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Electron-neutron scattering and transport properties of neutron stars

Bridget Bertoni,1, ∗ Sanjay Reddy,1, † and Ermal Rrapaj1, ‡

1Institute for Nuclear Theory, University of Washington, Seattle, WA

We show that electrons can couple to the neutron excitations in neutron stars and find that this
can limit their contribution to the transport properties of dense matter, especially the shear viscosity.
The coupling between electrons and neutrons is induced by protons in the core, and by ions in the
crust. We calculate the effective electron-neutron interaction for the kinematics of relevance to the
scattering of degenerate electrons at high density. We use this interaction to calculate the electron
thermal conductivity, electrical conductivity, and shear viscosity in the neutron star inner crust, and
in the core where we consider both normal and superfluid phases of neutron-rich matter. In some
cases, particularly when protons are superconducting and neutrons are in their normal phase, we
find that electron-neutron scattering can be more important than the other scattering mechanisms
considered previously.

PACS numbers: 26.60.-c, 05.60.-k

I. INTRODUCTION

Even before their discovery more than fifty years ago, it was anticipated on theoretical grounds that neutron stars would
contain cold and dense matter where quantum effects would manifest on a macroscopic scale [1]. The interpretation of
time dependent phenomena observed in x-rays continues to unravel the connection between such quantum behavior and
observable phenomena [2]. In this context, transport properties of cold, dense matter play a particularly important role
because coherence and correlations between particles can have a dramatic impact on the thermal and electrical conductivity,
and the shear viscosity of dense matter. For example, shortly after Bell and Hewish discovered neutron stars [3], Baym,
Pethick, and Pines showed that due to extreme degeneracy, matter in the neutron star core would be an excellent electrical
conductor, implying that large magnetic fields could be sustained without ohmic dissipation for time scales larger than the age
of the universe [4]. In the subsequent decades, several authors, including Flowers and Itoh [5], and Yakovlev and collaborators
[6–8], have studied in some detail the electrical conductivity, thermal conductivity, and shear viscosity of neutron star matter.
The roles of degeneracy, superfluidity, and superconductivity in the core, and crystalline phases in the lower density regions
called the crust, have been studied. Yet, as we argue in this article, an important scattering mechanism between electrons
and neutrons, induced by protons in the core and ions in the crust, has been overlooked.

At the high densities and relatively low temperatures characteristic of neutron stars, a rich phase structure is expected
because of strong nuclear and Coulomb interactions, and in some phases, transport processes can be either greatly enhanced
or suppressed. In the outer crust, matter is solid as fully pressure ionized nuclei freeze and form a lattice at low temperature
due to strong Coulomb interactions. In the inner crust, where the mass density exceeds 4 × 1011 g cm−3, neutrons drip
out of nuclei and form a nearly uniform and degenerate Fermi gas alongside the electrons. Due to the strong and attractive
s-wave interaction, dripped neutrons in the inner crust are expected to form Cooper pairs and become superfluid at low
temperature. The critical temperature for neutron superfluidity T n

c is a strong function of density and typical values are in
the range T n

c ≈ 108−1010 K for the densities found in the crust (for a recent review on Cooper pairing of nucleons in neutron
stars see [9]).

When the mass density ρ & 1014 g cm−3, nuclei disappear, possibly through a relatively continuous transition involving
non-spherical nuclear shapes, collectively called the pasta phase [10]. This transition marks the crust-core boundary, with the
core containing a liquid phase with degenerate neutrons, protons, and electrons. The baryon density in the core is expected
to be in the range n = n0/2−4n0, where n0 = 0.16 nucleons fm−3 is the number density inside ordinary nuclei, also called the
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nuclear saturation density. The typical electron/proton fraction is on the order of a few percent at n = n0, and increases with
density. When the electron Fermi energy exceeds the mass of the muon, matter also contains an admixture of muons. This
matter containing neutrons, protons, electrons, and muons in a liquid state may persist up to the highest densities ≈ 1015 g
cm−3 at the center of the star in the absence of phase transitions to other exotic forms of matter containing hyperons, kaons,
or quarks (for a recent review see [2]). At the high densities in the core the neutron Fermi momentum is large, and s-wave
interactions between neutrons become repulsive. Superfluid pairing is only possible in p-waves, and p-wave pairing has been
found to be fragile and model dependent, with estimates of the critical temperature T n

c ≈ 108 K [11]. In contrast, because
the proton density is small, s-wave interactions remain strongly attractive for protons and s-wave proton superconductivity
with a critical temperature T p

c ≈ 108 − 1010 K is expected.
Throughout these different phases of matter inside the neutron star, electrons remain relativistic, degenerate, and weakly

interacting. They consequently play an important role in transport phenomena that shape the thermal, magnetic field, and
spin evolution of neutron stars. In this article we calculate the electron-neutron coupling, which dominantly depends on
the polarizability of the medium. In earlier work electron-neutron scattering due to the intrinsic magnetic moment of the
neutron was considered and found to be unimportant [5]. Here, in contrast, we find that electron-neutron scattering due to
the induced coupling is important for determining the electronic transport properties in the neutron star core.

We begin with a derivation of the induced interaction in the core and in the inner crust in sections II and III, respectively.
In section IV we derive general formulae for the the electron thermal conductivity, electrical conductivity, and shear viscosity.
We present our results for these electronic transport properties, and compare them to those obtained in earlier work in section
V to highlight situations in which electron-neutron scattering could be important. Our conclusions and some limitations of
our study are presented in section VI. Appendix A contains an illustrative derivation of the effective coupling, and in appendix
B we collect relevant formulae from previous studies which were used to make comparisons. Throughout we use natural units,
setting ~ = 1, c = 1, and kB = 1, and the electric charge e =

√
4πα where α = 1/137 is the fine structure constant. Since the

electron Fermi momentum kFe ' 100 MeV � me for typical densities encountered in the neutron star inner crust and core,
throughout we treat the electrons as ultra-relativistic particles with velocity ve = c = 1.

II. INDUCED ELECTRON-NEUTRON INTERACTION IN THE CORE

In free space, and at low momenta, the electron-neutron interaction is weak as it arises due to the small neutron magnetic
moment. In contrast, in the dense plasma inside neutron stars, electrons can couple to neutrons due to an interaction induced
by the polarizability of the charged protons. This can be understood intuitively by noting that the presence of the neutron
in the medium will disturb its immediate vicinity, and affect in particular the proton density distribution. This will create
either a positively or negatively charged cloud around the neutrons depending on whether the neutron-proton interaction
is attractive or repulsive. At low density since the neutron-proton interaction is attractive, the neutron will acquire a net
positive charge while at the high density where the interaction can be repulsive, the charge cloud surrounding the neutron
will be negative.

