vibration to y-unstable (shape) phase transition is equiv-
alently describable in the IBM along the integrable line from
U(5) to O(6) [3, 12]. Arias et al did initial work along this
line [13, 14], showing that for the low-lying part of the spec-
trum the results of the consistent-Q type U (5)-O(6) Hamilto-
nian in the IBM at the critical point are close to those of the
E(5) model for cases with a small number of bosons, while
the IBM Hamiltonian for large N cases reproduces low-lying
parts of the spectrum and electromagnetic transition rates of

a BMM Hamiltonian with a B* potential. A detailed study
on the connections between the E(5), E(5)-8%, E(5)-B°, and
E(5)-B% models based on particular solutions of the BMM
with such y-unstable potentials and the IBM fit with relatively
large N (= 60) were also carried out [15], which further con-
firms the above conclusions.

As is well known, the number of bosons in the IBM is phe-
nomenologically regarded as the number of valence nucleon
pairs. In realistic nuclear systems, the number of bosons is
always finite. It is expected that a suitable IBM Hamiltonian,
like the U(5), O(6), and SU(3) limiting cases, may fit the E(5)
critical point nuclei better, especially when relatively higher
excited levels are taken into consideration, though it is com-
monly believed that the BMM may be regarded as the large-N
limit of the IBM [16-18]. The purpose of this work is to es-
tablish an extended Hamiltonian near the critical point of the
U(5)-0(6) transitional region of the IBM, of which the so-
lution should be closer to that of the E(5) model with finite
N. Namely, the model is suitable to describe the E(5) criti-
cal symmetry nuclei as reported in [5-9], while the model in
the large-N cases may be close to those of the E(5)-B2" type
models similar to the results reported in [15].

II. A solvable Hamiltonian near the
U(5)-0(6) critical point

Similar to the well-known consistent-Q formalism in the
IBM [3, 13, 14], using up to two-body interactions the U(5)-
O(6) Hamiltonian may be schematically written as [12-14,
19]

X 1 =X no
A=g (xﬁd—i— TXPTP) , (1

where g is a real parameter, the control parameter x € [0, 1],
g =Yy d}:d“ is the d-boson number operator, and

P'=—(d" -d"—5") )

NS



is the boson pairing operator. As shown in [13, 14], the spec-
trum and E2 transition rates generated from (1) at the critical
point with x ~ 1/2 approach those of the Bohr Hamiltonian
with a B* potential rather than to those of the E(5) model in
the large-N limit.

In order to clarify the structure of the U(5)-O(6) transi-
tional solutions, similar to [12-14], we introduce the s- and
d-boson SU(1,1) pairing algebras with

_ 1 1, 5
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_ 1 1, 1
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where 71, are the number operator for s-bosons, which satisfy
the following commutation relations:

5,851 = —286pSY, [89,55] = £86pSp. (5)

The Casimir operator of SU, (1, 1) can be expressed as

C2(SUp(1,1)) =Sp(Sp — 1) —S/S,, (6)
in which the Casimir operator of SU,(1, 1) is related to the

Casimir operator of O(5) with

Ca(SU4(1,1)) = 4 C2(0(5)) +

6 (N

Thus, the pairing operators appearing in (1) can be regarded
as the results of the SU(1,1) coupling:

Pr=Ss-S5, P=5,-S;, (8)

which, together with

PP =S3+5), ©)

generate SU,;(1,1) algebra. The Casimir operator of SU,(1,
1) is related to the Casimir operator of O(6) with

C>(SUg(1,1)) = PP (P°—1)—PTP= lc2(0(6))+ %. (10)
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Under the U(6) D U(5) D O(5) D O(3) basis, the gener-
ators of either SU,(1,1) or SU,(1,1) commute with all gen-
erators of O(5). Therefore, the basis vectors of U(6) D
U(5) D O(5) D 0(3) are simultaneously the basis vectors of
SU4(1,1). Let |kv) be basis vectors of an irreducible repre-
sentation (irrep) of SU(1,1), where k can be any positive real
number, and Vv = K, K+ 1,---. We have

G (SU(1, 1) |xv) = k(k— 1)|xv), 8% kv) = v[kv). (1)

The complementary relation between the basis vectors of
U((6) DU (5) D0(5) D 0O(3) and those of SU,(1,1)®@SU(1,1)
can be expressed as

INngtalM) = kg =5+ 5, va =%+ 3

K= 5+, Vs =%+ 3:0LM), (12)

where N is the total number of bosons, n, is the number of d-
bosons, 7 is the seniority quantum number labeling the irrep of
0(5), L is the angular momentum quantum number of O(3),
« is an additional quantum number needed to distinguish dif-
ferent states with the same L, M is the quantum number of the
third component of the angular momentum, 7, = 0 or 1 ac-
cording to N — 7 is even or odd, and ny = N — ny is the number
of s-bosons. Therefore, for given N, 7, &, L, and M, the or-
thonormalized basis vectors of U(6) D U(5) D O(5) D O(3)
can be equivalently expressed as those of SU;(1,1)®@SU(1,1)
with

|T; & TolM) =

&) =
N (SH T ()8 TaM), (13)

of which ny = 2& + 7, where the normalization constant

B V-T2 (20 4+ 3)1 ’
‘/V‘<5z(1v—1—2§)z(21+2§+3)u> 19

and € =0,1,2,---, %(N — T — Ty). The matrix representations
of SU,(1,1) and SU,(1,1) under the basis vectors (13) are
given by

SHE) = 2\/ (2E+2)(2T+2E +5)E+ 1),
S;1€) = 3/282T+2E+3)[E - 1),

S918) = 3(t+28+3)18), (15)

and

SHE) =3V IN—T—28)(N—1—2E —1)|E+1),
S71E) =3VIN—T—28+2)(N—1—-2E+1)|§ - 1),
SUE) =3(N—1—2E+3)[€). (16)

Thus, P’ P under the basis vectors (13) is tridiagonal. The
matrix elements of the diagonal part can be expressed as

(EI(SyS; +5587)1€) = §(28) (2T +26+3) +
IN=T-25)(N—Tt—2£-1), (17)

while those of the nonzero non-diagonal parts are given by

(E+1[S;8,1E) =1(N—T—2E)(N—T1-2E— 1) x
(2E +2)(2T+2E +5))2, (18)



(E—1ISf8,1&) =2(N—T—2E+2)(N—T—2E+1) x

(2E)(27+2E +3))2. (19)

It is clear that the U(5)-O(6) transitional phase is mainly
driven by the nonzero non-diagonal part of PTP. The critical
value of the control parameter x, ~ 0.5 in this case as shown
in [14, 19].

