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K. Kiriluk,14 Á. Kiss,19 E. Kistenev,8 J. Klatsky,22 J. Klay,40 C. Klein-Boesing,47 D. Kleinjan,9 P. Kline,6633

L. Kochenda,58 Y. Komatsu,13 B. Komkov,58 M. Konno,70 J. Koster,27 D. Kotchetkov,54 D. Kotov,58, 6234

A. Kozlov,73 A. Král,16 A. Kravitz,15 F. Krizek,33 G.J. Kunde,41 K. Kurita,59, 61 M. Kurosawa,59 M.J. Kweon,3535

Y. Kwon,68, 75 G.S. Kyle,53 R. Lacey,65 Y.S. Lai,15 J.G. Lajoie,30 D. Layton,27 A. Lebedev,30 B. Lee,24 D.M. Lee,4136

J. Lee,20 K.B. Lee,35 K.S. Lee,35 S.H. Lee,66 S.R. Lee,11 T. Lee,64 M.J. Leitch,41 M.A.L. Leite,63 M. Leitgab,2737

B. Lenzi,63 B. Lewis,66 X. Li,12 P. Liebing,60 S.H. Lim,75 L.A. Linden Levy,14 T. Lǐska,16 A. Litvinenko,3238
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I. INTRODUCTION161

One of the main physics programs in relativistic heavy ion collisions is the study of heavy quarkonia yields, namely162

charm quark pairs (charmonia) and bottom quark pairs (bottomonia). At zero temperature, the binding energy163

between the heavy quark and anti-quark (QQ̄) in these vector mesons may be described by an effective potential164

consisting of a confining term at large distance and Coulomb-like term at short distance [1].165

When the temperature of the medium formed after the collision is higher than a transition temperature Tc ≈170 MeV,166

the effective potential between light quark and anti-quark weakens and deconfines the constituent quarks of mesons167

and baryons. The Quark-Gluon Plasma (QGP) formed can be described as a dense, strongly coupled state of matter168

which reaches thermalization in less than 1 fm/c [2].169

In the QGP medium, the effective color electric potential between Q and Q̄ can be screened by the dense surrounding170

color charges. This color screening is similar to the Debye screening observed in electromagnetic plasmas [3]. The171

temperature at which the heavy quark state becomes unbound due to this screening depends on the corresponding172

binding energy of the state. Because of the large variation in radii between the different heavy quarkonia, they are173

expected to become unbound at different temperatures.174

There are many theoretical calculations which predict the temperature at which each quarkonium state is suppressed175

by color screening. A compilation of results can be found in [4], including lattice quantum chromodynamics (QCD) [5–176

15], QCD sum rules [4, 16–20], AdS/QCD [21–24], resummed perturbation theory [25, 26], effective field theories [27,177

28], and potential models [15, 29–35]. Figure 1 shows the dissociation temperature range for several quarkonium states178

as expected from these models. Besides the different techniques used in these calculations, the melting range also179

depends on the choice of the transition temperature, the use of the internal energy or the free energy of the system180

for the temperature dependence of the heavy quark potential and the criteria adopted for defining the dissociation181

point. No cold nuclear matter effects have been considered in these estimations.182

A comparison between hydrodynamical model calculations and the PHENIX thermal photon data [36] suggests183

that the peak temperature of the medium formed at RHIC in central Au+Au collisions at
√
s
NN

= 200 GeV lies in184

the region between 300 and 600 MeV, or 1.8 Tc and 3.5 Tc. The majority of the estimates shown in Fig. 1 indicates185

that only the ground states, the J/ψ and Υ(1S), remain bound at these temperatures.186

PHENIX reported a strong suppression of the J/ψ yield in central Au+Au collisions compared to binary collision187

scaling from p+p yields [37, 38]. According to measurements performed in p+p collisions at RHIC, (42 ± 9)% of the188

J/ψ yield comes from χc and ψ
′ decays [39]. The complete suppression of these states in Au+Au collisions can explain189

only part of the suppression seen for the J/ψ. There are other possible contributions to J/ψ suppression and therefore190

the interpretation of the data is not straightforward. Other mechanisms of suppression include initial and final state191

cold nuclear matter effects, studied in d+Au collisions by PHENIX [40, 41]. There are also effects that can reduce the192

suppression. The dissociated charm (and anti-charm) quark can undergo multiple scatterings and recombine with its193

former partner, once the medium cools down. In addition, the presence of about 6-20 open charm pairs in each central194

Au+Au collision at RHIC 1, provides a good chance that the ground state charmonium was formed by coalescence of195

uncorrelated charm and anti-charm quarks present in the medium [43]. Thus, even if all the initially produced J/ψs196

are dissociated in the QGP medium, J/ψs can be re-created at a later stage by the coalescence process.197

The probability for creating a bottomonium state through coalescence is quite small at
√
s
NN

