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Abstract

A set of global optical potential parameters describing the A = 3 particles (3He and 3H) elastic

scattering from 1p-shell nuclei, HT1p, is obtained by simultaneously fitting 118 sets of experimental

data of 3He and 3H elastic scattering from 9Be, 10B, 11B, 12C, 13C, 14C, 14N, 15N, 16O, 17O and

18O with incident energies from 4 6 E 6 118.5 MeV and 24 sets of elastic scattering data with the

6Li and 7Li targets from 3 6 E 6 44 MeV. HT1p is found to be superior to GDP08 [D.Y. Pang,

P. Roussel-Chomaz, H. Savajols, R.L. Varner, and R. Wolski, Phys. Rev. C79, 024615 (2009)],

which is a systematic potential designed for the heavy-target region, in reproduction of the angular

distributions of elastic scattering cross sections of 3He and 3H from 1p-shell nuclei at energies below

100 MeV. At energies above 100 MeV, GDP08 is found to be better than HT1p.

PACS numbers: 24.10.Ht 25.10.+s 25.55.Ci 27.10.+h
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I. INTRODUCTION

Systematic optical model potentials (SOMPs) are necessary inputs for direct nuclear reac-

tions models, which are widely used in studies of nuclear structures and nuclear astrophysics.

The importance of SOMPs in such studies are not only shown in cases when experimental

data of elastic scattering cross sections are not available, but also in other works, such as

systematic study of spectroscopic factors using, for example, (d, p), (p, d), and (3He, d) reac-

tions. In such studies, systematically consistent results can only be obtained when SOMPs

are used [1–3]. When exploring into unknown regions, either in nuclear chart that are far

away from the β-stability line or in some key nuclear reactions in nuclear astrophysics which

are very difficult or even not possible to measure directly with current facilities, reliable

predictions of theoretical models, or at least the understanding of the uncertainties of the

various theoretical models are crucial [4]. Uncertainties in optical model potentials con-

sists one of the main sources of uncertainties in predictions of direct nuclear reactions (see,

e.g. Ref.[5]). It is thus important to develop OMPs, which are obtained by optimizing

descriptions of scattering observable, usually angular distributions of elastic scattering cross

sections (ADXSECs), over a wide range of incident energies and nuclear masses. Systematic

OMPs obtained in this way minimize the uncertainties of OMPs as inputs in direct nuclear

reactions.

Over the many years, a lot of efforts have been made in developing SOMPs for nucleon

(A = 1) [6–9], deuteron (A = 2) [10–13], 3H and 3He (A = 3) [14–18], alpha-particles

(A = 4) [19–22], and heavy ions (A ≥ 6) [23–25]. However, most of these potentials are

based on analysis of ADXSECs of projectiles from heavy targets with atomic masses of,

typically, AT ≥ 30. It is well-known that the systematic behaviour, namely, the energy-

and target-mass-dependence of depth and geometry parameters of OMPs are quite different

between heavy and light nuclei regions [16, 22, 26]. Although these SOMPs are very often

extrapolated to nuclei with AT < 30 [1, 27, 28], they are not optimized for those regions.

It has been found that some modification of these potentials should be made in order to

best reproduce experimental data with light particles [29]. Systematic OMPs for light nuclei

should be developed whenever possible. Besides such practical purposes, a SOMP established

in the light-target region, which are not as much studied as in the heavy-target region, will

quantify the differences in the behaviour of SOMPs between light- and heavy-mass regions,
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and will be helpful in finding a proper parameterization that aims to cover both mass regions.

The relative difference in the target masses are much larger in the light-mass region than

that in the heavy-mass region, for example, the difference in masses of 9Be and 10B is 10%

while that between 40Ca and 41Ca is only 2.5%. The differences in energy-level densities

among light nuclei are also larger than that of the heavy ones. It is thus questionable if a

systematic potential can be obtained for a light-mass region. Nevertheless, some successful

pioneer work have been made for the 1p-shell nuclei, namely, for nuclei with atomic numbers

ranging from 3 to 8, for protons and neutrons [30] and heavy-ions [31].