The effective coupling between neutrons and electrons is mediated by the in-medium photon (the plasmon) and can be
derived using standard techniques in quantum field theory (for more details see appendix A). An effective Lagrangian for
the electron-neutron coupling can be derived in analogy with the plasmon-neutrino coupling described in Refs. [12, 13].
The Feynman diagram in Fig. 1 shows the exchange of a plasmon which couples electrons to protons. The protons in turn
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FIG. 1: Effective interaction between electrons and neutrons induced by protons in the medium. The wavy line represents the plasmon.

couple to neutrons by the short-range strong interaction depicted by a filled circle. From the diagram it follows that the
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plasmon-neutron coupling can be described by the effective Lagrangian

Lγ−n = −
√

4πα Vnp n̄γµn Πµν
p Aν , (1)

where n and Aν are the neutron and plasmon fields, Vnp is the short-range nuclear potential, and Πµν
p is the proton polarization

correction to the photon in the plasma which can be decomposed into longitudinal and transverse components and is given
by

Πµν
p (ω, q) = ΠL

p (ω, q)

(
1,
ω

q
q̂

)µ(
1,
ω

q
q̂

)ν
+ ΠT

p (ω, q) gµi(δij − q̂iq̂j)gjν , (2)

where i, j are spatial indices and the four-momentum qµ = (ω, qq̂) [14]. ΠL
p and ΠT

p are complex functions in general but we
neglect the imaginary part in defining the plasmon-neutron coupling for the following reasons. When the protons are in the
normal phase, the imaginary part corresponds to real proton excitations and leads to Landau damping of the plasmon. Its
magnitude is small (proportional to m2

p ω/q where mp is proton mass) and vanishes in the static limit ω → 0 [15]. Instead
if protons are superconducting, the imaginary part is zero for ω < 2∆p where ∆p is the energy gap in the proton spectrum
[16]. The real part of the longitudinal polarization function is denoted as χp(ω, q) and is given by

χp(ω, q) = Re ΠL
p (ω, q) = Re

∫
dt eiωt

∫
dr e−iq·r 〈np(r, t)np(0, 0)〉 , (3)

where np = p̄γ0p = p†p is the proton density operator. The real part of the transverse polarization function is related to the
velocity-velocity correlation function of the proton fluid. Note that qµΠµν = 0 so that this effective electron-neutron coupling
is manifestly gauge invariant.

Since the proton fraction in neutron stars is typically only a few percent, the proton Fermi momentum is small and protons
can be treated in the non-relativistic limit. The neutrons are also only mildly relativistic in the vicinity of nuclear saturation
density with a velocity vFn = kFn/mn ' 1/3. This, together with the fact that scattering kinematics is restricted to the
region ω < q, implies that it is reasonable to neglect the spatial components in Eq. 1. Retaining only the density-density
component, the effective electron-neutron interaction is described by the Lagrangian

Le−n = −ēγ0e Uenp(ω, q) n̄γ0n , (4)

where e is the electron field and

Uenp(ω, q) =
−4πα Cenp(ω, q)

q2 + q2TF

; Cenp(ω, q) = Vnp(q)χp(ω, q) , (5)

is the induced interaction, and the Thomas-Fermi momentum qTF includes the screening of electric charge due to protons,
electrons, and muons, and is defined by

q2TF = 4πα
∑

i=e,p,µ

∂ni
∂µi
≈ 4α

π

(
mpkFp + k2Fe + kFµ

√
m2
µ + k2Fµ

)
. (6)

We now discuss χp and Vnp, both of which are needed to calculate the effective electron-neutron coupling Cenp(q), which
characterizes the strength of the electron-neutron interaction relative to the Coulomb interaction between electrons and
protons. First, we note that due to the strong degeneracy of electrons at low temperature, the energy transfer ω ≈ T is small
compared to the momentum transfer q and other relevant energy scales associated with the dense medium. For this reason,
the effective coupling can be calculated in the static limit. In this limit, the susceptibility χp(q) ≡ χp(ω = 0, q) is well known
from non-relativistic many-body theory for a non-interacting Fermi gas and is given by

χp(q) = Re Π0
p(ω = 0, q) = −mpkFp

2π2

(
1 +

(
1− y2

2y

)
log

∣∣∣∣1 + y

1− y

∣∣∣∣) , (7)

where the one-loop polarization function Π0
p is defined in Eq. A5 and y = q/2kFp [15]. In a strongly interacting system,
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higher order corrections to the one-loop polarization function can become relevant but are known not to change the qualitative
behavior. We estimate the size of these corrections by noting that in the long-wavelength limit χp(q → 0) = −∂np/∂µp where
np and µp are the proton number density and chemical potential, respectively. Using microscopic calculations of the dense
matter equation of state (EoS) reported in Refs. [17] and [18], we have calculated this derivative to find corrections in the
range 20%− 50% in the vicinity of n = n0, and an enhancement by a factor of two at the highest densities (n ' 0.48 fm−3)
encountered in the core. In contrast, corrections to χp(q) due to proton superconductivity are small in the static limit for
typical values of the superconducting gap ∆p ' 1 MeV� µp and can be safely neglected [16].

The potential Vnp(q) describes the interaction between neutrons and protons in the medium and is in general a complicated
function of density and momentum. However, later in section IV we shall find that typical momentum transfer involved in
electron collisions is in the range of a few times qTF, and this justifies a low momentum expansion of the form

Vnp(q) = V (0)
np + V (2)

np

q2

k2Fe
. (8)

The effective interaction at zero momentum exchange can be extracted from the EoS of dense matter through the relation

V (0)
np = Vnp(q → 0) =

∂2E
∂np∂nn

, (9)

where E(nn, np) is the energy density of the liquid of neutrons and protons with density nn and np, respectively. We use EoS
models described in Refs. [17] and [18], which are based on non-perturbative calculations using realistic two and three nucleon
interactions, to calculate E(nn, np) and the second derivative ∂2E(nn, np)/∂nn∂np. Numerical differences between them can
be viewed as a rough error estimate and for this reason we shall present results for both EoSs. The second term in the

expansion V
(2)
np cannot be derived from the EoS, but it is related to the L = 1 Fermi liquid parameters. Since we are unaware

of a microscopic calculation of these parameters in neutron-rich matter, we have opted to use a range V
(2)
np = 5×10−6−5×10−5

MeV−2 as suggested by calculations in symmetric nuclear matter from Ref. [19].
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FIG. 2: (Color online) (a) The strength of the induced electron-neutron interaction defined in Eq. 5 as a function of q at nuclear
saturation density n0 = 0.16 fm−3. (b) C2enp(q = 3qTF) as a function of density.