Using the SU,(1,1) and SU(1, 1) generators, we can build
an extended IBM Hamiltonian (EXT) as

He=Aig+2(SES; +578;) —
QY0 (SFKS K §HhS ), (20)

where A = g; — & > 0 is the energy gap of s- and d-bosons,
A >0 and g, > 0 are real parameters. Obviously, (20) be-
comes (1) when go = A/N and only the k = 1 term with the
replacement S!f — Sg is included in the third term of (20).
The second term in (20) is the same as the diagonal part of
the boson pairing interactions included in (1), while the third
term contributes to the non-diagonal part of the boson pairing
interactions but not restricted with the tridiagonal form shown
by (18) and (19) when it is diagonalized within the subspace
spanned by basis vectors shown in (13), in which

St=si—~L 5 =(s)),
d d /(Sd+$)($7sd+l) d (d)
i =8 . S, =)' @D

S (5+80)(S9-Se+1)

Instead of the operators {S%r}, one can also use the usual bo-
son pairing operators {Sﬁ} to construct the multi-pair interac-
tions similar to the third term of (20). In this case, the prob-
lem, however, is no longer exactly solvable.

It should be noted that the quantum numbers of S, Sg, and
Sy, S? in (21) are xy, vy, and Ky, Vg, respectively, under the
U(6) DU(5) D O(5) D O(3) basis shown in (12). Therefore,
the operators appearing in (21) are well-defined under the ba-
sis vectors (13). Since ST and S are built from the original
SUp(1,1) algebras, of which the irreducible representations
(irreps) are still lower bound. For a given irrep |kV) of the
SU(1,1), §* behave like the unit shift operators:

SEkv) = |kvE1). (22)
Thus, in contrast to (5), the operators {S/,S,,59} and
{8+,5;,5%} under the corresponding SU(1,1) irreps satisfy
the following commutation relations:

55,851 =

c:9p 6p(75 507 [SO Si]

0:85] =+85pS,.  (23)

Hence, {S}.5,,89} and {S;,5;.5%} are two copies of the
generators of Ej algebra when Sg # Sp, which become those

of the Heisenberg algebra only when Sg = Sp. They will be
called as the E, algebra.

Similar to the consistent-Q formulism [12] in describing
the U(5)-O(6) transitional nuclei, the Hamiltonian (20) is also
exactly solvable. To digonalize the Hamiltonian (20), we use
the simple algebraic Bethe ansatz with

(N T—Ty)

IN,C,taL) = Z C &), (24)

where |&) = |1,;&; T M) as given in (13), and C((:Q is the
expansion coefficient to be determined. Similar to the proce-
dures used in [20], it can be proven that the expansion coeffi-

cient Cg) can be expressed as

¢ _ 1
" = roE; (23)

where

FOE) =ES) g~ AEQT+2E+3) -
A (N=T—28)(N—T—2E—1)—A(t+2E), (26)

in which EigL) is the {-th eigen-energy for given 7 and L. To
show that (24) and (25) are indeed consistent, one may di-
rectly apply the Hamiltonian (20) on the N-particle state (24)
to establish the eigen-equation A.|N,{) = EggL) IN,&). After
simple algebraic manipulation, one can easily find that

—2 ¥ (S8, K + 8RS RN, 8 T, LM) =
k=1

g2|N1 C,T(X,LM>

~0 Y ¢ Y [E). @7
& 4

Once the expansion coefficients are chosen as those shown
in (25), the eigen-equation H.|N,{) = E§C2|N , &) is fulfilled
when and only when '

1
- —=1. (28)
RN

Solutions of (28) provide eigenvalues EgCL) and the corre-

sponding eigenstates (24) simultaneously.

For given N, 7, and L, let F(8)(&) = Eic) — xg according
to (26). Generally, xg # x| # xp # -+ # X (N-7-1,) is al-

ways satisfied. Let V,(x;) be exact value of x; with the or-
dering Vo <V; < -+ < V% (N—t—1)" Zeros of the polynomial

related with (28), EigL), satisfy either the interlacing condi-

t10nV0<E()<V1<E§L><V2< or—oo<E(1)<Vo<



Eﬁ < Vi < ---, which is very much helpful in finding roots

of 7Eq. (28). Actually, the polynomials related with Eq. (28)
is a special case of the extended Stieltjes polynomials [21].
Since Vp, Vy,-- -, V% (N—7—1,) &€ real and not equal one another,

the zeros of the polynomials related with Eq. (28) are either
within (N — 7 —7,) + | open intervals (—e,Vp), (V1,V5),
ey (V%(Nfrfrs)fl’V%(Nfrfrs)) or within (V(),Vl), (Vl,Vz),- e

(V%(Nirim,—l-w). Binomials F(%)(&) with variable EiCL) in
the denominators of terms in the sum of (28) are all differ-

ent. Therefore, (28) in this case results in a polynomial equa-
(€)

tion with variable E;7. The degree of the polynomial equals
exactly to the dimension %(N —T—1T;) + 1 of the concerned

Hilbert subspace. There are exactly %(N —7—1T,)+ | distinct

roots EgCL) of (28) in this case. Hence, the model is exactly

solved.

II1. Fit to the E(5) results

In comparison to the consistent-Q Hamiltonian (1), which de-
scribes the U(5)-O(6) phase transition, the EXT is in the U(5)
phase when g, = 0, while there is no pure O(6) phase for
finite-N cases even when A =0 and g, #0. WhenA= A1 =0,
by using the exact solutions shown in the previous section, the
state corresponding to the lowest level for given 7 of (20) in
this case can simply be written as

) %(Nfrfrs)

N,1 L) = ——
A

(29)

with energy
1
E{) = —58(N-1-1), (30)

while all other excited states for given T and L are degener-

ate with Eiiﬂ) = 0, of which the corresponding eigenstates
are not provided by the exact solution shown in (28). The
results shown in (29) and (30) are only relevant to nuclear
system in the large-N limit with equidistant spectrum in 7:
E|) —EjQ = E5) — Egg = 2. L) — B = E{) —Ej) =
2g», - -+, where the situation is quite similar to the spectrum in
the O(6) limit after adding the Casimir operators (20) of the
subalgebras O(5) D O(3) as is done in [4] for the E(5) model.