= 200 GeV , given198

that only about 0.07 bb̄ pairs per central event are produced 2. Therefore, bottomonium states are a better probe199

of color screening in Au+Au collisions at RHIC. Figure 1 shows that no lattice QCD or potential model calculation200

predicts that Υ(1S) will melt at a temperature lower than around 2 Tc. This is an outcome of the tighter binding201

energy and smaller radius of the 1S state compared to other quarkonium states. Some calculations suggest the ground202

state charmonium is dissociated at a temperature close to Tc [20, 31, 34].203

Bottomonia have been measured mostly in the dilepton channel with a branching ratio around 2.5% [45]. Table I204

lists the fraction of the three Υ states present in the dilepton spectrum as measured at Fermilab and the Large Hadron205

Collider (LHC) by E866/NuSea [46], CDF [47], LHCb [48] and CMS [49]. No significant variations on the relative206

yields have been observed in spite of the broad collision energy range of these experiments or whether the anti-proton207

was one of the collision particles or not. The ground state Υ(1S) has many feed-down contributions from excited208

states. The CDF experiment reported the fraction of these contributions [50], which can be seen in Table II.209

Fermilab experiments found no modification of the relative yields in cold nuclear matter as measured in p+d [46]210

and p+A [51]. The initial state effects on bottomonia production were investigated by E605 [52], E772 [51] and211

E866/NuSea [46] in p+A collisions at
√
s
NN

=38.8 GeV with targets of 2H, C, Ca and Fe. The Υ yields are suppressed212

by ∼5% for incident gluon momentum fraction x2 ∼ 0.1. The suppression gets stronger for larger x2, reaching a level of213

1 This estimation is based on the c− c̄ total cross section reported in [42] and 1000 binary collisions in very central Au+Au events.
2 Estimation based on the total bb̄ cross section published in [44].
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FIG. 1. (Color online) Compilation of medium temperatures relative to the critical temperature (Tc) where quarkonium
states are dissociated in the quark-gluon plasma. Note that these estimations were performed assuming different Tc values.
Each horizontal bar corresponds to one estimation and its temperature extension (when applied) represents the range where
the quarkonia state undergoes a mass/size modification until it completely melts. Techniques used in calculations: Lattice
QCD [5–15], QCD sum rules [4, 16–20], AdS/QCD [21–24], effective field theories [27, 28] and potential models [15, 29–35].
The shaded band from 1.8 to 3.5 T/Tc represents the hydrodynamic estimation for the peak temperature reached in Au+Au
collisions at 200 GeV [36].

TABLE I. Composition of the Υ family in the dilepton channel as measured by E866/NuSea [46], CDF [47], LHCb [48] and
CMS [49]. Fractions are in % and only statistical uncertainties are shown.

Exp. system Υ(1S) Υ(2S) Υ(3S)

9.46 GeV
c2

10.02 GeV
c2

10.36 GeV
c2

E866 p+p
√
s =39 GeV 69.1 ± 1.0 22.2 ± 0.9 8.8 ± 0.6

CDF p+ p̄
√
s =1.8 TeV 72.6 ± 2.8 17.6 ± 1.7 9.7 ± 1.4

LHCb p+p
√
s =7 TeV 73.0 ± 0.3 17.9 ± 0.2 9.0 ± 0.2

CMS p+p
√
s =7 TeV 71.6 ± 1.3 18.5 ± 0.8 10.0 ± 1.3

∼15% at x2 ∼0.3. PHENIX measured the medium modification of the Υ family (1S+2S+3S) yield in d+Au collisions214

at
√
s
NN

= 200 GeV [53]. The result is consistent with no modification within the large statistical uncertainties at215

x2 ∼ 10−2 and presents an one standard-deviation suppression at x2 ∼ 0.2, which is consistent with the Fermilab216

results and the STAR experiment at midrapidity in d+Au collisions [54]. The RHIC results can be accounted for217

by a combination of initial state effects, calculated by the parton modification function EPS09 [11], and quarkonium218

breakup when crossing the cold nuclear matter.219

QGP effects on Υ production were studied at the LHC by the CMS experiment [55] using Pb+Pb collisions at220 √
s
NN

=2.76 TeV. The excited state Υ(2S) is more suppressed than the Υ(1S) and the Υ(3S) state is not seen in221
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TABLE II. Feed-down fractions of the Υ(1S) state in p+p collisions as measured by CDF for pT > 8 GeV/c [50].

Source fraction ± stat ± syst

Direct Υ(1S) 0.509 ± 0.082 ± 0.090

Υ(2S) 0.107 ± 0.077 ± 0.048

Υ(3S) 0.008 ± 0.006 ± 0.004

χB1 0.271 ± 0.069 ± 0.044

χB2 0.105 ± 0.044 ± 0.014

CMS data. This is qualitatively consistent with expectations of the effects of color screening from several models222

discussed earlier. The question which arises is whether or not the suppression also happen at lower energies and in223

an environment with a much smaller number of bottom quarks present in the medium.224

This paper reports the measurement of the inclusive Υ (1S+2S+3S) yield at |y| < 0.35 in Au+Au collisions at225 √
s = 200 GeV. Section II describes the experimental apparatus and the data sample used in the measurement.226

Section III details the signal extraction, detector response and systematic uncertainties involved in this measurement.227

The results and comparisons with other measurements and models are presented in Section IV. The final conclusions228

are presented in Section V.229

II. EXPERIMENTAL APPARATUS AND DATA SET230

FIG. 2. (Color online) The PHENIX Central Arm Spectrometers for the 2010 data taking period.