The momentum and density dependence of the strength of the induced coupling Cenp is shown in Fig. 2 for the two models

defined as follows. In model A, we use the EoS from Ref. [17] to obtain V
(0)
np and in model B, we instead use the EoS from

Ref. [18]. In both cases, the band is obtained by varying V
(2)
np over the range mentioned above.
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III. ELECTRON-NEUTRON INTERACTION IN THE CRUST

In the inner crust, free protons are absent as they are all bound into neutron-rich ions. Here, the interaction between
electrons and neutrons is induced by these ions and arises due to the nuclear interaction between the ions and the unbound
neutrons. The calculation of the induced interaction proceeds along the lines described earlier, but with ions in the crust
playing the role of protons in the core. We find, as before, that the induced interaction can be written in the form

UenI(0, q) =
−4πα CenI(q)
q2 + q2TFe

; CenI(q) = VnI(q) Z χI(q) , (10)

where qTFe =
√

4α/π kFe is the Thomas-Fermi screening momentum of the electron gas, VnI(q) is the short-range neutron-ion
interaction, Z is the charge of the ion, and

χI(q) = Re
∫
dt

∫
dr e−iq·r 〈nI(r, t)nI(0, 0)〉 , (11)

is the ion static density-density correlation function where nI(r, t) is the ion density operator. The strength and momentum
dependence of the interaction VnI(q) will in general depend on the nuclear structure of the extreme neutron-rich nuclei present
in the crust and has not been studied in any detail. Since the typical momentum transfer q ' a few times qTFe, and qTFe is
small compared to kFe, a momentum expansion of the form in Eq. 8 can be justified. Again, the leading order term, which is

independent of momentum, can be calculated from the EoS through the relation V
(0)
nI = ∂2E/∂nn∂nI where E is the energy

density. We use the data from [20] for the composition and EoS of the crust to calculate V
(0)
nI . However, as we are unaware of

any calculations of V
(2)
nI that we can make use of here, and its calculation is beyond the scope of this study, we set V

(2)
nI = 0

to obtain a conservative estimate of CenI(q).
χI(q) in the crust differs from χp(q) in the core because Coulomb correlations between ions are strong enough to result in

crystalline structure at low temperature. To compute χI(q) in the crystalline state we can use the fact that the ion dynamic
form factor SI(ω, q) is dominated by phonons, and we can combine this with the fluctuation-dissipation theorem and the
Kramers-Kronig relation to find that

χI(q) = −P
∫ ∞
−∞

dω′

2π

(1− e−ω′/T )SI(ω
′, q)

ω′
. (12)

In the one-phonon approximation,

SI(ω, q) =
nI
MI

∑
λ,K,k

π(ελ(k) · q)2

ωkλ

[
δ(ω − ωkλ)δq,k+K

1− e−ω/T
+
δ(ω + ωkλ)δq,k+K

e−ω/T − 1

]
, (13)

where the sum is over the reciprocal lattice vector K, the three polarization states λ of the phonon spectrum (ωkλ = vλk)
with velocity vλ, and the vector k is restricted to be in the first Brillouin zone. nI is the ion density and MI is the ion mass.

Approximating the lattice of nuclei as simple cubic with lattice spacing a = n
−1/3
I , we find that

χI(q) = − nI
MI

∑
λ,K,k

(ελ(k) · q)2

ω2
kλ

δq,k+K

= − nI
MI

∑
λ,K

(ελ(q−K) · q)2

ω2
|q−K|λ

∏
i=x,y,z

θ
(π
a
− |qi −Ki|

)
,

(14)

where qi and Ki are the ith components of the respective vectors. The corresponding ion density, mass, and charge, and
the two transverse and one longitudinal phonon velocities can be calculated following [21]. The velocity of the longitudinal

mode of lattice vibrations is vl ≈ ωP /qTFe where ωP =
√

4παZ2nI/MI is the ion plasma frequency. The velocity of the two

transverse modes is vt ≈ 0.4 ωP /qD where qD = (6π2nI)
1/3 is the Debye wavenumber. In general, both the longitudinal and
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the two transverse modes contribute to the ion response. However, for q < π/a, Eq. 14 simplifies since only one term of the
sum, which corresponds to K = 0 with longitudinal polarization, survives and we find that

χI(q < π/a) = − nI
MIv2l

. (15)

For q � π
a we found that converting the sum over K to an integral and confining q −K to be within a sphere of diameter

π/a instead of a cube with side length π/a gave an analytic, conservative lower limit on χI(q) given by

χI(q � π/a) = − nI
MIv2t

(
4π

3

)1/3(
1 +

v2t
2v2l

)(
q

qD

)2

. (16)

This result combined with the fact that vt � vl implies that χI(q > π/a) increases rapidly with momentum.

Ρ = 1 x 1012 g cm-3

Ρ = 1 x 1013 g cm-3

Ρ = 1 x 1014 g cm-3

HaL

0.0 0.5 1.0 1.5 2.0

0.001

0.01

0.1

1

10

q�kFe

C
en

IHq
L

HbL

12.0 12.5 13.0 13.5 14.0

0.01

0.1

1

log10 Ρ @g cm-3D

C
2

en
IHq

=
3
q

T
F

e
L

FIG. 3: (Color online) (a) The strength of the induced electron-neutron interaction in the crust as a function of q at various densities
in the crust. (b) C2enI(q = 3qTFe) as a function of density.

The momentum dependence of CenI(q) is plotted in the left panel of Fig. 3 for typical densities encountered in the crust
and arises solely due to large momentum dependence χI(q). The right panel of Fig. 3 shows the density dependence of CenI
evaluated at a momentum q = 3qTFe which is expected to be a typical scale. Here, the large density dependence is entirely
due the EoS of the crust from Ref. [20].