In this paper, we report a SOMP of 3He and 3H on 1p-shell nuclei, designated as HT1p

(H and T being initials of helion and triton, respectively). This potential is obtained by

simultaneously fitting 118 sets of ADXSEC data of 3He and 3H elastic scattering from 9Be,

10B, 11B, 12C, 13C, 14C, 14N, 15N, 16O, 17O, and 18O. The incident energies covered by these

experimental data are from 3.7 MeV to 118.5 MeV. The potential for 6Li and 7Li are searched

separately from the other 1p-shell nuclei with incident energies from 3 to 44 MeV. As we

show in Section IIB, the OMP parameters for these two nuclei differ significantly from the

other 1p-shell nuclei. This may be attributed to their weak binding energies or 3He or 3H

cluster structure.

This paper is organized as the following: the parameterization of the SOMP is introduced

in Section IIA; the resulting parameters are reported in Section IIB with comparisons

between optical model calculations and experimental data; discussions on the applicable

energy ranges of HT1p and GDP08, and volume integrals of these potentials are given in

Section III. Our conclusions are made in Section IV.

II. PARAMETERIZATION AND DETERMINATION OF THE SYSTEMATIC

POTENTIAL PARAMETERS

A. Parameterization of HT1p

The parameterization of HT1p for the 1p-shell nuclei is the same as that of GDP08[16]

except for the introduction of an energy-dependence parameter to the real potential radius.

For this reason, we simply recapitulate the necessary equations and refer Ref.[16] for detailed

discussions about this parameterization. The phenomenological optical model potential, as
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a function of the radial distance between the center-of-masses of the projectile and the target

nuclei, r, is defined as:

U(r) = −Vrfws(r, R0, a0)− iWvfws(r, Rw, aw)

−iWs(−4aw)
d

dr
fws(r, Rw, aw)

+VC(r), (1)

where Vr, Wv, andWs are depths of the real, volume-imaginary, and surface-imaginary parts,

respectively. fws is the Woods-Saxon form factor:

fws(r, R, a) =
1

1 + exp [(r − R)/a]
, (2)

with R and a being the geometry parameters (radius and diffuseness) of the potential. Vr,

Wv, Ws, have their associate R and a values, distinguished by their subscripts as is shown

in Eq.(1). VC is the Coulomb potential:

VC(r) =











ZPZTe
2

r , (r > RC)

ZPZTe
2

2RC

(

3− r2

R2
C

)

, (r 6 RC),
(3)

with ZP and ZT being the charge numbers of the projectile and targets nuclei, respectively

and, RC is the radius of the Coulomb potential, which is defined as RC = rcA
1/3
T (AT is the

mass of the target in the atomic mass unit). It was found that the angular distributions of

elastic scattering cross sections are not much sensitive to the values of Coulomb radius. In

this work, we fix rc = 1.3 fm for all target nuclei.

We parameterize the energy- and target-mass dependence of the depth and geometry

parameters as the following:

1. The depth of the real part of nuclear potential is:

Vr = V0 + Ve(E −EC), (4)

where EC is the Coulomb correction to the incident energy, which is taken to be the

average value of the Coulomb potential inside the nucleus[7, 10, 16]:

EC =
6ZPZTe

2

5RC

. (5)

Note that Eq. (5) imply a ZTA
−1/3
T term in the real potential that has been introduced

in the previous works (see, e.g., Refs. [17, 18, 32, 33]).
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2. The depth of the volume and surface imaginary potentials, Wv and Ws, respectively,

are functions of the incident energy E:

Wv(E) =
Wv0

1 + exp
(

Wve0−(E−EC)
Wvew

) , (6)

Ws(E) =
Ws0 ±Wstε

1 + exp
(

(E−EC)−Wse0

Wsew

) , (7)

where ε = (NT −ZT)/AT is the isospin asymmetry of the target nucleus, the “+” and

“−” signs are for 3He and 3H projectiles, respectively.

3. The radius of the real potential consists of the term that is proportional to A
1/3
T , the

offset term, and the energy-dependence term:

R0 = r0A
1/3
T + r

(0)
0 + r0e(E − EC). (8)

The energy dependence of the geometry parameters, which might not to be necessary

in systematic potentials of nucleons [7, 8], was found necessary for composite particles,

such as, deuterons [12] and α-particles [21], when a large range of incident energies is

covered. The diffuseness parameter a0 is assumed to be independent on target masses

and incident energies.