The PHENIX experiment measures quarkonia at midrapidity through their dielectron decays with the two-arm231

central spectrometers [56] shown in Fig. 2. The central arm detectors measure electrons, photons, and hadrons over232

pseudorapidity of |η| < 0.35 with each arm covering azimuthal angle ∆φ = π/2. Charged particle tracks in the central233

arms are reconstructed using the drift chambers (DC), the pad chambers, and the collision point. Electron candidates234

are selected using information from the ring-imaging Čerenkov detector (RICH) and the electromagnetic calorimeter235

(EMCal) [57]. The total radiation length before the DC during the 2006 p+p run was 0.4%. During the 2010 Au+Au236

run more material was introduced from the hadron blind detector (HBD) which added 2.4% radiation lengths to what237

the detector had in 2006. In the 2010 run, the magnetic field configuration was also modified to cancel the field in238

the HBD volume, decreasing the momentum resolution by about 25%.239

Beam interactions were selected with a minimum bias (MB) trigger that requires at least one hit (two in Au+Au240

collisions) per beam crossing in each of the two beam-beam counters (BBC) placed at 3.0 < |η| < 3.9. In the Au+Au241

data set, this was the only trigger used. A dedicated EMCal-RICH-Trigger (ERT) was used in coincidence with the242
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MB trigger during the 2006 p+p data acquisition. The ERT required a minimum energy in any 2×2 group of EMCal243

towers, corresponding to ∆η×∆φ ≈ 0.02× 0.02 rad., plus associated hits in the RICH. The minimum EMCal energy244

requirement was 400 MeV for the first half of the run and 600 MeV for the second half.245

The collision point along the beam direction was determined with a resolution of 1.5 cm in p+p collisions and 0.5246

cm in Au+Au collisions, by using the difference between the time signals measured between the two BBC detectors.247

The collision point was required to be within ±30 cm of the nominal center of the detector in p+p collisions and ±20248

cm in Au+Au collisions. The 2006 data sample was taken from Npp = 143 billion minimum bias events, corresponding249

to an integrated luminosity of 6.2 pb−1. The 2010 data sample was obtained from NAuAu = 5.41 billion minimum250

bias events, corresponding to 0.9 nb−1.251

In p+p collisions, electron candidates were identified by requiring at least one fired phototube within an annulus 3.4252

< Rring[cm] < 8.4 centered in the projected track position on the RICH. The RICH is filled with a CO2 radiator at 1253

atm. Pions with momentum larger than 4.8 GeV/c can also produce Čerenkov light in the RICH. Electron candidates254

are also required to be associated with an energy cluster in the EMCal that falls within 4σposition of the projected track255

position and within 4σE/p of the expected energy/momentum ratio for electrons, where σ represents one standard256

deviation in the position and energy+momentum resolution of the EMCal+DC determined using electrons from fully257

reconstructed Dalitz decays. Figure 3 shows the distribution of the parameter used to select electrons in the EMCal258

using electron candidates used in high-mass dielectrons with pT >5 GeV/c , above the Čerenkov threshold. Hadron259

contamination appears as an enhancement of this distribution for negative values. The distribution, after subtracting260

the background mainly composed of hadrons, represents a clean sample of electrons for (E/p)− 1 < 4σE/p.261
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FIG. 3. (Color online) Distribution of the parameter used to identify electrons with the EMCal. E/p is the ratio between the
energy deposited by the particle in the EMCal cluster and its momentum, σE/p is the variance of the expected energy/momentum
expected for electrons. The sample shown in (a) from p+p collisions and (c) from Au+Au collisions is from unlike-sign electron
pairs (containing signal+combinatorial background) and like-sign pairs (containing only background). (b) and (d) are the
background subtracted distributions along with the expected line shape from pure electrons.

In the Au+Au analysis, the cuts were optimized by looking at the parameters in the detector simulations using262

generated Υ → e+e− decays embedded into real data for the signal, and the real data like-sign dielectrons as a263

background. As a result of the optimization, we require:264

• at least two fired phototubes within an annulus 3.4 < Rring[cm] < 8.4 centered in the projected track position265

on the RICH266

• χ2/npe0 < 25, a variable defined as χ2-like shape of the RICH ring associated to the track over the number of267

photoelectrons detected in the ring268

• the displacement between the ring centroid and the track projection should be smaller than 7cm269

• EMCal cluster-track matching should be smaller than 3σposition270

• EMCal cluster energy/momentum ratio should be larger than -2.5σE/p.271
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These tighter cuts allowed a better hadron rejection as can be seen in Figure 3-c compared to the p+p sample in272

Figure 3-a.273
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FIG. 4. (Color online) Invariant mass distribution of simulated Υ (1S+2S+3S) using the PHENIX detector simulation and
relative Υ yields from CDF experiment [47] in 2006 run (a) and 2010 run (b) detector configurations.