Before discussing the implications of the electron-neutron coupling we present an alternate, perhaps simpler and more
instructive, derivation of the electron-neutron interaction which follows from noting that at low momentum, the interaction
is mediated by one-phonon exchange. The process is shown by the Feynman diagram in Fig. 4 where the single and double
fermion lines represent electrons and neutrons, respectively and the exchange particle is the longitudinal phonon of the ion
lattice.

e

e

n

n

phonon

FIG. 4: Effective interaction between electrons and neutrons induced by ion density fluctuations represented by a phonon.
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The electron-phonon coupling is well known, and at small momentum it is described by the Lagrangian

Le−ph =
4πZα fI
q2 + q2TFe

e†e ∇iξi , (17)

where ξi is the canonically normalized phonon field which is related to ion density fluctuations, δnI = −fI∇iξi, and fI =√
nI/mI [15]. Density fluctuations of the ion lattice also couple to the neutrons due to the short-range neutron-ion potential

VnI. The coupling between low energy neutrons and lattice phonons is described by the Lagrangian

Ln−ph = −VnI fI n†n ∇iξi . (18)

The electron-neutron interaction follows from Fig. 4, where the phonon-electron and phonon-neutron vertices are given
by Eq. 17 and Eq. 18, respectively. Using the longitudinal phonon propagator D(ω, q) = (ω2 − ω̃2(q))−1 where the phonon
dispersion relation is ω̃2(q) = v2l q

2 and vl is the velocity of the longitudinal mode, we find that the induced interaction is

UenI(ω, q) =

(
−4πZαVnIf

2
I

q2 + q2TFe

)
q2

(ω2 − v2l q2)
. (19)

In the static limit where ω � vlq this simplifies to

UenI(0, q) =
4παZVnIf

2
I

(q2 + q2TFe)v
2
l

, (20)

which coincides with the result obtained earlier in Eq. 10 because CenI(q) = −VnIZf2I /v2l for small q < π/a.

IV. ELECTRON CONDUCTIVITIES AND SHEAR VISCOSITY

We now turn to the calculation of the electron thermal conductivity, electrical conductivity, and shear viscosity due to
electron-neutron scattering. Both in the crust and in the core, the thermal and electrical conductivity, and the shear viscosity
are given by

κen =
k2Fe T

9
〈λen〉κ , σen =

k2Fe α

3π2
〈λen〉σ , ηen =

k4Fe
15π2

〈λen〉η , (21)

respectively, and these expressions are written in a form familiar from kinetic theory. The relevant transport mean free
paths are obtained as simple variational solutions to the Boltzmann equation for degenerate and relativistic electrons [5]. For
electron-neutron scattering described by an effective interaction of the form in Eq. 5, the mean free paths are given by

〈λen〉−1κ =
1

4πk2Fe

∫ 2kFe

0

dq q3
(4πα)2C2en(q)

(q2 + q2TF)2

(
1− q2

4k2Fe

)
Iκ(q) , (22)

〈λen〉−1σ =
1

4πk2Fe

∫ 2kFe

0

dq q3
(4πα)2C2en(q)

(q2 + q2TF)2

(
1− q2

4k2Fe

)
Iσ(q) , (23)

〈λen〉−1η =
1

4πk2Fe

∫ 2kFe

0

dq q3
(4πα)2C2en(q)

(q2 + q2TF)2

(
1− q2

4k2Fe

)
Iη(q) , (24)

respectively. Here, the strength of the induced coupling in the general case is defined as Cen which stands for Cenp in the core
and CenI in the crust, and

Iκ/σ/η(q) =

∫ ∞
−∞

dω

2π

βω

eβω − 1
Sn(ω, q) gκ/σ/η , (25)
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where

gκ = 1 +
(
βω
π

)2 (
3
k2Fe

q2 −
1
2

)
, gσ = 1 , gη = 3

(
1− q2

4k2Fe

)
, (26)

β = 1/T , and Sn(ω, q) is the dynamical structure function describing the spectrum of neutron density fluctuations. The
factor of (1 − q2/(4k2Fe)) in the mean free paths arises because helicity is conserved for ultra-relativistic particles and this
suppresses the back-scattering of electrons. The dynamical structure function of the degenerate neutron gas in the normal
and superfluid phases differs greatly. In the normal phase, the response is dominated by particle-hole excitations at the Fermi
surface. In the superfluid phase, because particle-hole excitations are suppressed by the gap, the response is dominated by
a collective mode (the Goldstone boson associated with the spontaneous breaking of the U(1) symmetry in the superfluid
state) called the superfluid phonon.

We will begin by first considering the dynamical structure function in the normal phase which is given by

Sn(ω, q) =
−2 Im Π0

n(ω, q)

1− exp (−βω)
, (27)

where Π0
n(ω, q) is the neutron density-density correlation function and is defined in appendix A. In the special case when

interactions can be neglected the dynamical structure function is given by

SFG
n (ω, q) = 2

∫
d3p1
(2π)3

∫
d3p2
(2π)3

(2π)4δ4(qµ + pµ1 − p
µ
2 )f(E1)(1− f(E2)) , (28)

where p1 and p2 are initial and final neutron momenta, E1 and E2 are initial and final neutron energies, qµ = (ω, ~q), and f(E)
is the Fermi-Dirac distribution function of the non-interacting neutron gas. Further, when ω � µn and q � kFn interactions
can be incorporated within the framework of Fermi liquid theory. In this case

Sn(ω, q) ≈ (1− e−βω)−1

(1 + F0)2
(m∗n)

2
ω

πq
Θ(qvFn − |ω|) , (29)

where vFn = kFn/m
∗
n is the neutron Fermi velocity, and the effective mass m∗n ' mn and the factor F0 ≈ −0.5 − 1 are Fermi

liquid parameters for the conditions encountered in neutron stars [22]. In the following we shall neglect these Fermi liquid
corrections by setting F0 = 0 and m∗n = mn in Eq. 29. Using this result we can explicitly write the integral defined in Eq. 25
as

Iκ/σ/η(q) =
m2
n

π2βq

∫ qvFn

0

dω
(βω)2

(eβω − 1)(1− e−βω)
gκ/σ/η . (30)

In the low temperature limit when T � kFevFn the integral over ω is performed by setting the upper limit to ∞ and the
integral becomes independent of the neutron Fermi momentum. We find that

Iκ(q) =
1

5

m2
n

β2q

(
1 +

4k2Fe
q2

)
, Iσ(q) =

1

3

m2
n

β2q
, Iη(q) =

m2
n

β2q

(
1− q2

4k2Fe

)
. (31)

It is interesting to note the difference between Iκ(q) and Iσ(q) in the above. This difference arises solely due to the inelasticity
of electron-neutron collisions since the energy transfer ω ' qvFn ' T is favored and this implies that the Wiedemann-Franz
law will be violated for electron-neutron scattering.