4. The volume and surface imaginary potentials are assumed to have the same geometry

parameters:

Rwv ≡ Rws = Rw = rwA
1/3
T + r(0)w , (9)

and, like that of the real potential, the diffuseness parameters awv ≡ aws = aw are

assumed to be independent on AT and E. Addition of the energy dependent term,

rwe(E−EC), to Rw has been attempted. It is found that rwe is not well determined by

the experimental data included in this work, namely, its values was determined with

an uncertainty that is larger than itself and addition of this parameter did not provide

an apparent improvement to the description of the experimental data. Because of this,

we do not include the energy dependence to the geometry parameters of the imaginary

potentials in the current work.

Only experimental data of ADXSECs are used in this work and most of which do not

cover backward angles. These data do not confine the spin-orbit potentials sufficiently well
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[26]. Because of this, we do not include the spin-orbit potentials in our parameterization

in this work. All energies quoted in the text, or in the equations, are projectile incident

energies in the laboratory system.

B. Determination of the systematic OMP parameters for 1p-shell nuclei

Experimental angular distributions of elastic scattering cross sections are used to confine

the SOMP parameters. The database consists of 118 sets of data for target nuclei of 9Be,

10,11B, 12−14C, 14,15N, and 16−18O with the incident energies from 3.7 to 118.5 MeV and 24

sets for 6Li and 7Li from 3 to 44 MeV. Because 6Li and 7Li are very weakly-bound with

3He/3H cluster structure, we would expect that the potential systematics with these isotopes

do not consistent with the systematics established for other 1p-shell nuclei. Actually, this

is confirmed by our results (see Table.II). Because of this, the potential parameters of 6Li

and 7Li are searched separately. The coverage of target masses and incident energies of the

data sets is depicted in Fig.1. More detailed information about the database is listed in

Table I. All the data sets used in this work are digitized from their original papers except

for 3H elastic scattering on 6Li at 3-10 MeV [34], which are taken from the nuclear database

EXFOR[35].

The systematic OMP parameters are determined by the usual criteria of the minimum

deviation of results of optical model calculations from the experimental data, which is defined

as

Q2 =
1

N

N
∑

i=1

[

σexp
i − σth

i

]2

∆σ2
i

, (10)

where N is the number of data points, σexp
i and σth

i are the experimental and theoretical

differential cross sections, respectively, and ∆σi is the uncertainty of the experimental cross

sections. Q2 in literature is usually called χ2. However, as in CH89 and GDP08, we retain

the notation of Q2 because, as was discussed in Ref. [7], this value, which is estimated by

simultaneously fitting many sets of experimental data from different sources with different

assertions of uncertainties, does not obey the χ2 distribution. Since different data sets

measured by different groups using different facilities have different uncertainties, using

reported experimental uncertainties in the global fitting may put some unreasonable weight

to some specific data sets. Because of this, we assume a uniform uncertainty of 15% for all the
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FIG. 1: (Color online) Incident energy and target mass distributions covered by the database of

the angular distributions of the differential cross sections collected for 3He elastic scattering from

atomic nuclei. The squares represent those included in GDP08, the triangles are used for HT1p,

and the circles are those unexplored by us.

data sets in the database. We allow variations of the normalization of the experimental data

during the parameter fitting. Values of the parameters are determined using the computer

code MINOPT [7], which is a combination of the optical model program OPTICS[36] and

the multi-parameter minimization program, MINUIT[37]. It allows us to optimize the OMP

parameters simultaneously by fitting a big set of experimental data which covers a large

range of target masses and incident energies.

The details of fitting procedures are the same as those elaborated in Ref. [16] and we

omit them in the present paper. The resulting SOMP parameters for the A = 3 particles

with the 1p-shell nuclei are listed in Table.II. The parameter values of GDP08 are also

shown for comparisons. The uncertainties of these parameters are determined with the

bootstrap uncertainty analysis method [87], which simulates many repeated measurements

of the data by creating new data sets of the same size as those in the original database

using random sampling with replacement (see Ref. [7] for details of the bootstrap method).