Figure 4 shows the reconstructed invariant mass distribution for the three Υ states from PHENIX detector simula-274

tions in the 2006 p+p run configuration and in 2010 Au+Au configuration. The detector is not able to separate the275

three states and a single peak should be observed. In the 2010 detector configuration the addition of more material276

in the detector introduced more bremsstrahlung for the electrons increasing the low mass tail of the peaks.277

III. ANALYSIS PROCEDURE278

A. Dielectrons from Υ in the Central Arms279

The invariant mass was calculated for all electron pairs. Dielectron contributions to Υ decays are clearly identified280

as a peak in the unlike-sign invariant mass distributions around the Υ mass range 8.5 < Mee[GeV/c2]< 11.5 (Fig. 5).281

There were 12 unlike and one like-sign dielectron within this mass region from the p+p sample. In the Au+Au sample282

there were 22 unlike and 3 like-sign pairs in the same mass region.283

Figure 6 shows the p+p dielectron mass spectrum over an extended mass region after the like-sign distribution284

(used to estimate combinatorial background) has been subtracted from the unlike-sign data. Figure 7 shows the285

same invariant mass spectrum in the Υ mass region for p+p and Au+Au data. The line shape of the Υ mass peak286

determined from simulations (Fig. 4) cannot be validated by the real data given the low statistics in both p+p and287

Au+Au samples. In addition, the relative contributions from different Υ states are unknown in Au+Au data. The288

number of Υ counts was determined from a direct count of unlike-sign and like-sign dielectrons in the Υ mass region289

and the fraction of correlated background fcont in the same mass range. Given the low counts for the signal and290

background, Poisson statistics precludes the use of a simple subtraction. Therefore, the Υ signal is determined from291
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FIG. 5. (Color online) Invariant mass distribution of unlike-sign and like-sign dielectrons in the Υ mass region taken from
p+p (a), and Au+Au collisions (b).

NΥ =< s >P (1− fcont), (1)

where < s >P is the average signal from a joint Poisson distribution from the foreground unlike-sign f and background292

like-sign b dielectron counts in the Υ mass region [57]293

P (s) =

f
∑

k=0

(b+ f − k)!

b!(f − k)!

1

2

(

1

2

)b+f−k
ske−s

k!
, (2)

and the statistical uncertainty corresponds to one standard deviation of the P (s) distribution.294

B. Estimation of the continuum contribution295

The correlated background underneath the Υ region is determined from fits of the expected mass dependence of296

Drell-Yan, correlated electrons from B meson decays and possible contamination of hadrons within jets.297

The Drell-Yan contribution was estimated from next-to-leading order (NLO) QCD calculations [58]. These calcula-298

tions are known to reproduce lower and higher energy data at Fermilab [59, 60]. The calculated cross section was used299

to generate dielectrons propagated through the geant [61] based detector simulation. The Drell-Yan contribution is300
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modified by isospin and initial state effects in Au+Au collisions. After calculating the Drell-Yan cross section for p+n301

and n+n collisions, we found that the Au+Au cross section per binary collision is fiso =89% of that of p+p collisions302

because of the isospin effect. The initial state effects were accounted for by using a parton modification factor from303

the EPS09 parametrization, RDY
q

(

Q2, x1, x2
)

, for both Au nuclei. The expected Drell-Yan yield in Au+Au collisions304

(

Y AuAu
DY

)

relative to the yield in p+p collisions (Y pp
DY ) is:305

Y AuAu
DY (Mee)

Ncoll

= Y pp
DY (Mee) · fiso · RDY

q

(

Q2, x1, x2
)

, (3)

where Ncoll is the number of binary collisions. Q2, x1 and x2 are taken event-by-event from a pythia simulation [62].306

Theoretical uncertainties from the NLO calculation, EPS09 quark modification factor
(

RDY
q

(

Q2, x1, x2
))

and overall307

detector response were accounted for in the Drell-Yan contribution.308
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FIG. 6. (Color online) Fitted components to the correlated dielectron mass spectrum in the p+p sample. The bands correspond
to the uncertainties obtained from the fit, changes in the heavy flavor generator and theoretical uncertainties in the Drell-Yan
contribution.

The line shape of the correlated high-mass dielectron distribution from heavy flavor decays in p+p collisions was309

studied in detail in [57]. Two approaches were used: (1) a dielectron generator using the measured pT distribution310

of single electrons from heavy flavor with a random opening angle and (2) a heavy flavor simulation from pythia311

in the hard scattering mode to emulate NLO contributions. Both generated dielectron distributions were introduced312

into the detector simulation and reconstructed like the real data. The mass distribution from heavy flavor decays was313

normalized according to a fit to the dielectron spectrum starting at an invariant mass at 1.7 GeV/c2, thus including314

the J/ψ and the ψ′ peaks. Figure 6 shows the overall dielectron fit extended to the Υ region. The uncertainty bands315

represent the quadratic sum of the fit uncertainties and the differences between the approaches (1) and (2). The316

Drell-Yan band represents the quadratic sum of theoretical uncertainties and detector response uncertainties. The317

extrapolation of the heavy flavor contribution to the Υ mass range 8.5 < Mee[GeV/c2]< 11.5 in p+p data yields 0.29318