It is convenient to define the following momentum averaged effective couplings

〈C2en〉κ/σ/η =

∫ 2kFe

0
C2en(q)fκ/σ/η(q)∫ 2kFe

0
fκ/σ/η(q)

, (32)



9

where

fκ/σ/η(q) =
q3

(q2 + q2TF)2

(
1− q2

4k2Fe

)
Iκ/σ/η(q) . (33)

From Eq. 31 and the momentum averages defined above we can deduce that the typical momentum transfer q ≈ few×qTFe <
kFe, and that in general the typical momenta relevant for the calculation of κ are smaller than those relevant for σ and η.
〈C2enp〉κ and 〈C2enp〉η are plotted in Fig. 5 for the typical densities expected in the neutron star core. In the crust, the ion
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FIG. 5: (Color online) The momentum averaged couplings for (a) 〈C2enp〉κ and (b) 〈C2enp〉η, for densities of relevance in the core. It is
assumed that neutrons are in the normal phase and Eq. 32 is used to obtain the averages. Although it is not shown we remark that
〈C2enp〉σ ≈ 〈C2enp〉η.
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FIG. 6: (Color online) 〈C2enI〉κ/σ/η in the crust as a function of density using VnI derived from data presented in Ref. [20]

density-density correlation function χI(q) has a strong momentum dependence (c.f. Eq. 16), and consequently the stronger
momentum dependence of CenI(q) implies that the differences between the momentum averaged couplings for κ, σ, and η will
be more pronounced than in the core. Using the results for the crust composition and EoS used in [20] we obtain the density
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dependence of the momentum averaged effective couplings 〈CenI〉κ/σ/η shown in Fig. 6.

By using the momentum averaged couplings we can factor C2en(q) out of the q integration in Eqs. 22, 23, and 24, and we
obtain analytic results for the inverse mean free paths given by

〈λen〉−1κ =
4π2α2〈C2en〉κ

5

m2
n T

2

q3TF

Φκ

(
qTF

kFe

)
, (34)

〈λen〉−1σ =
π2α2〈C2en〉σ

3

m2
n T

2

k2FeqTF
Φσ

(
qTF

kFe

)
, (35)

〈λen〉−1η = π2α2〈C2en〉η
m2
n T

2

k2FeqTF
Φη

(
qTF

kFe

)
, (36)

where

Φκ(x) =

(
1 +

3x4

16

)
2

π
ArcTan

[
2

x

]
+
x

π
− 3x3

4π
, (37)

Φσ(x) =

(
1 +

3x2

4

)
2

π
ArcTan

[
2

x

]
− 3x

π
, (38)

Φη(x) =
1

8π

(
4 + x2

) (
4 + 5x2

)
ArcTan

[
2

x

]
− x

π

(
13

3
+

5x2

4

)
, (39)

are normalized so that Φκ/σ/η(0) = 1.
The corresponding thermal and electrical conductivity, and the shear viscosity are given by the following analytic expressions

κen =
5

36π2α2〈C2en〉κ
k2Feq

3
TF

m2
n T

Φ−1κ

(
qTF

kFe

)
, (40)

σen =
1

π4α〈C2en〉σ
k4FeqTF

m2
n T

2
Φ−1σ

(
qTF

kFe

)
, (41)

ηen =
1

15π4α2〈C2en〉η
k6FeqTF

m2
n T

2
Φ−1η

(
qTF

kFe

)
, (42)

respectively. For the fiducial values kFe = 100 MeV, T = 108 K, and qTF ≈ 30 MeV, the above formulae predict κ ≈ 1023 erg
cm−1 s−1 K−1, σ ≈ 1029 s−1 and η ≈ 1018 g cm−1 s−1 when we set 〈C2en〉 = 1.

Now we will consider the case when neutrons are in the superfluid state. As already mentioned, neutrons are likely to
form s-wave Cooper pairs in the crust, and p-wave Copper pairing is a possibility in the core. While s-wave superfluidity
in the crust appears rather robust with critical temperatures for 1S0 pairing in the range T n

c = 108 − 1010 K, it remains
unclear if p-wave pairing occurs in the core. Recent calculations, which account for non-central interactions and polarization
effects in the medium, favor the smaller values T n

c < 108 K indicating that p-wave pairing is fragile and may be unlikely at
typical temperatures encountered in the neutron star core [11]. Nonetheless, for completeness we entertain the possibility
of neutron superfluidity both in the crust and in the core. When T � T n

c quasi-particle excitations are suppressed by the
factor exp (−T n

c /T ) and under these conditions, Sn(ω, q) is dominated by ω = qvn corresponding to interactions with the low
energy Goldstone mode associated with the breaking of the U(1) baryon number symmetry in the superfluid ground state.
For a weakly coupled neutron superfluid

Sn(ω, q) =
πnnq

mnvn

[
δ(ω − vnq)
1− e−βω

+
δ(ω + vnq)

e−βω − 1

]
, (43)

where nn is the neutron density and vn ≈ kFn/(
√

3 mn) is the velocity the superfluid phonon mode [23]. The relevant
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frequency integrals for electron mean free paths due to electron collisions with superfluid neutrons are given by

Iκ(q) =
nnq

2β(2π2 + (6kFe
2 − q2)vn

2β2)Csch( qvnβ2 )2

8mnπ2
, (44)

Iσ(q) =
nnq

2β Csch( qvnβ2 )2

4mn
, (45)

Iη(q) =
3nnq

2β(4k2Fe − q2)Csch( qvnβ2 )2

4kFemn
. (46)

Using these expressions the conductivities can be calculated numerically.

V. RESULTS AND DISCUSSION

A. Electron Transport in the Core

We find that electron-neutron scattering is most relevant in the core when neutrons are in the normal phase and protons
are superconducting. This is because proton superconductivity suppresses electron scattering from the other electrons,
muons, and protons. When the protons are in the normal phase, electrons interact mainly through the current-current
interaction because in this case the interaction is only weakly screened by dynamical effects due to the Landau damping of
transverse plasmons [24]. In the superconducting state, the transverse plasmon is massive due to the Meissner effect and the
inverse screening length (proportional to ∆p) suppresses the electron-electron, electron-muon, and electron-proton scattering.
Electron-proton scattering is additionally suppressed by the factor ' exp (−T p

c /T ) due to the gap in the proton particle-hole
spectrum. In what follows we discuss the relevance of electron-neutron scattering in the core for typical conditions and choose
two fiducial values of the proton critical temperature T p

c = 109 K and T p
c = 1010 K, which are taken to be independent of

density.
We begin by discussing the relevance of electron-neutron scattering for the electron thermal conductivity. In the core

electrons can scatter off other electrons, muons, protons, and neutrons. Hence the full electron thermal conductivity is given
by

κe =

(
1

κref
+

1

κen

)−1
, (47)

where

κref =

(
1

κee
+

1

κeµ
+

1

κep

)−1
, (48)

is the contribution to the electron thermal conductivity due to electron-electron, electron-muon, and electron-proton scattering
considered in earlier work. When T � T p

c , Shternin and Yakovlev find that

κref(T � T p
c ) =

5

24α
k2Fe

∆p

T
f , (49)

where the factor f = k2Fp/(k
2
Fe + k2Fµ) ≈ 1 includes the correction in regions where the muon fraction is not negligible [7].