The parameter uncertainties are obtained with 1000 resamplings. The energy-dependence

parameters of the imaginary potential, Wve0, Wvew, Wvs0 and Wsew in Eq. 6, are found to be

not well-determined by the experimental data included in this work. For example, when we

allowed these four parameters to vary, we gotWvew = 2.08±3.18 MeV andWsew = 71.9±74.3
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TABLE I: References for the data sets used in searching of the optical model parameters.

heilum

target Elab Ref target Elab Ref target Elab Ref

6Li

8,9,10

11,12,14

16,18,20

[38] 12C 8.5, 10 [39] 14C 37.9 [40]

24.6, 27 [41]
9.5, 10.5

11.5
[42] 44.8 [43]

33.3 [44] 11 [45] 72 [46]

44 [47] 12, 15 [48] 14N 4.5, 7 [49]

7Li 33.3 [44] 15 [50] 25.7, 29 [51]

44 [47] 18, 20, 21 [52] 26.3 [53]

9Be
4, 6, 8

10, 15, 18
[54]

18.6, 20

22.2, 23.9
[55] 44.6 [43]

6, 8, 18 [56]
24.5, 25.3

26.8
[51] 15N 11 [42]

13.2, 20.4

22.2, 27
[57] 28.95 [58] 18 [59]

32.8 [60] 29 [61] 33 [62]

46.1 [47] 32.6 [60] 16O 25 [63]

10B
4, 8, 10

12, 15, 18
[64] 36, 42 [65] 28.9 [51]

9.8 [66] 39.7 [67] 40.9 [68]

11 [42] 40.9 [68] 41 [69]

13.2, 17.2

24.3
[57] 41 [69] 44 [47]

32 [70] 44 [47] 17O 11 [42]

41 [69] 49.8 [43] 17.3 [71]

46.1 [47] 72 [72] 33 [73]

11B 8, 15 [54] 13C 6, 8 [74] 18O 11 [42]

10, 12, 18 [75] 12, 15, 18 [48] 11 [76]

17.5, 40 [77] 33 [62] 15 [50]

18.3, 20.6

27.2
[57] 37.9 [40] 17.3 [71]

46.1 [47] 37.9 [78] 25 [63]

74 [79] 41 [69] 33 [73]

12C 3.7 [80] 14C
10, 12

15, 18
[64] 41 [69]

6 [74] 29 [51]

triton

target Elab Ref target Elab Ref target Elab Ref

6Li

3, 4, 5

6, 7, 8

9,10

[34] 12C 36 [81] 16O 33 [82]

17 [83] 38 [84] 36 [81]

12C 20 [85] 13C 38 [84]

33 [82] 14C 72 [86]
8



MeV, and Q2, with the number of free parameters increased from 12 to 16, only changed

from 63.0 to 61.8. For this reason, we keep the values of these parameters to be the same as

those in GDP08. Similarly, the volume absorption part and the energy dependence of the

real potential radius for 6,7Li are ignored.

TABLE II: Values (P ) and their uncertainties ∆P of the parameters in the systematic optical

potentials for A = 3 nuclei. V0, Ve, WV0, WS0, WST, Wve0, Wvew, Wse0, and Wsew are in MeV and

r0, r
(0)
0 , r0ae, a0, rw, r

(0)
w , and aw are in fm.

1p 6,7Li GDP08

parameter P ∆P P ∆P P ∆P

V0 155.1 1.6 80.1 7.7 118.3 1.3

Ve -0.678 0.027 -0.61 0.21 -0.13 0.01

r0 0.920 0.009 1.48 0.13 1.3 0.01

r
(0)
0 0.108 0.017 - - -0.48 0.05

r0ae 0.0031 0.0002 - - - -

a0 0.792 0.002 0.590 0.044 0.82 0.01

WV0 33.1 2.3 - - 38.5 3.9

WS0 21.8 0.6 25 10 35.0 1.1

WST 13.1 4.5 - - 34.2 8.0

rw 1.43 0.04 0.83 0.24 1.312 0.02

r
(0)
w -0.16 0.10 - -0.129 0.10

aw 0.801 0.010 1.047 0.098 0.84 0.01

Wve0 156.1 - - - 156.1 11.9

Wvew 52.4 - - - 52.4 8.2

Wse0 30.8 - 30.8 - 30.8 4.7

Wsew 106.4 - 106.4 - 106.4 8.0

It is interesting to compare the values of parameters of HT1p with that of CH89, which

were determined for the heavy-target and, generally, higher energy region (see Fig. 1 for

comparison). We can conclude that:
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1. The depth of the real potentials are larger for the light targets than for the heavy

targets. This is consistent with Trost et al. [26]. It would be interesting to see if

microscopic theories of optical model potentials can explain this systematic difference

between light and heavy targets.

2. The depth of the imaginary potentials for the light targets are smaller than for the

heavy targets. This is also consistent with Trost et al. [26]. The systematically weaker

absorption in the light-target region may relate to the fact that the average energy

level densities in this region is smaller than that in the heavy-target region.