± 0.12 counts, which corresponds to 3.9 ± 1.7 pb. The pythia simulation, including parton shower terms, yields an319

estimate that the correlated bottom contribution in this mass range is 3.2 pb, in agreement with the fit extrapolated320

result.321

Jets can contribute to the correlated background in two ways: Dalitz decays from π0 pairs within the jet and322

correlated hadron pair contamination. For a π0 pair to produce a correlated electron pair in the Υ mass region, each323

of the π0s should have a transverse momentum larger than the mass of the Υ, which is a possibility ruled out by the324

current statistics. Figure 3 shows a not significant hadron contamination in the high-mass dielectrons in p+p data325

after combinatorial background subtraction. Hadron contamination was found to be negligible within uncertainties.326

Contributions from electron-hadron correlations are also assumed to be negligible.327



11

]2di-electron mass  [GeV/c
6 7 8 9 10 11 12 13 14 15

co
un

ts

-2

0

2

4

6

8

10
p+p

Net di-electron counts
Drell-Yan

bcorrelated b
 (1S+2S+3S)ϒ

TOTAL

(a)

]2 di-electron mass [GeV/c
6 7 8 9 10 11 12 13 14 15

 c
ou

nt
s

-5

0

5

10

15

20 centrality=[0,92]%
Net di-electron counts
Drell-Yan

bjets + b
(1S+2S+3S)ϒ

TOTAL

(b)

]2 di-electron mass [GeV/c
6 7 8 9 10 11 12 13 14 15

 c
ou

nt
s

-4

-2

0

2

4

6

8

10

12

14

16

18 centrality=[0,30]%
Net di-electron counts
Drell-Yan

bjets + b
(1S+2S+3S)ϒ

TOTAL

(c)

]2 di-electron mass [GeV/c
6 7 8 9 10 11 12 13 14 15

 c
ou

nt
s

-4

-2

0

2

4

6

8
centrality=[30,92]%

Net di-electron counts
Drell-Yan

bjets + b
(1S+2S+3S)ϒ

TOTAL

(d)

FIG. 7. (Color online) Fits to the correlated dielectron mass distribution around the Υ region obtained in p+p collisions (a)
and Au+Au collisions in three centrality bins (b,c,d). The bands correspond to fitting and theoretical uncertainties for the
Drell-Yan estimation. Fitting results are used only for correlated background estimations.

The resulting continuum fraction in the selected mass range is fpp
cont = 13± 4% in the p+p sample. The continuum328

fraction was also determined with a maximum likelihood fit using the combinatorial background, Drell-Yan, B meson329

and Υ line shapes with free parameters for their scales, except the combinatorial background which has a fixed scale.330

The total continuum found in this manner was consistent with that estimated with a fixed Drell-Yan scale. The fit331

(without any hadron contribution) provides a good description of the mass distribution.332

We cannot calculate the continuum contributions in Au+Au collisions in the same way as we do for p+p collisions333

given the unknown nuclear modification of bottom quarks. Contributions from correlated hadrons may also start to334

be significant in a high-occupancy environment. We thus perform a fit to separate the continuum background from335

the Υ signal. The dielectron spectrum is described by the following function:336

f (m) = NlikeYlike (m) + YDY(m) (4)

+ Nbb̄,jetYbb̄,jet(m) + YΥ(m)

Nlike =
2
√
Ne+e+Ne−e−

∫

Ylike (m) dm

Nbb̄,jet =

[

Ncont −
∫ mhigh

mlow

YDY(m)dm

]

YΥ(m) =
Ng√
2πσg

exp

[

−1

2

(

m− 9.5

σg

)2
]

where Nlike ∼1 is the normalization of the like-sign distribution [36], Ne+e+ +Ne−e− = 2613 is the number of like-sign337

dielectron pairs over the mass range 5 < Mee[GeV/c
2] < 15 , Ylike(m) is the like-sign dielectron mass distribution338
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from real data which account for the combinatorial background and a fraction of the correlated background, YDY(m)339

is the Drell-Yan contribution as calculated in Eq. (3), mlow = 8.5 GeV/c2 and mhigh = 11.5 GeV/c2 define the mass340

range used in the continuum normalization, Ncont is the continuum contribution in the Υ mass region, YΥ(m) is a341

Gaussian function accounting for the Υ peak where σg is the effective peak width of all three Υ states combined, and342

Ybb̄,jet(m) is a function normalized in the Υ mass range which accounts for the correlated open bottom and hadrons343

from jets. We assumed both a power law and an exponential function for the correlated bottom and jet contributions:344

Ybb̄,jet(m) =

{

(α+ 1)mα/
(

mα−1
high −mα−1

low

)

αeαm/ (eα·mhigh − eα·mlow)

The parameters Ncont, α, Ng and σg were fit to the unlike-sign dielectron spectrum between 5 and 16 GeV/c2 using345

a maximum likelihood method. Figure 7 shows the f(m)−NlikeYlike(m) fitting result assuming a power law function346

for the bottom-jet contribution. The bands represent the fit and theoretical uncertainties. The continuum estimate347

changes by up to 0.9% depending on the choice of the bottom+jet contribution function
(

Ybb̄,jet(m)
)

. Table III lists348

the number of net counts and the continuum fraction for p+p and three centrality ranges in the Au+Au data. The349

fraction of continuum in Au+Au data obtained from these fits was found to be larger than in p+p data. This may350

reflect that the nuclear modification of Drell-Yan in Au+Au is small compared to the Υ yield modification.351