According to the concept of quasidynamical symme-
try [22-26], the system described by the consistent-Q Hamil-
tonian (1) remains in the U(5) phase until the control param-
eter reaches the critical point. Since the EXT is only used to
describe the phase transition from the U(5) phase to the E(5)-
like critical point in the IBM, this is what we intend here as
well. Anyway, when all parameters in (20) are nonzero, the
system remains within the U(5)-O(6) transitional phase since
the seniority number 7 of the common subgroup O(5) is al-
ways a good quantum number of the system. In this case, the

0.75¢
A/A 0.5¢
0.25¢

10 20 30 40 50 60 70 80 90 100
N

FIG. 1: The ratio of the parameters A/A used in the fits as a function
of N.

system, similar to that described by the consistent-Q Hamilto-
nian, remains in the U(5) (vibrational) quasidynamical sym-
metry phase when g, is small, while the E(5) model results
can be better described by the EXT with the increasing of g».
In this section, it will be shown that the Hamiltonian (20) is in-
deed suitable to describe nuclei around the E(5) critical point
when N is small.

In the original E(5) model [4], the excitation energies

E §C> - E(()lg are determined by the {-th zero of the Bessel func-
tion J 3 /z(z), which are L-independent. For any reasonable
value of N, we shall compare fitting results of the EXT with
those of the E(5) model up to the level of { =4 and 7 = 1.
In the fitting, the energies are in unit of the energy of the first
excited state, E 512) — E(()}g. It is known that nuclei at or near
the E(5) critical point are in the vibration to y-soft transitional
region with mass number A ~ 100-130, of which the boson
number in the IBM is always small with N ~ 5-10. In fitting
the low-lying level energies of the E(5) model, we fix the pa-
rameter g, to be a nonzero scale factor and adjust parameters
A and A in (20), from which the best fits to the E(5) model
results were obtained. The fitting results of the level energies
are shown in Table I, in which the corresponding level ener-
gies obtained from the consistent-Q IBM Hamiltonian at the
critical point (CQ) were also provided. We observe that the
ratio of the parameters A and A must be within a reasonable
range with A/A ~ 0.5-1.0 as shown in Fig. 1, and the mag-
nitude of A and A relative to g, should not be too large in
order to reproduce the best fit not only to the level energies,
but also to the B(E2) values. These parameters used in the fits
are shown in Table II. In the fitting, the E2 transition operator
is simply chosen as

75 = ex(sTd +d75)2, 31)

where e is the boson effective charge, which is a global scale
and is fixed to give B(E2,2] — 0/) = 100 in all cases.
In the fitting,

2 R AY/
= e & XX (32)

is used, where NE(5) is the number of data taken from the E(5)



model used in the fitting, NP is the number of parameters in
the model, and X; is a level energy obtained from either the

EXT or the CQ corresponding to XiE ®)in the E(5) model.

Since the energies are in unit of Eflg — E(glg and the ground

state energy is thus set to be zero, the energies of the ground
and the first excited level are not included in (32). As the con-
sequence, the number of parameters in the EXT are 2, while
there is no free parameter in the CQ. Once the level energies
are fit, the B(E2) values are fixed. In the EXT, we adjust the
parameters to keep

NE

(5)(E2) 55
Xk = Y (xfO(E2)-Xi(E2)>  (33)
i=1

1
NEG) (E2)

less than that of the CQ and then to keep x? to be as small
as possible, where NE©)(E2) is the number of B(E2) val-
ues taken from the E(5) model used in the fitting, X;(E2)
is a B(E2) value obtained from either the EXT or the CQ

corresponding to XiE(S)(EZ) in the E(5) model. The fitted
B(E2) values are those among the low-lying excited states
shown in [15] except B(E2,4, — 27 ) and B(E2,0; — 27)
between relatively higher excited states, where we use OT
(C=11=0),2 ({=11t=1),2; and 4] ({ =1,7=2),
0; (§=2,0=0),07,3{, 4, and 6/ ({=1,7=3),25

(C=21=1),4; ((=2,7=2),and 0 ({=3,7=0) to
label the corresponding excited states in the models. Though
B(E2,4; —27) and B(E2,0; — 27) are listed for compar-
ison, they are excluded in Zéz because these two values do
not approach to the corresponding E(5) results with the in-
creasing of N. Moreover, B(E2,2] — 07), B(E2,4] — 2]),
B(E2,0{ — 2{), and B(E2,2] — 0;) are also excluded in
Zéz since the former three B(E2) values are obviously zero,
while B(E2,2 — 0) = 100 is set for all the cases studied.

As shown in Table I, not only the first a few low-lying level
energies, but also the existing higher-lying level energies up to
& =4 and 7 = 1 produced by the EXT are in good agreement
with those of E(5) model. Actually, all excitation energies
obtained from the EXT are much closer to the corresponding
E(5) results though they are not fully listed in Table I. It is
obvious that the CQ results are globally worse due to the fact
that the higher lying levels produced by the CQ are too low in
energy in comparison to the corresponding E(5) results. Some
B(E2) values of the transitions among the low-lying states in
the model in comparison with the corresponding E(5) results
and those in the CQ are shown in Table III. It can be ob-
served in Table III that these transitional rates increase with
the increasing of N, of which the pattern is similar to that pro-
duced by the CQ. These transitional rates become closer to
the corresponding E(5) results with the increasing of N ex-
cept B(E2,0, — 27) not included in (33), which is about 1.5
times larger than the corresponding E(5) value when N = 10.
Except B(E2,0; — 27), other B(E2) values of the EXT are
slightly closer to the corresponding E(5) results than those of
the CQ with the increasing of N for N = 5-10.