Comparing Eq. 49 to the result we obtained for electron-neutron scattering in Eq. 40, we can estimate when the latter will
dominate. To obtain a simple expression we neglect kFµ, and set kFp = kFe to find that when

〈C2en〉κ &
16
√
α

3π7/2

√
kFe
mn

kFe
∆p
≈ 0.27

(
kFe

100 MeV

)3/2 (
1 MeV

∆p

)
, (50)

electron-neutron scattering dominates.
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In Fig. 7 we show the ratio κref/κen to asses the relative importance of electron-neutron scattering. κref is calculated using
the fitting formula from [7] and is described in Appendix B 1 for reference. When κref/κen > 1 electron-neutron scattering
is the dominant scattering mechanism and from the figure we can deduce that electron-neutron scattering is unlikely to
be important when T p

c is small and T & T p
c . This is because a smaller gap ∆p ' 1.76 T p

c results in weaker screening of
electron-electron and electron-muon scattering, and when T & T p

c , electron-proton scattering becomes relevant and further
reduces the electron mean free path. For the larger T p

c ' 1010 K, results shown in the right panel of Fig. 7 indicate that
electron-neutron scattering can be relevant both at low density near the crust-core boundary, and at higher density deep
inside the core. Here, because T > T p

c both κref and κen scale as 1/T . Thus, their ratio is independent of temperature and
the bands shown in the right panel overlap.
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FIG. 7: (Color online) The ratio κref/κen for two proton critical temperatures: (a) T pc = 109 K and (b) T pc = 1010 K, for densities of
relevance to the core. When the κref/κen > 1, electron-neutron scattering dominates.

Similarly, the total electron shear viscosity in the core is given by

ηe =

(
1

ηref
+

1

ηen

)−1
, (51)

where

ηref =

(
1

ηee
+

1

ηeµ
+

1

ηep

)−1
, (52)

is the contribution to the shear viscosity due to electron scattering off other electrons, protons, and muons considered in
earlier work. For T � T p

c , the case of interest to us here, Shternin and Yakovlev find that

ηref(T � T p
c ) =

ξ

9π4α5/3

k5Fe
T 2

(
∆p

kFp

)1/3

f ′, (53)

where ξ ≈ 1.7, and the factor f ′ = kFpkFe/(k
2
Fe + k2Fµ) ≈ 1 includes the correction in regions where the muon fraction is not

negligible [8]. Comparing Eq. 53 to the result we obtained for electron-neutron scattering in Eq. 42 we can estimate that
electron-neutron scattering will dominate when the induced coupling

〈C2en〉η &
6α1/6

5
√
πξ

(
kFe
mn

)3/2(
kFe
∆

)1/3

≈ 0.03

(
kFe

100 MeV

)11/6 (
1 MeV

∆p

)1/3

. (54)

As before, in deriving the above criterion, we have neglected kFµ and set kFp = kFe.
In Fig. 8 we show the ratio ηref/ηen for two values of fiducial temperature in the core T = 108 and T = 109 K, and for
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FIG. 8: (Color online) The ratio ηref/ηen for two proton critical temperatures: (a) T pc = 109 K and (b) T pc = 1010 K, for densities in
the core.

two representative values of the proton critical temperature to asses the relative importance of electron-neutron scattering.
ηref is calculated using the fitting formula from [8] and is described in Appendix B 2 for reference. As before, in regions
where ηref/ηen > 1, electron-neutron scattering is the dominant scattering mechanism for electrons. The results in the figure
indicate that electron-neutron scattering is relevant everywhere in the core. Further, because ηref is a weaker function of the
superconducting gap compared to κref , we find that ηref/ηen > 1 even when T ' T p

c .
The general trend that the electron-neutron contribution is more relevant for η rather than κ, and that it remains relevant

for η even when proton superconductivity is weak or absent, can be understood by noting that screening is more important for
κ than it is for η. This is because low momentum scattering with energy transfer ω ' T can make an important contribution
to κ. This is reflected by the fact that κ ∝ Λ3 where Λ is the momentum transfer scale set by the physics of screening, while
η ∝ Λ (c.f. the dependence on qTF in Eqs. 40 and 42). In the case of the density-density interaction that we have considered
between electrons and neutrons Λ = qTF ≈ (4αmpkFp/π)1/2, while for the current-current interaction between electrons

considered in [7, 8] the relevant scale of the screening momentum is Λ ≈ (παk2Fp∆p)
1/3 when protons are superconducting,

and Λ ≈ (2αTk2Fp)1/3 when protons are normal.
We have calculated both κen and ηen for the case when neutrons are superfluid and found them to be too large compared

to κref and ηref to be relevant. Here, electron scattering occurs either by absorption or emission of the superfluid phonon
with energy ω = qvn. Since large energy transfer is exponentially suppressed due to degeneracy and typical ω ' T , the
electron-phonon scattering is highly peaked in the forward direction and contributes little to the electron transport properties.
Superfluid phonons could contribute to the shear viscosity [25] and to the thermal conductivity [26] when phonon-phonon
scattering is assumed to limit the phonon mean free paths. However, recent work in Ref. [27] suggests that the absorption
process phonon + electron → electron dominates and greatly reduces the phonon mean free paths. This is the inverse of the
process in which an electron scattered by absorption or emission of superfluid phonons considered here. Thus we conclude
that phonon diffusion is unlikely to be relevant for transport. Instead phonons are likely dragged along with the electrons,
and this could have a modest effect on transport properties. This aspect warrants further investigation when neutrons in the
core are superfluid.