C. Mass cut efficiency352

The Υ count is all made in the mass range 8.5 < Mee[GeV/c2]< 11.5. The reconstructed Υ family peaks may have353

some contribution at masses out of this range. According to the detector simulation using the CDF results [50] for the354

relative yields, the mass range 8.5 < Mee[GeV/c2]< 11.5 contains a fraction εmass = 0.94±0.05 of the Υ(1S+2S+3S)355

yield in the 2006 p+p data set. The uncertainty of this estimate comes from the mass fit to the p+p data and from356

the difference between real data and simulations. In the Au+Au analysis, the evaluation of the detector occupancy357

effect on the efficiency included the mass cut used in the analysis. Variations in the detector mass resolution during358

this study indicate a systematic uncertainty in the mass cut efficiency of 6% in Au+Au data. The number of Υ counts359

has a 2% variation when the normalization of the like-sign dielectrons (Nlike) is taken from different mass ranges.360

This is assigned as a systematic uncertainty on the yield.361

D. Detector Response362

The geant based detector simulation was tuned as described in [57]. The acceptance and efficiency in this analysis363

was obtained from Υ(1S+2S+3S) dielectron decays generated by pythia, requiring that they fall into a rapidity range364

of |y| <0.5. The relative yield between Υ states were taken to be those reported by CDF [50]. This same detector365

simulation was used to estimate the detector response for the heavy flavor and Drell-Yan background line shapes as366

described in the previous section.367

In the p+p sample, the overall acceptance and efficiency Acc × ε for Υs calculated from simulations was found to368

be (2.33 ± 0.23) % in the |y| < 0.5 rapidity region. The uncertainty of this estimate is from variations in the detector369

performance during the run, mismatches between the detector simulation and the detector activity in real data and370

variations of the pT shape introduced in simulation (Fig. 8-a).371

The BBC trigger samples a cross section of σpp × εBBC = 23 ± 2.2 mb in p+p collisions, according to Vernier372

scans [64]. However, it samples a larger fraction of the cross section when the collision includes a hard scattering373

process. Studies with high pT π0 yields showed an increase of the luminosity scanned by the BBC by a factor of374

1/εBBChard , εhardBBC = (0.79± 0.02) [65]. In Au+Au data the BBC scans 92 ± 3% of the total Au+Au inelastic cross375

section and there is no bias from hard scattering (εhardBBC=1). The EMCal-RICH trigger (ERT) efficiency of dielectrons376

was found to be (79.6 ± 3.6)% in the p+p sample when emulating the ERT in MB data. The ERT was not used for377

the Au+Au data.378

In the Au+Au data, the electron identification cuts were tighter, resulting in a calculated acceptance and efficiency379

Acc× ε = 1.41± 0.05% (point at 85% centrality in Fig. 9-b). To quantify additional inefficiencies from the detector380

occupancy, the raw detector signal from simulated Υ dielectron decays was embedded in real raw data. The simulated381

Υ was generated at the same collision point measured in the real event. The reconstruction, fitting and mass cuts of382

the embedded data were the same as those used in real data analysis. The pT and collision centrality dependence of383

the resulting fraction of Υ counts in the reconstructed embedded data are shown in Fig. 9. The big difference between384
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the detector efficiency obtained in p+p data and peripheral Au+Au reflects the tight cuts needed in Au+Au because385

of the larger occupancy and additional material in front of the detector in 2010 run.386

Because we do not have the statistic precision to determine the transverse momentum distribution of the Υ, we387

must employ models for the pT dependence to determine an overall acceptance and efficiency. Five functions were388

used for the pT distribution: a shape from generated Υ decays in pythia, a prediction from the color evaporation389

model [63] and three fitted functions f (pT ) to the acceptance corrected real data distribution (Fig. 8). The pT390

integrated acceptance and efficiency is determined by an average using the pT dependence shown in Fig. 9 and these391

functions as weights. The difference between these calculations and the default weighing using pythia as an input is392

within 7.8% in p+p and 7.9% in Au+Au samples.393
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simulation.

TABLE III. Summary of values used in BdN/dy (5) and RAA (7) calculations.

Value p+p Au+Au 0%–92% Au+Au 0%–30% Au+Au 30%–92%

Nunlike −Nlike 10.5+3.7
−3.6 18.3+5.0

−5.2 11.2+3.8
−4.0 6.4+3.3

−3.5

fcont 0.13 ± 0.04 0.216 ± 0.045 0.270 ± 0.063 0.186 +0.065
−0.060

NBBC × 109 143 5.40 1.62 3.35

c 0.70 1 1 1

Acc× ε (1.64 ± 0.25)% (0.65 ± 0.13)% (0.58 ± 0.11)% (0.96 ± 0.18)%

Ncoll 1 258 ± 25 644 ± 63 72 ± 7

Npart 2 109 ± 4 242 ± 4 45 ± 2

The final values for the efficiency in our wide centrality bins are also sensitive to the true centrality dependence394

of the Υ production. To estimate this systematic uncertainty we assume two different centrality dependence models:395