Similar to the CQ [14], of which the Hamiltonian (1) can
be diagonalized easily, large-N cases of the EXT can also be

worked out. We present results of the low-lying level ener-
gies and the reduced E2 transitional rates of the model with
N = 1000 bosons in Tables IV and V, respectively. Since nu-
merical results of the IBM fit to the E(5) results with N = 60
are also available [15], the EXT results with N = 60 are also
shown in Tables IV and V in comparison with the correspond-
ing results of the IBM fit provided in [15]. It can be observed
from Table IV that the EXT results are always better than
those of the CQ, especially for higher excited states. In fact,
the tendency that higher levels become too low in energy in
the CQ in comparison to the corresponding E(5) results is not
altered in the IBM fits shown in [15], while it is overcome in
the EXT. The quality of the EXT fit becomes better with the
increasing of N when N < 60. However, similar to the CQ,
both x? and Zéz of the EXT also increase with the increasing
of N when N is sufficiently large. It is clearly shown in Table
V that the reduced E2 transitional rates is closest to the cor-
responding E(5) results when N = 60 except B(E2,4, — 27)
and B(E2,0; — 27), which are about 1.45 and 2.22 times
larger than the corresponding E(5) results, respectively. With
the increasing of N, e. g., N = 1000, these transitional rates all
become larger than the corresponding E(5) results, but closer
to those of the E(5)-8 2 model with n > 2 shown in Table V
of Ref. [15]. Anyway, the EXT does not provide with results
of the E(5) model in finite-N cases.

IV. The classical energy surface

The classical limit of the IBM may be found by using the
coherent state or intrinsic state formulism [16, 17, 27]. Usu-
ally, the ground state of a system described by the IBM is
written as a condensate of bosons with

1
) =1/ ™0y, (34)
where
1 I, .
ri= NETE (sT + Beosydy + Eﬁsmy(d; —i—de)) , (35)

in which the parameters 3 and y are Bohr variables defined in
the classical limit of the IBM. By using the method proposed
in [27], it can easily be found that

. Np?
(c|iglc) = T+p2 (36)
and
N(N—1)

(c|P"Plc) = (37)

m(l - B%)?,

with which one can observe that the critical point of the U(5)—
O(6) phase transition described by the CQ Hamiltonian is at



x =1/2 in the large-N limit since there is a minimum in the
energy surface at =0 and %E(f3,7)/dB%> =0at B =0 when
x=1/2. This type of analysis shows that the U(5)-O(6) phase
transition is of the second order, and the energy surface is in-
dependent of 7 since the system is ¥ unstable.

However, the operators Sg and S; used in the third term
of (20) are only well defined in the U (6) D U(5) D O(5) ba-
sis, and there is the O(5) seniority number T mixing in the
coherent state |c). Therefore, one can not derive the energy
surface described by (20) in the classical limit using (34) or
using the method proposed in [27] directly. Moreover, since
the quantum number of the angular momentum is also not a
good quantum number in (34), the coherent state (34) may be
expanded in terms of any complete setof U (6) D U(5) D O(5)
basis vectors for given N. Due to the multiplicity occurring
in the O(5) | O(3) reduction, we expand (34) in terms of
the U(6) D U(5) D O(5) D 0:1(3)@U(1) D 0,(2) ®U(1)
basis vectors [28], which are orthonormal and multiplicity-
free. Specifically, for given N, ng4, and 7, the U(6) D U(5) D
0(5) > 0:(3)@U(1) D 01(2) @U(1) basis vectors may be
expressed as [28]

1/2
2043)1
N.,ng,T,r,m,,my) = ( = X
[N.na, T,r,my,my) (N=ng) (" 5) (g +7+3)11

1
FN— Mt 2 25 2 ) (rtm) (r=m) 11\ 2 5
§ ndP Zn 0( n12r2n+10)12r)! P x
Fx gfr+mp—2x 'Ix m
wormy g it N my | +1/2 -
by L s e 29 my (38)

with T = r+2|my| +¢, where r = 0,2,4,---, r can be taken
as zero or positive integer, the U(1) quantum number m; can
be taken as zero, integer, or half-integer, the O;(2) quantum
number m, =r,r—1,---,—r for given O} (3) quantum number

r7
—V2P", P = ( 2did' ~di?), @
b;t],t,r,m/ _
TH1=)11 (A]my |+ (2r+1+1)11 1! 3 40
eI @ T2t G Green e | o (40)
and

Imy|+1/2—m \ _
ny o

d; 2\nljl+r/27ndi2r/27n

V @lmy |+t /2=m)1 (1 /2-)!

|0) for my >0,
(4D

dj t/andiZZIijr/an

ey ) for ms <0,

For given N, by using the U(6) D U(5) D 0(5) D 01(3) ®
U(1) D> 01(2)®@U(1) basis vectors shown in (38), expectation

value of any operator O under the intrinsic state (34) may be
expressed as

<c|0|c> =Y(N,ny,t, r,m,,mj|0A|N,nil,T/,r’,m’r,m’1>
(c|NngTr mmy)(c|Nnl,©' Y ml.m’)), (42)
where the summation should run over all possible

ng,T,r,my,my and nl;, v, r,m,.,m,.  Since the Hamilto-
nian (20) keeps 7 unchanged, and is independent of quantum
numbers of the O(5) subgroups, (42) can be simplified as

<C|é| > an,nd, ”d”1 X

Yy my (c|Nnqtr mymy){(c|Nnl,Tr m.m;s) (43)

ON’T, =

ng.ny
(Nngtr mymy|O|Nn,tr mymy).  The real expansion coef-
ficient (c|Nnytr m,my) can be obtained by using the explicit
form shown in (34), (38), and the method proposed in [27].