Finally, we note that the electrical conductivity is only relevant when protons are normal, and in this case we find that
electron-neutron scattering can be as relevant as electron-proton scattering when 〈C2enp〉 & 1. However, this warrants a careful
study of the induced interaction between the electron and neutron currents mediated by transverse plasmons in the normal
state, and is beyond the scope of this study.
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B. Electron Transport in the Crust

In the inner crust, ions form a crystal and electron-ion scattering is suppressed due to correlations for T < TP where
TP = ~ωP /kB is the ion plasma temperature and ωP =

√
4παZ2nI/MI is the plasma frequency of ions with charge Z, mass

MI , and number density nI . The dominant electron scattering processes considered in earlier work were due to electron-
phonon and electron-impurity interactions. When the impurity concentration is negligible, the electron contribution to κ, σ,
and η at low temperature is limited by the emission or absorption of lattice phonons by electrons and has been studied in
earlier work [5, 28–30]. The importance of Umklapp scattering was realized early in Ref. [5] because this allows the electron
momentum to change by a large amount, K = (2π/a)(nxx̂ + nyŷ + nz ẑ), where ni are integers, even for relatively small
energy transfer ω ' T � |K| . For this reason, electron-ion scattering remains very effective down to low temperatures until
the Umklapp processes are frozen out by the small band gap in the electron spectrum. This occurs when T < Tum where
Tum ≈ (α/9π)Z1/3TP is called the Umklapp temperature. In the inner crust where Z ≈ 40, Tum ≈ 10−3TP .

By comparing our results in the inner crust to those obtained from only considering electron-phonon Umklapp scattering
from Ref. [30], we find that our values for κ and σ are much too large (typically by a factor of about 100 or more) to be
relevant for temperatures in the range 107 − 109 K. A similar comparison between our results for η with those presented in
Ref. [31] shows that electron-neutron scattering is also too weak to be relevant in this case. At very low temperature when
T . 106 K the Umklapp process is frozen out, and in this case electron-neutron scattering can become relevant if neutrons
are in the normal phase and the impurity concentration can be neglected. However, since neither of these conditions seem
likely in the crust we do not present a detailed comparison.

VI. CONCLUSIONS AND CAVEATS

We have identified a new mechanism for electron scattering off neutrons induced by protons in the core and ions in the
crust. Using simple models of the neutron-proton interaction in the core and the neutron-ion interaction in the crust, we
have estimated the strength of this induced interaction. In calculating the electron thermal conductivity, shear viscosity, and
electrical conductivity, the coupling was characterized by a density-dependent, dimensionless parameter 〈C2enp〉 in the core,

and 〈C2enI〉 in the crust. Our main findings are:

• When protons are superconducting with T p
c & 109 K, electron-neutron scattering is a relevant process that limits the

electron mean free paths and determines the electron thermal conductivity and shear viscosity in the neutron star core.
Our calculations indicate the shear viscosity in the vicinity of the crust-core transition can be 5− 10 times larger than
earlier estimates. This enhancement may be relevant in the context of damping hydrodynamic modes and r-modes,
and could have implications for neutron star spin evolution and gravitational wave instabilities (e.g. see [32, 33]). In
contrast, changes to the thermal conductivity are relatively small and given current uncertainties in their calculation
these changes are unlikely to be of much interest for neutron star phenomenology.

• In the crust, electron-neutron scattering is unlikely to be relevant because (i) electron Umklapp scattering off the ion
lattice is efficient for typical temperatures of interest, (ii) at low temperature when Umklapp scattering is supressed,
electron-impurity scattering will likely dominate, and (iii) neutrons are likely to be in the superfluid state in the crust
and in this case electron-neutron scattering is highly suppressed.

The results we presented are sensitive to the momentum dependent electron-neutron couplings Cenp(q) and CenI(q). Al-
though these coupling were well determined at low momentum because they were directly related to the EoS, the finite
momentum component warrants further study. Calculations of the Fermi liquid parameters and effective interactions in
asymmetric matter are being pursued using realistic nucleon-nucleon potentials and will be reported in future work.

In addition, here we have only considered the electron coupling to neutron density fluctuations and have ignored the
current-current coupling. We argued that the current-current interaction would be subdominant because protons, and to a
lesser extent neutrons, can be treated as non-relativistic particles. However, when protons in the core are in the normal phase,
the current-current interaction is stronger because it is only weakly screened by Landau damping. This may well compensate
for the smaller proton velocity and warrants further investigation, especially to ascertain if electron-neutron scattering could
be relevant in the absence of proton superconductivity in the core. We note that the formalism to incorporate the electron
coupling to the density and current of a multi-component interacting medium exists and has been used in the context of
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studying neutrino scattering in hot and dense matter in Ref. [34, 35]. This formalism can be adapted to study cold matter
with pairing correlations and will be explored in future work.

Finally, we note that in the crust, Bragg scattering of unbound neutrons from the ion lattice will result in a distorted Fermi
surface and band structure for the neutrons. This implies that Umklapp processes involving neutrons can become important.
Since such processes enable large momentum transfer they warrant further study before we can discount the relevance of
electron-neutron processes in the crust.
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Appendix A: A derivation of the electron-neutron induced interaction

To illustrate how the induced interaction arises we consider the case of electron scattering from an interacting liquid of
neutrons and protons at zero temperature. For simplicity, we shall assume that protons and neutrons are non-relativistic, and
only consider the Coulomb coupling of electrons to the proton density. The linear response formalism to describe scattering
off the density fluctuations in a liquid in terms of the density-density correlation function Πp(ω, q) is derived and discussed in
Ref. [15]. Explicitly, the differential cross-section per unit volume for an electron with momentum k to scatter from density
fluctuations in a proton liquid is given by

1

V

dσ

dωdq
(k) = − q

2π2

(
1− q2

4k2

)
U2
ep(q) Im Πp(ω, q); Uep(q) =

−4πα

q2 + q2TF

, (A1)

where ω and q are the energy and momentum transfer from the electron to the medium, α = 1/137 is the fine structure
constant, and Uep(q) is the effective interaction in the medium between electrons and protons which includes the effects of
screening in the plasma through the Thomas-Fermi screening momentum, qTF.

A generalization of this formalism to a two component liquid is outlined in [34, 35] where it was used to study neutrino
scattering off neutrons and protons. Using this generalized formalism to describe scattering of relativistic electrons off neutron
and proton density fluctuations, we find that the differential cross-section per unit volume for an electron with momentum
k to scatter from a neutron-proton liquid is given by

1

V

dσ

dωdq
(k) = − q

2π2

(
1− q2

4k2

)
1

(q2 + q2TF)2
(0, 4πα) Im Π(ω, q)

(
0

4πα

)
, (A2)

where Π(ω, q) is the density-density correlation function of the two component liquid which we shall define explicitly below.
The coupling between the neutron and proton components of the liquid is incorporated by summing a class of particle-hole
diagrams most relevant at long-wavelengths within the Random Phase Approximation (RPA) [15]. In this approximation
(which satisfies current conservation), a closed form expression for the time-ordered correlation function Π(ω, q) exists and
is given by

ΠRPA(ω, q) = (1−V Π0)−1 Π0 , (A3)