3. The radius parameter, r0, of the real potentials of light targets is much smaller than

that of heavy targets, and the effective reduced radius parameter r0(1 + r
(0)
0 A

−1/3
T )

depends oppositely on target-masses in these two mass regions. On the other hand,

the radius parameter of the imaginary potentials for light targets are larger than that

of heavy targets.

The parameters of 6,7Li show very different behaviour from the other 1p-shell nuclei. This

may relate to weak-bounding nature of these two nuclei and their cluster structures. Of

course, one should also note that these parameters with the Lithium isotopes are determined

with a much smaller database and most of the data are in the low-energy region, which do

not constraint the potential parameters sufficiently well. As expected, the deficiency of the

database for the Lithium isotopes results in big uncertainties of the parameters, which are

clearly shown in Table II.

III. DISCUSSIONS

A. Energy region of applicability of HT1p

In Figs. 2, 3 and 4 we show the comparison of the optical model calculations with

the ADXSECs and the experimental data. Results obtained using GDP08 are also shown.

Although the details of these comparisons can not be shown clearly for each single case, these

figures suggest that, with respect to GDP08, which was determined by fitting the data for

target masses AT ≥ 40, there is an overall improvement in reproduction of the experimental

data with HT1p.
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FIG. 2: (Color online) Optical model calculations of the angular distributions and their comparisons

with the experimental data for 3He elastic scattering from (a) 9Be, (b) 10B, (c) 11B, and (d) 12C.

The cross sections are scaled by factors of 102. The incident energies are indicated in the figures

in unit of MeV. The solid and dashed curves are results of the optical model calculations with the

systematic potential with 1p-shell nuclei and that with GDP08 [16].)

Since all of the experimental data included in this work have incident energies not ex-

ceeding 74 MeV (the only exception is 3He+12C scattering at E = 118.5 MeV), the present

systematic potential focuses only on the low energy region for the 1p-shell nuclei. As we see

from Figs. 2, 3 and 4, within such an energy region, this potential reproduces the elastic

scattering cross sections well. However, for incident energies larger than 74 MeV (unfortu-

nately, to our knowledge, there are no experimental data between 74 and 118 MeV), GDP08

is better than HT1p in reproduction of the ADXSECs. Success of GDP08 in reproducing

the 3He elastic scattering from light nuclei, which are very far away from the region where

it is determined, such as 6Li, 9Be, and 12C, at energies larger than around 100 MeV, are

shown in Fig. 11 of Ref. [16]. This is illustrated again in Fig. 5, where we show the failure

of HT1p compared to GDP08 in the reproduction of 3He elastic scattering from 12C at 118.5

and 217 MeV [33, 88]. The reason why GDP08 is still reliable for target masses as small as

6 at higher incident energies and its failure at low energies for the 1p-shell nuclei may be

11



10−8

10−6

10−4

10−2

100

102

104

106

108

 0  50  100  150

σ/
σ R

ut
h

6
8

12

15

18

33

37.9

41

(a)

 0  50  100  150

10
12

15

18
29
37.9

44.8

72

(b)

 0  50  100  150
θc.m. (deg)

4.5

7

26.3

29

44.6

11

18

33

(c)

 0  50  100  150

25

40.9

17.3

33
11

25

33

41

(d)

 0  50  100  150

20

33

36
38

38

72

33

36

(e)

FIG. 3: (Color online) The same as in Fig. 2 but for 3He elastic scattering from targets (a) 13C,

(b) 14C, (c) 14N (circles), and 15N (squares), (d) 16O (circles), 17O (squares) and 18O (triangles),

and 3H elastic scattering from targets of (e) 12C (circles), 13C (asterisks), 14C (squares) and 16O

(triangles).
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FIG. 4: (Color online) The same as in Fig. 2 but for 3He elastic scattering from targets (a) 6Li

(circles) and 7Li (squares), and (b) 3H elastic scattering from 6Li.
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FIG. 5: (Color online) Comparison of the optical model calculations for 3He elastic scattering from

12C at 118.5 and 217 MeV with HT1p (solid curve) and GDP08 (dotted curve). The experimental

data are from Refs. [33, 88].

understood from Trost et al. [26]. In Figs. 3 and 4 of Ref.[26], the authors show that the

weak target-mass dependence assumed by GDP08 (only through the Coulomb corrections to

the incident energies) is satisfied well at high energies. However, the target-mass dependence

in the light-target region get stronger as incident energy decreases, what explains the failure

of GDP08 at low energies.