Generally speaking, the classical limit should be defined in
the infinite N limit. Though analytical expression of (43) in
terms of arbitrary N is impossible, one can numerically cal-
culate (43) for finite N cases. For example, one can verify
that the expressions shown in (36) and (37) are indeed valid
by using (43) and the basis vectors shown in (38). The matrix
elements of Hex = —g2 X0, (S8 % + §1%S%) appearing in
(20) can then be expressed simply as

when O is any term in (20), where

B 0, when ng=nl,
(Hext)nd "d B { —82, when ng 75 I’lij (44)
We have verified numerically that
{clHexilc) v (B) (45)
c c)=—gr—————fn—
ext g2(1+ﬁ2)N N—1 9

which is indeed y-independent, where fy_(B?) is a polyno-
mial in B2 of degree N — 1. Thus, we calculated (c|H|c) us-
ing the explicit form shown in (34) and (38) for some finite
N cases with the parameters of (20) in fitting the E(5) results.
When N = 10 for example, we obtain

-B2)? N 1/32
(c|H;|c) = 1+B2+7L 4(1+ﬁ +A
g2(6/32+53.84B4+207.SB6+453.7[38
617.23'9+538.78'24-295.9814 +-93.7816 +

13.2B8'8)/(1+ B0 (46)

with the parameters shown in Table II for the N = 10 case,
which answers why the results of the EXT are in between
those of the E(5)-B%" models in the large N cases shown in the
previous section. Actually, the B(E2) values B(E2,4; — 27)
and B(E2,0; — 27) in the EXT are indeed close to those of
the E(5)-ﬁ2” models with n =2 or n = 3 when N = 60 as
shown in [15]. Fig. 2 shows various potential energy surfaces

u(B) =



0.1

0.08 SO0 ()
0.06 40
u«(B) 0.04 a(p) 30
0.02 20 ﬁ
o w=—>——
0 0102 03 0.4 05 %1 3 3 4 5
B B

FIG. 2: (Color online) Panel (a) shows potential energy surface (in
unit of 10g,) of the EXT (solid curve) and that derived from the
CQ in unit of g = g, (dashed curve) as functions of f with N = 10,
where the potential energy is set with u(0) = 0, while panel (b) shows
potential energy surfaces (in unit of g;) as functions of 8 for various
N cases, in which the curves from bottom to the top are those with
N = 5-10, respectively.

400
300
u(B) 200 /
100"
0 1 2 3 4 5 0 005 01 015 02
B B

FIG. 3: (Color online) Panel (a) shows potential energy surface (in
unit of g7) of the EXT (solid curve) and that derived from the CQ
in unit of g = g»/40 (dashed curve) as functions of § with N = 16,
while panel (b) shows the second derivative of () at and near § =0
with the same conditions as indicated for the left panel.

in unit of g, as function of B, which is typical for nuclei near
or at the E(5) critical point. These energy potential surfaces
have been determined by using the parameters of (20) in fit-
ting the E(5) results for these N cases shown previously. In
order to compare the energy surface derived from the EXT
with that of the CQ, Fig. 3 shows the energy surface for the
N = 16 case of the EXT in unit of g, and that derived from
the CQ, of which the latter is derived from (1) with g = g, /40
and x = 1 /2. The results show that, even though the two de-
scriptions are different, they behavior similarly in the classical
limit. Most importantly, similar to the CQ, the energy surface
of the EXT indeed presents a single minimum at 8 = 0 and
satisfies the condition (azu(B)/c?ﬁz)ﬁ:O =0 as shown in Fig
3.

In order to find exact critical point in the EXT, we rewrite
the Hamiltonian (20) as

Ao = Aig+ % (SES7 +S787) —
2@ Xr (8758 K+ TS TF). (47)

Actually, similar to the CQ, the position of the critical point
will be different when the scale of the parameters in the model
is changed. In present analysis, we use (47) with z = 1.0 to
fit the E(5) results by adjusting the parameters A and A4 in
unit of g. Then, for given N, A, and A, the critical point
value of the dimensionless parameter z can easily be deter-
mined. We found the critical point value of z always satisfies
Z¢ > 1.0 when N is finite, which approaches to 1.0 in the large

N limit. We have verified that (82u(ﬁ)/8ﬁ2)l3:0 oz >0,
(0*u(B)/9B?) g c, < O and (*u(B)/0B?) 5, _ =0,

which shows the phase transition in the EXT is also of the sec-
ond order. When z < z. the model is in the spherical (U(5)) to
the E(5)-like critical point phase, while the model with z >> z.
may be not physical for finite N cases, and is not studied in
this paper. For simplicity, we always set z = 1.0 in the fitting
shown in Sec. III, which ensures the model in the fitting al-
ways remain in the U(5) to the E(5) like critical point phase.
In conclusion, the E(5) results can be approximately described
by the EXT in U(5) to the E(5)-like critical point phase with
results better than the CQ description.

V. Comparison with experimental results

As shown in [29], there are many nuclei in A = 100-130
mass region near the E(5) critical point. It was confirmed in
[9] that '92Pd, '%Ru, and ''6Cd are good candidates near the
E(5) critical point. In this section, we use the EXT to fit low-
lying energy levels and some B(E2) values for '2Pd (N = 5),
134Ba (N = 5), 128Xe (N = 6), 1%Ru (N = 8), 19%8pd (N = 8),
16Cd (N = 8), and '4Cd (N = 9). The levels of the nuclei
fitted have been confirmed in experiment with relatively abun-
dant B(E2) data except 128% e of which only four B(E2) val-
ues are available. These nuclei have also been well studied in
the original E(5) model [5-8], the model with the sextic type
potential in 8 [9], and the confined y-soft rotor model [11].
The fitting results of the EXT and the CQ to the level ener-
gies and experimentally deduced B(E2) values for these nuclei
are shown in Tables VII and VIII, in which the fitting results
of the model with the sextic potential in 3 (SET) shown in
[9] for 102Pd, 1%4Ru, '98pd, 16Cd, and '*Cd are also pro-
vided for comparison. The quantities x> and x2, are used
to measure the quality of the fits, which are calculated from
(32) and (33), respectively, with NE©) XIE(S), NEG)(E2), and
XiE(S) (E2) being replaced by the corresponding experimental
data. As shown in Tables VII-IX, the level patterns of '9°Pd
and '?8Xe are closest to the SET and the E(5) prediction, re-
spectively, while their B(E2) values are best fitted by the E(5)
and the EXT, respectively, from which '°>Pd may be recog-
nized as the best E(5) candidate. The overall fitting quality is
measured by the average of x° and x2, over these seven nu-
clei as listed in Table X, from which we conclude that these
nuclei are best fitted by the EXT. It can be expected that the
EXT should fit the vibration to y-soft transitional nuclei much
better than the CQ if higher excited levels are taken into ac-
count though we did not done so in this paper due to in lack
of experimental data of relatively higher excited states.