(1) binary collision scaling and (2) participant collision scaling. Within our centrality ranges, we find that these two396

models yield less than a 7% difference and we include this in our occupancy systematic uncertainty.397

IV. RESULTS398

The Υ → e+e− invariant multiplicity at midrapidity, BdN/dy, is calculated by399

B
dN

dy
=

1

∆y

NΥ

(NBBC/c) · Acc · ε
(5)

where B is the dielectron branching ratio, NΥ is the number of Υ candidates in the data set as defined in (1), ∆y = 1400

corresponds to the rapidity range used in simulation (±0.5), NBBC is the number of analyzed events, c = εBBC/ε
hard
BBC401

is a correction factor accounting for the limited BBC efficiency and the trigger bias present in events which contain a402

hard scattering in p+p collisions as explained in Section IIID, Acc is the Υ acceptance and ǫ is the Υ reconstruction403

efficiency which includes the ERT efficiency. Table III summarizes the numbers used to calculate the Υ yields404

using Eq. 5. Table IV details the systematic uncertainties involved in the yield calculation. The resulting invariant405

multiplicities are reported in Table V.406

The Υ(1S+2S+3S) cross section in p+p collisions is407

B
dσΥ
dy

∣

∣

∣

∣

|y|<0.5

= B
dN

dy
× σpp (6)
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TABLE IV. Summary of the relative systematic uncertainties involved in BdN/dy calculations.

Uncertainty

Systematic p+p Au+Au

acceptance 7.5% 7.0%

electron identification 1.1% 5.0%

simulation input 7.8% 7.9%

mass cut efficiency 6.3% 5.0%

continuum contribution 5% 5.8%–8.6%

acceptance fluctuation 7.3% 14.0%

ERT efficiency 4.5% NA

occupancy effect NA 2.0%–7.5%

combinatorial background 2.0% 2.0%

TOTAL 16.1% 20.7-21.2%

rapidity
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FIG. 10. (Color online) Rapidity dependence of Υ(1S+2S+3S) yield measured by PHENIX, forward rapidity result from [53]
and STAR midrapidity from [54]. Dashed line is a Gaussian function fitted to the points. The points at zero rapidity are
shifted for clarity.

= 108± 38(stat)± 15(syst)± 11(lum) pb,

where σpp= 42mb is the p+p inelastic cross section at
√
s = 200 GeV.408

Figure 10 shows the rapidity dependence of Υ measured in p+p collisions by PHENIX in the mid- (this analysis),409

forward rapidities [53] and the STAR result at midrapidity [54]. Figure 11 presents the collision energy dependence410

of the differential cross section at midrapidity along with a NLO calculation using the color evaporation model for411

the bottomonium hadronization [63].412

In addition to the Au+Au 0%–92% centrality sample, we present data in two centrality bins, 0%–30% most central413

and 30%–92% most central. Using a Monte Carlo simulation based on the Glauber model in [74], we estimated Ncoll,414

the average number of binary nucleon-nucleon collisions and Npart, the average number of participants, for all data415

samples. Figure 12 shows the Ncoll normalized invariant yield of Υ decays as a function of the number of participants.416

For central Au+Au collisions, we observe a reduction of the yield relative to a pure Ncoll scaling that is typical of417

hard scattering processes.418
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FIG. 11. (Color online) Energy dependence of the Υ(1S+2S+3S) differential cross section at midrapidity in p+p and p+p̄
collisions [49, 52, 54, 66–73]. The curve is the estimation using the color evaporation model [63].

TABLE V. Summary of the measured Υ invariant multiplicities, BdN/dy, for one p+p three Au+Au data sets.

Centrality BdN/dy

p+p
(

×109
)

2.7 ± 0.9 (stat) ± 0.4 (syst)

0%–92%
(

×107
)

4.1+1.1
−1.2 (stat) ± 0.9 (syst)

0%–30%
(

×107
)

8.7 +2.9
−3.1 (stat)± 1.8 (syst)

30%–92%
(

×107
)

1.6 +0.8
−0.9 (stat) ± 0.3 (syst)

The nuclear modification factors for the binned and integrated 0%–92% centrality data set (RAA) were calculated419

as:420

RAA =
dN/dyAuAu

< Ncoll > dN/dypp
(7)

and are reported in Table VI. A global uncertainty of 40% is obtained from the quadratic sum of the relative uncer-421

tainty from 38% p+p data (statistical+systematic) and 12% from the Glauber estimate of the number of collisions.422

We assume none of the systematic uncertainties are correlated between p+p and Au+Au samples given the different423

collision environment and changes in the detector configuration between 2006 and 2010 runs, namely active area424

differences and the installation of the hadron blind detector in 2010 which increased the radiation length from 0.4%425

to 2.8%.426

If the Υ(1S + 2S + 3S) yield for Au+Au collisions is equal to the yield for p+p collisions times the number of427

binary collisions in Au+Au collisions, then RAA =1 and there are no nuclear modification effects. Figure 13 shows428

the RAA as a function of the number of participants for the two centrality-split classes. The inclusive Υ states are429

suppressed in central 200 GeV Au+Au collisions, corresponding to large Npart. However, the degree of suppression430

in semi-peripheral collisions is unclear, due to limited statistics.431

TABLE VI. Summary of the measured Υ nuclear modification factors, RAA, for Au+Au data sets.