B. Volume integrals of the OMPs

Volume integral per interacting nucleon pair of optical model potentials, denoted by Jv

for the real part and Jw for the imaginary part, are important quantities to characterize

different systematic potentials. These volume integrals are defined as:

Jv(E) =
1

APAT

∫

V (E, r)d~r,

Jw(E) =
1

APAT

∫

[Wv(E, r) +Ws(E, r)]d~r. (11)

Jv and Jw are supposed to be independent of the projectile and target masses, and are

therefore useful to compare different systematic optical potentials. In Fig. 6 we compare the

volume integrals of the potentials for 3He impinging on 12C from 1 to 220 MeV evaluated

with HT1p and GDP08, respectively. As we discussed above, we estimate that HT1p is

applicable for the 1p-shell nuclei below 100 MeV, while GDP08 is applicable at energies
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FIG. 6: (Color online) Volume integrals of the optical model potentials HT1p and GDP08 for 3He

elastic scattering from 12C from 1 to 220 MeV. The vertical line divides the approximate energy

regions in which HT1p and GDP08 are applicable for 1p-shell nuclei. The solid and dashed curves

in the upper part of this figure represent the volume integrals of the real potentials of HT1p and

GDP08, respectively. The curves in the lower part are for the corresponding imaginary potentials.

higher than this. Clearly, at energies around 100 MeV, there are abrupt differences in Jv

and Jw between HT1p and GDP08. It indicates that new parameterization of the systematic

potential should be made for the intermediate energy region to reconcile these two SOMPs,

which are established individually in low- and high-energy regions. Experimental data of

3He and 3H elastic scattering from 1p-shell nuclei at ∼ 100 MeV are therefore very much

needed for such study.

IV. CONCLUSIONS

In conclusion, a set of global optical potential parameters for 3He-nucleus elastic scat-

tering, HT1p, is obtained by simultaneously fitting 118 sets of experimental data of 3He

and 3H elastic scattering from 1p-shell nuclei from 9Be to 18O with incident energies from

4 6 E 6 118.5 MeV and 24 sets of elastic scattering data with the 6Li and 7Li targets from

3 6 E 6 44 MeV. This new systematic potential is found to be superior to GDP08, which

is established for the heavy-target region, in reproduction of the angular distributions of the

elastic scattering cross sections of 3He and 3H from 1p-shell nuclei at energies < 100 MeV. At

energies above 100 MeV, GDP08 is found to be better than HT1p. Results of this paper can

14



pave the way to unify these two systematic potentials for a SOMP describing 3He-nucleus

elastic scattering in broad interval of energies.
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[79] O. Aspelund, D. Ingham, A. Djaloeis, et al., Nucl. Phys. A231, 115 (1974).

[80] L.A. Schaller, R.S. Thomason, N.R. Roberson, R.L. Walter, and R.M. Drisko, Phys. Rev. 163,

1034 (1967).

[81] K.I. Pearce, N.M. Clarke, J.R. Griffiths, et al., J. Phys. G:Nucl. Phys. 12, 979 (1986).

[82] J.B.A. England, L. Zybert, G.T.A. Squier et al., Nucl. Phys. A475, 422 (1987).

[83] J.D. Sherman, E.R. Flynn, Nelson Stein, J.W. Sunier and D.G. Burke, Phys. Rev. C 13, 2122

(1976)

[84] P.J. Simmonds, K.I. Pearce, P.R. Hayes, et al., Nucl. Phys. A482, 653 (1988).

[85] P.W. Keaton Jr., D.D. Armstrong, L.R. Veeser, et al., Nucl. Phys. A179, 561 (1972).

[86] A.S. Demiyanova H. G. Bohlen, B. Gebauer et al., Nucl. Phys. A553, 727c (1993).

[87] B. Efron, Biometrika 68 (1981) 589; ibid., SIAM Rev. 21(1979) 460, and P. Diaconis and B.

Efron, Sci. Am. 248, 116 (1983).

[88] N. Willis, I. Brissaud, Y. Le Bornec, B. Tatischeff, and G. Duhamel, Nucl. Phys. A204, 454

(1973).

18