VI. Summary

In this paper, an alternative solvable extended Hamiltonian
that includes multi-pair interactions among s- and d-bosons



up to infinite order within the framework of the interacting
boson model is proposed to provide a better description of the
E(5) model results for finite-N cases. Numerical fits to low-
lying level energies and B(E2) values of the E(5) model for
various N cases were carried out to test the theory. The results
show that the extended Hamiltonian within the IBM provides
a better description of the E(5) model results, especially when
higher excited states are taken into account. However, B(E2)
values of the transitions among higher excited states, e. g.,
B(E2,4] — 27) and B(E2,0; — 27), do not approach the
corresponding E(5) results with increasing N. Moreover, sim-
ilar to the results of the consistent-Q formalism, the xz and
l}%g increase with the increasing of N. Specifically, the results
of the extended model proposed in this paper do not approach
to those of the E(5) model in the large-N limit, but approach
to those of the E(5)-3 2n model with n > 2 studied in [15], for
example when N = 60. And indeed, as analyzed by using the
coherent state method, the classical energy surface of the ex-
tended model can be described by a polynomial function of
B2. Low-lying level energies and B(E2) values of the transi-

tions among these levels for 102Pd, 134Ba, 128Xe, 1%4Ruy, 108Pd,
and !"%116Cd are fitted by the extended model and compared
with the results of the E(5) model and those of the consistent-
Q formalism. The overall fitting results show that these nu-
clei are best fitted by the EXT. It can be expected that the
extended model should fit the vibration to y-soft transitional
nuclei much better than the original consistent-Q formalism if
higher excited states are taken into account, which will be our
future work when experimental data for higher excited states,
especially the relevant B(E2) values of nuclei in the U(5)-O(6)
transitional region are available.
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TABLE I: Comparison of low-lying level energies generated by the extended IBM Hamiltonian (EXT) and the IBM consistent-Q Hamiltonian
at the critical point with x = 1/2 (CQ) for serval values of N with those provided by the E(5) model, where “—" denotes that the corresponding
level in the IBM does not exist due to the fact that N is finite.
¢t E(5) EXT CQ

N=5 N=6 N=7 N=8 N=9 N=10|N=5 N=6 N=7 N=8 N=9 N=I0

0.00| 0.00 0.00 0.00 0.00 0.00 0.00 |0.00 0.00 0.00 0.00 0.00 0.00

1.00| 1.00 1.00 1.00 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00 1.00 1.00

220( 2.19 2.12 220 212 219 213 |2.15 2.15 215 214 214 2.14

3.03| 3.14 3.19 333 334 338 3.37 |3.18 3.10 3.04 3.00 296 2.92

3.59| 3.50 3.46 352 346 351 347 |343 342 342 341 340 340

4.80| 474 483 497 498 499 502 | 470 4.59 451 445 440 435

5.17(5.02 492 508 493 503 496 |4.82 479 478 4.77 476 4.6

6.78| 6.56 6.63 6.83 6.80 6.82 6.86 |6.30 6.17 6.06 599 592 5.87

7.58| 741 7.58 779 7.82 7.79 7.88 |7.13 693 6.79 6.67 6.58 6.50

6.93| 6.64 6.62 675 6.64 6.69 6.67 | 630 627 625 623 621 6.20

888 — 844 867 849 857 853 | — 782 779 776 774 1.72

8.97| 849 8.67 885 885 8.8l 891 |798 7.82 770 7.60 7.53 7.45

10.11} 9.66 9.95 10.16 10.24 10.13 10.31]9.05 8.81 8.72 8.49 837 8.27

PODNLODNNE,ODD DD
O A~ WO N R~ WLWON~O

, 11.36) — 10.83 11.09 11.07 11.02 11.15| — 9.55 9.41 929 920 9.11
, 12.85 — 1248 12.76 12.83 12.69 12.93| — 10.75 10.52 10.36 10.21 10.09
, 13.64) — 1340 13.68 13.81 13.62 13.92| — 11.42 11.15 10.95 10.78 10.64
2,5 1395 — — 13.47 13.52 13.38 13.60| — — 11.18 11.05 11.00 10.84
3,3 1581 — — 1549 15.65 1541 15.76| — — 12.48 12.28 12.11 11.97
2,6 1673 — — — 16.11 1597 16.21| — — — 12.87 12.74 12.63
4,1 1693 — — 1678 17.01 16.69 17.13| — — 13.31 13.06 12.86 12.69

2> 0.08 0.08 0.04 0.07 0.09 0.06 |0.18 0.30 0.43 048 0.51 0.53

TABLE II: Parameters of the EXT used in the fitting.

Algx  Algn
N=5 290 291
N=6  3.00 3.56
N=7 293 3.66
N=8 310 426
N=9 324 445

N=10 3.69 542
N =60 15.70 29.74
N=1000 333.80 665.40
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TABLE III: Some B(E2) values in the EXT and the CQ for serval values of N compared with those provided by the E(5) model, where the
B(E2) values with * are not included in x%z.