Centrality RAA

0%–92% 0.58± 0.17(stat) ± 0.13 (syst) ± 0.23 (global)

0%–30% 0.50± 0.18 (stat)± 0.11 (syst) ± 0.20 (global)

30%–92% 0.84 +0.45
−0.48 (stat) ± 0.18 (syst) ± 0.34 (global)
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FIG. 12. (Color online) The Ncoll normalized invariant yield of Υs produced during the 2006 p+p and the 2010 Au+Au
operations, as a function of Npart..
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FIG. 13. (Color online) Nuclear modification factor for centrality binned data plotted as a function of Npart.

In most central events, the suppression is comparable to what is observed in p(d)+A collisions [46, 51–53]. Based432

on the lattice calculations discussed before, the bottomonia excited states should be completely dissociated in the433

core of Au+Au collisions at RHIC. Table VII summarizes what would be the RAA observed in this study in case the434

only nuclear matter effect observed is the complete suppression of these excited states. The estimation is based on435

the composition of the Υ states measured and the decays to the Υ(1S) reported in Tables I and II. The RAA obtained436

in this analysis is consistent with the suppression of excited states if other initial and final state effects are ignored.437

The result presented in this work agrees with the STAR experiment at the same energy [54]. The CMS ex-438

periment reported centrality dependent nuclear modification factors for the separated Υ(1S) and Υ(2S) states at439 √
s
NN

=2.76 TeV in Pb+Pb collisions at the LHC [75]. CMS also reported an upper limit of RAA(Υ(3S)) of 0.10440

at the 95% confidence level. Figure 14 compares the observed inclusive Υ(1S+2S+3S) nuclear modification factor441

observed by PHENIX with STAR and the inclusive Υ(1S+2S) measurement by CMS at higher energy showing that442

the observed nuclear modification factors are very similar at the two quite different energies.443

Additionally, it is important to compare the measurements to various model predictions. A model by R. Rapp et al.444

has frequently been used to interpret J/ψ production [76]. It uses a rate-equation approach, which accounts for both445
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TABLE VII. Υ(1S+2S+3S) RAA expected when the excited states are completed suppressed in Au+Au collisions along with
the measured result in the 30% most central collision regime. Estimations based on Tables I and II.

RAA

no 2S or 3S 0.65 ± 0.11

no 2S,3S or χB 0.37 ± 0.09

measured 0.50±0.18 (stat)± 0.11 (syst) ± 0.19(global)
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FIG. 14. (Color online) Nuclear modification factor for centrality binned data plotted as a function of Npart compared to STAR
[54] and CMS results.

suppression from cold nuclear matter, color screening of excited states (seen in Fig. 1) and regeneration mechanisms446

in the QGP and hadronization phases of the evolving medium. This study looked at two scenarios. The first is447

the strong binding scenario where the bottomonium binding energy was not affected by the presence of the QGP,448

remaining at the values found in vacuum, and is shown in Fig. 15. The other is the weak binding scenario where the449

bottomonium bound-state energies are significantly reduced in the QGP, relative to the vacuum state, adopting the450

screened Cornell-potential results of [77] and is shown in Fig. 16. Our data, albeit with large statistical uncertainties,451

are consistent with both versions of this model.452

More recently, two new models were suggested by Strickland and Bazow [78] based on the potential model [77],453

with the addition of an anisotropic momentum term. Models A and B are identical, except for an additional term in454

Model B which adds an entropy contribution to the free energy. Figure 17 shows the PHENIX measurement along455

with the two model predictions, each with a variety of values for the ratio of the shear viscosity to the entropy density.456

No definitive statement can be made regarding the shear viscosity. However, the extreme potential B case appears to457

be favored.458

V. CONCLUSIONS459

In summary, we have studied the production of the sum of Υ states 1S, 2S and 3S at
√
s
NN

= 200 GeV in the460

midrapidity region. The dielectron channel differential cross section in p+p collisions is Bdσ/dy =108 ± 38 (stat)461

± 15 (syst) ± 11 (luminosity) pb. The nuclear modification seen in Au+Au minimum bias collisions is 0.58 ± 0.17462

(stat) ± 0.13(syst) ± 0.23 (global), whereas it is 0.84 +0.45
−0.48 (stat) ± 0.18 (syst) ± 0.34(global) in the mid-peripheral463

events and 0.50 ± 0.18 (stat)± 0.11 (syst) ± 0.20(global) in the 30% most central events. The nuclear modification464

is consistent with the complete suppression of the bottomonium excited states (Υ(2S), Υ(3S) and χB), in qualitative465

agreement with most calculations as compiled in Fig. 1, assuming no cold nuclear matter effects. There are several466

detailed model calculations that show good agreement with our measured modifications. The nuclear modification467

factors measured by PHENIX are similar to measurements by STAR at the same energy and by CMS at much higher468
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FIG. 15. (Color online) A comparison of PHENIX data to the model from [76] for the strong binding scenario.
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FIG. 16. (Color online) A comparison of PHENIX Υ data to the model from [76] for the weak and strong binding scenario.

energy,
√
sNN=2.76 TeV.469
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