Π0 =

(
Π0
n 0

0 Π0
p

)
, V =

(
Vnn Vnp
Vnp Vpp

)
, (A4)

where V is the interaction matrix that describes the strong interactions between quasi-particles in the liquid. The neutron
and proton time-ordered density-density correlation functions Π0

n and Π0
p are approximated by the expressions obtained for
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a non-interacting Fermi gas

Π0
j (ω, q) = −2i

∫
dk0 d

3k

(2π)4
Gj(k0 + ω, |~k + ~q|)Gj(k0, k) , (A5)

where Gj(k0, k) is the single particle Greens function [15].
To make explicit the real and imaginary parts, the correlation function can be written as

Π0
j = χj + iΦj . (A6)

Of particular interest to our study here is the case when Φp ≈ 0� |χp|. This is realized when protons are superconducting
and the energy transfer ω is small compared to the gap in the excitation spectrum, ∆p. Further, when |Vnnχn| � 1 and
|Vppχp| � 1, we find that in the limit Φp → 0 the differential cross-section per unit volume is given by

1

V

dσ

dωdq
= − 8α2q

(q2 + q2TF )2

(
1− q2

4k2Fe

)
V 2
pnχ

2
p Φn . (A7)

Here, electrons excite neutron particle-hole states indirectly through the proton polarization. Comparing Eq. A7 with Eq. A1
we define the induced electron-neutron interaction

Uenp(ω, q) =
−4πα Cenp(ω, q)

q2 + q2TF

, (A8)

where Cenp(ω, q) = Vnpχp(ω, q).

Appendix B: Comparison to Previous Results

In Fig. 7 and Fig. 8 we have used results for κref and ηref from previous calculations where electron-electron, electron-muon,
and electron-proton scattering was considered. Here we write down explicitly the formulae that were used.

1. Thermal Conductivity

From [7] we find that the electron contribution to the thermal conductivity due to electron-electron, electron-muon and
electron-proton scattering is given (in natural units) by

κei =
π2Tne
3m∗eν

κ
ei

, (B1)

where ne is the number density of electrons, T is the temperature, m∗e = µe ≈ kFe, and νκei is the frequency of electron-i
collisions where i stands for electrons, muons, or protons. The collision frequency is dominated by the exchange of transverse
plasmons because scattering due to the exchange of longitudinal plasmons is strongly screened in the static limit. In Eq. B1
the coupling between the heat transport of electrons and muons is neglected and was shown to be unimportant for strongly
degenerate conditions in neutron star cores [7].

In the absence of proton superconductivity, the collision frequency for thermal conductivity is given by

νκei =
24ζ(3)

π3

α2T

m∗e

k2FikFe
q2t

, (B2)

where ζ(z) is the Riemann zeta function, kFi is the Fermi momentum of particle i, and qt is the transverse screening
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momentum,

q2t =
4α

π

∑
i

k2Fi . (B3)

The total electron thermal conductivity is then given by

κref =

(
1

κee
+

1

κeµ
+

1

κep

)−1
=

π2

54ζ(3)

k2Fe
α
, (B4)

only depending on kFe and not on the temperature—an interesting dependence that is due to the exchange of dynamically
screened transverse plasmons. It is in contrast to our result of κ ∝ T−1 which is due to the exchange of longitudinal plasmons
that remain massive in the static limit.

In the presence of proton superconductivity, the transverse plasmons become massive due to the Meissner effect and this
restores the T−1 behavior of κref . In addition, the number of proton quasiparticles becomes exponentially suppressed. In
this case, from [7] we find that the thermal conductivity

κref → κref
1

Rκtot(y, r)
, (B5)

where

Rκtot(y, r) = p1e
−0.14y2 +

1− p1√
1 + p3y2

, p1 = 0.48− 0.17r , p3 =

[
(1− p1)

45ζ(3)

4π2r

]2
, (B6)

y =
√

1− t
(

1.456− 0.157√
t

+
1.764

t

)
, r =

k2Fe + k2Fµ
k2Fp

, (B7)

and t = T/T p
c . Eq. B5 was used to make the plots shown in Fig. 7. For the case of strong proton superconductivity when

y � 1, the thermal conductivity simples to

κref(T � T pc ) ≈ 5

24α

k2Fek
2
Fp

k2Fe + k2Fµ

∆p

T
. (B8)

2. Shear Viscosity

For the electron contribution to the shear viscosity we used the analytic results of [8] in the same way as we used [7] for
the thermal conductivity discussed above. The shear viscosity is given by

ηei =
nek

2
Fe

5m∗eν
η
ei

, (B9)

when the longitudinal plasmon exchange and the coupling between the electron and muon shear viscosity can be neglected.
This is a good approximation here, though it is not as good as in the thermal conductivity case. In the absence of proton
superconductivity, the collision frequencies for shear viscosity are given by

νηei =
χαπ

4

q
4/3
t

kFem∗e
T 5/3 , (B10)

where χ ≈ 6.93 and qt is given by Eq. B3. Note that this expression (and subsequent expressions) in [8] is missing the factor
of α.
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The total electron shear viscosity is then given by

ηref =

(
1

ηee
+

1

ηeµ
+

1

ηep

)−1
=

4

15χα

k6Fe
π3

(
1

q4tT
5

)1/3

, (B11)

where the temperature dependence is due to the exchange of dynamically screened transverse plasmons and is in contrast to
our result of η ∝ T−2 due to the exchange of massive longitudinal plasmons.

In the presence of proton superconductivity, this screening of transverse plasmons is no longer dynamical and the trans-
verse plasmons acquire a mass (which restores the T−2 behavior of ηref), and the number of proton quasiparticles becomes
exponentially suppressed. Allowing for proton superconductivity, the shear viscosity becomes

ηref → ηref
1

Rηtot(y, r)
, (B12)

where

Rηtot =
1− g1

(1 + g3y3)1/9
+ (g1 + g2)Exp

[
0.145−

√
0.1452 + y2

]
, (B13)

g1 = 0.87− 0.314r , g2 = (0.423 + 0.003r)y1/3 + 0.0146y2 − 0.598y1/3e−y , (B14)

g3 = 251r−9(r + 1)6(1− g1)9 , (B15)

and y, t, and r were defined earlier in appendix B 1. Although we use Eq. B12 to make the plots shown in Fig. 8 we note
that when proton superconductivity is strong (y � 1), the shear viscosity is given by the simpler expression

ηref(T � T pc ) ≈ ξ

9π4α5/3

k6Fe
T 2

k
2/3
Fp

k2Fe + k2Fµ
∆1/3
p , (B16)

where ξ ≈ 1.71.
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