E(5) EXT cQ
N=5 N=6 N=7 N=8 N=9 N=10| N=5 N=6 N=7 N=8 N=9 N=10

B(E2:2{ —0)) 100 [ 100 100 100 100 100 100 | 100 100 100 100 100 100
B(E2:4] —2{) 167.4| 148.7 1523 155.6 156.4 159.2 160.4| 140.8 147.2 151.4 154.7 157.2 159.2
B(E2:6] —4]) 216.9| 157.6 1742 1829 189.4 195.4 200.8| 143.8 161.7 1732 181.9 188.7 194.2
B(E2:2] —2{) 167.4| 1487 1523 155.6 156.4 159.2 160.4| 140.8 1472 151.4 1547 157.2 159.2
B(E2:25 —0f) 00/ 00 00 00 00 00 00/ 00 00 00 00 00 00
B(E2:4] —2{) 00/ 00 00 00 00 00 00f 00 00 00 00 00 00
B(E2:45 —27) 113.6| 825 912 958 992 1024 1052| 75.3 847 90.7 953 98.8 101.7
B(E2:45 —4]) 103.3] 750 829 87.1 902 93.1 956| 68.5 77.0 825 86.6 89.8 925
B(E2:3] —27) 154.9| 1125 1244 130.6 1353 139.6 143.5| 102.7 1155 1237 129.9 134.8 138.7
B(E2:3] —4]) 62.0| 450 498 523 541 558 57.4| 41.1 462 495 520 539 554
B(E2:0f —27) 216.9| 157.6 1742 1829 189.4 195.4 200.8| 143.8 161.7 173.2 181.9 188.7 194.2
B(E2:0f —2{) 00/ 00 00 00 00 00 00/ 00 00 00 00 00 00
B(E2:23 —0f) 722| 627 684 694 706 71.6 749| 566 646 69.7 734 761 794
B(E2:4; —27)* 1243| 723 954 1056 110.8 117.7 124.0{ 60.4 857 98.1 108.1 115.6 122.2
B(E2:0f —2{) 86.8| 1002 97.8  99.0 943 993 995| 645 723 77.1 8l.1 844 872
B(E2:0; —27)* 123.2| 884 1348 151.8 161.1 172.6 181.5| 42.8 834 97.0 109.7 119.2 127.2

ng 109 79 6.3 51 41 33 | 13.6 102 8.1 64 52 42

TABLE IV: Comparison of low-lying level energies generated by the EXT and the CQ with N = 60 and 1000, respectively, and those generated
by the IBM fit for N = 60 [15] with those provided by the E(5) model, where “—" denotes that the corresponding level energy in the IBM fit
was not provided in [15].

&t EO) EXT CcQ IBM fit [15]
N=60  N=1000 N=60 N=1000  N=60
1,0 0.00  0.00 0.00 0.00 0.00 0.00
1,1 .00 1.00 1.00 1.00 1.00 1.00
1,2 220  2.14 2.18 2.12 2.10 221
2,0 303 3.59 3.50 2.60 2.45 3.05
1,3 359  3.45 3.55 3.33 3.29 3.61
2,1 480  5.16 5.23 3.91 371 4.51
1, 4 517 493 5.13 4.64 4.56 5.16
2,2 6.78  6.95 7.19 5.30 5.03 6.11
3,0 758  8.02 8.31 5.68 5.30 6.68
1,5 6.93 659 6.91 6.02 5.89 6.85
1,6 8.88 844 8.91 7.46 7.28 —
2,3 897 8095 9.37 6.76 6.41 8.67
3,1 10.11  10.39 10.90 7.24 6.75 8.51
2,4 1136 1115 11.75 8.27 7.85 —
3,2 1285  12.96 13.71 8.85 8.25 10.44
4,0  13.64 1398 14.79 9.16 8.48 —
2,5 1395 1354 14.36 9.85 9.34 —
3,3 1581 1574 16.73 10.50 9.79 —
2,6 1673 16.13 17.18 1148 10.88 —
4,1 1693  17.13 18.23 1092  10.09 —

x> 0.09 0.17 0.75 0.86 0.40
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TABLE V: Some B(E2) values in the EXT and the CQ with N = 60 and 1000 and those from the IBM fit with N = 60 [15] compared with
those provided by the E(5) model, where the B(E2) values with * are not included in x%z.

E(5) EXT CQ IBM fit [15]
N=60  N=1000 N=60 N=1000  N=60
B(E2:2] —0)) 100 100 100 100 0.00 100
B(E2:4] —2{) 167.4 1673 176.3 1758 1813 165.2
B(E2:6] —4]) 2169 2245 246.1 2381 2518 2152
B(E2:25 —2]) 167.4 1673 176.3 1758 1813 165.2
B(E2:2] —0)) 0.0 0.0 0.0 0.0 0.0 0.0
B(E2:45 —2]) 0.0 0.0 0.0 0.0 0.0 0.0
B(E2:4] —27) 1136 117.6 128.9 1247 1319 112.8
B(E2:4] — 4]) 103.3  106.9 117.2 1134 1199 102.6
B(E2:3] —27) 1549 1604 175.8 1700 179.9 153.8
B(E2:3] —4]) 62.0  64.1 70.3 68.0 71.9 61.5
B(E2:0f —23) 2169 2245 246.1 2381 2518 215.4
B(E2:0§ —2{) 0.0 0.0 0.0 0.0 0.0 0.0
B(E2:2{ — og) 752 752 92.7 101.9 109.9 90.2
B(E2:4] —27)* 1243 1432 175.2 1748 1923 152.3
B(E2: 0} —2) 86.8  99.8 1245 1186 1352 81.6
B(E2:0; —27)* 1232 2154 265.0 2086 2450 155.0
%2, 1.9 6.7 5.7 8.8 2.3

TABLE VI: z. of the EXT defined in (47) for various N cases with the parameters A and A shown in Table II in fitting the E(5) results.

Zc

N=5 2.413
N=6 1.957
N=1 1.880
N=38 1.640
N=9 1.631
N=10 1.630
N=16 1.053
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TABLE VII: Comparison of low-lying level energies and relevant B(E2) values of '92Pd, 13*Ba, and 28 Xe with those obtained from the EXT,
the CQ, the model with the sextic potential in  (SET) [9], and the E(5) model, where the experimental data of 102p{ were taken from [7],
those of 134Ba were taken from [5] and [30], those of 128Xe were taken from [31], CQu denotes the consistent-Q description at the critical

point with N bosons, and “—" denotes that the corresponding B(E2) value was not determined experimentally.

E(5) | '92Pd EXT SET !3*Ba EXT CQs | !8Xe EXT CQg

0 0.00 | 0.00 0.00 0.00 000 0.00 0.00 | 0.00 0.00 0.00

2f 1.00| 1.00 1.00 100 100 1.00 1.00 | 1.00 1.00 1.00

25 220 276 221 258 193 231 215 | 229 2.14 215

4f 220 229 221 258 232 231 215 | 244 214 215

0f 3.03| 298 269 292 357 292 3.18 | 374 338 3.10

0F 359 | 287 323 370 291 331 343 | 444 352 342

3f 359 | 379 323 370 272 331 343 | 338 352 342

47 359 | 3.84 323 370 326 331 343 | 379 352 342

6 359 | 372 323 370 3.66 331 343 | 411 352 342

2f 480 | 349 372 414 336 392 470 | 473 511 459
B(E2:4] —2]) 167.4| 1545 1439 187.8 154.8 141.9 140.8| 146.7 151.3 147.2
B(E2:6] —4) 216.9| - 1375 257.6 - 129.6 143.8| 181.6 172.5 161.7
B(E2:27 —2]) 167.4| 450 1439 187.8 217.2 141.9 140.8| 119.4 151.3 147.2
B(E2:25 —0f) 00| 60 00 00 125 00 00 1.6 00 00
B(E2:47 —2{) 00| 90 00 00 - 00 00 - 00 00
B(E2:47 —27) 1136| 1364 720 1364 - 679 753 | - 904 847
B(E2:45 —4) 103.3] <240 655 1212 - 617 685| - 821 770
B(E2:37 —27) 1549| - 982 1848 128 925 102.7| - 12321155
B(E2:3] —4f) 60| - 393 727 - 370 4L1| - 493 462
B(E2:0f —23) 216.9| 291.0 137.5 257.6 - 129.6 1438 - 1725 161.7
B(E2:0f —2{) 00|<0001 00 00 30 00 00 - 00 00
B(E2 23+—>og) 722 | - 472 109.1 - 437 566 - 668 646
B(E2:0f —2{) 868 | 394 685 1636 417 57.3 645 - 934 723
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TABLE VIII: The same as Table VII but for 104Ru, IOSPd, and 114'r“éCd, where “—” denotes either that the corresponding B(E2) value was
not determined experimentally, or that the theoretical value was not provided in [9], the experimental data of 104Ry were taken from [32-34],
those of 198Pd were taken from [35], those of ''*Cd were taken from [36], and those of 1'®Cd were taken from [37, 38], CQu denotes the
consistent-Q description at the critical point with N bosons.

E(5)| '%Ru EXT SET '%pd EXT SET !!Cd EXT SET CQg|!'*Cd EXT SET CQo

0 0.00| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00| 0.00 0.00 0.00 0.00

2f 1.00| 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00| 1.00 1.00 1.00 1.00

2f 220 249 203 222 214 203 220 236 2.07 2.66 2.14| 2.17 2.00 2.00 2.14

4f 220| 248 203 222 242 203 220 237 2.07 266 2.14| 230 2.00 2.00 2.14

og 3.03| 276 3.04 234 243 241 230 2.69 243 3.09 3.00| 2.03 2.00 2.00 2.96

0F 3.59| 3.73 325 327 3.03 321 323 250 3.22 3.80 3.41| 2.33 3.00 3.00 3.40

37 3.59| 347 325 327 3.08 3.3 323 373 322 3.80 3.41| 3.34 3.00 3.00 3.40

45 3.59| 420 325 327 375 3.3 323 398 322 3.80 3.41| 3.10 3.00 3.00 3.40

67 3.59| 435 325 327 408 3.13 323 395 322 3.80 3.41| 3.56 3.00 3.00 3.40

2f 480 423 441 3.66 332 3.60 4.36 320 3.72 441 445| 244 3.00 - 440

B(E2:4] —2) 167.4| 1345 1543 1952 147.5 163.5 - 163.9 175.0 188.1 154.7| 199.4 177.8 - 157.2

B(E2:6] —4]) 216.9| 190.4 184.8 276.8 216.2 202.1 - 327.8 215.0 250.7 181.9| 382.6 233.3 - 188.7

B(E2:2] —2]) 1674| 673 1543 1952 1434 163.5 - 745 1750 188.1 154.7| 70.7 177.8 — 1572

B(E2:27 —0f) 00| 48 00 00 001 000 00 - 00 00 00| - 00 00 00

B(E2:47 —2f) 00/ - 00 00 - 00 00 - 00 00 00 | 1.6 00 00 00

B(E2:47 —27) 113.6| 827 968 1452 111.1 1057 - - 1179 131.3 953 | 102.9 1222 - 9838

B(E2:47 —4) 1033| 452 88.0 132.1 60.6 962 - - 107.1 1194 86.6 | 547 111.1 - 89.9

B(E2:3] —27) 1549| 126.8 132.0 1982 - 1444 - 181.8 160.7 179.1 129.9| - 166.7 — 13438

B(E2:3] —4f) 620| 274 528 792 - 577 - 536 621 716 520| - 667 - 539

B(E2:0f —27) 2169 - 184.8 2768 <36.4 202.1 - - 2250 250.7 181.9| 408.4 233.3 - 1887

B(E2:0F =2+ 00 - 00 00 <002 00 00 164 00 00 00 |00l 00 00 00
T 1

B(E2:23+%02) 722 | 60.1 643 122.0 1192 795 — 2563 105.0 104.5 73.4 | 209.0 108.9 - 76.1

B(EZ:OEHZT) 86.8 | 42.3 83.7 1827 105.1 121.8 — 894 175.0 1582 81.1 | 88.1 177.8 — 84.4

TABLE IX: 2 and x2, values of the models in fitting the low-lying level energies and the B(E2) values shown in Tables VII and VIII for
102pg 134g, 128x, 104y 108pg ung 1141160,

lOZPd 134Ba 128Xe 104Ru
EXT CQ E(5) SET|EXT CQ EG5) | EXT CQ  EG5)| EXT CQ E®5) SET
22 020 020 020 0.16| 020 021 024 0.21 0.18 0.16| 0.28 0.18 0.16 0.24
x‘%z 194 204 190 242 | 18.6 202 26.3 8.4 8.6 15.8 11.1 11.1 142 25.2
lOSPd 116Cd 114Cd
EXT CQ E(5) SET|EXT CQ EG5) SET | EXT  CQ EO)
%2 020 020 023 018|026 023 0.24 0.27 0.19 0.31 0.36
2%, 65 162 195 — |284 316 295 273 | 338 338 309

TABLE X: Average 2 and ng over the number of nuclei fitted according to the results shown in Table IX.

EXT CQ E(5)
22 0.22 0.22 0.23
22ps 18.0 20.3 22.2




