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We demonstrate the validity of the complex scaling method for realistic strong, non-local, nucleon-
nucleon interactions by comparing the deuteron bound state and nucleon-nucleon scattering phase
shifts with results from other high-precision methods. This opens a pathway for the simultaneous
ab initio solutions of the nuclear bound and scattering problems within a unified framework.
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Introduction. One of the most important theoretical
endeavors of modern Nuclear Physics (NP) is to develop
methods that address on equal footing structure and
scattering observables using the same realistic nuclear
Hamiltonian. This is the only way to consistently under-
stand nuclear phenomena sensitive to continuum effects
and also to avoid computing model-dependent quantities
such as spectroscopic factors and effective single parti-
cle energies ﬂ] One important region of the nuclear
chart that structure and scattering aspects overlap is lo-
cated close to the drip lines, where the nucleons are very
weakly bound or slightly unbound forming a resonant nu-
clear system. These exotic systems have implications for
nuclear astrophysics. They are characterized by a very
low level density of states, with few or no bound states,
where statistical assumptions that underlie some tradi-
tional theoretical approaches are less reliable. We show
the complex scaling method (CSM), used successfully in
Quantum Chemistry, is a viable approach to strong nu-
clear interaction systems. Therefore, the CSM will com-
plement existing methods that include the nuclear con-
tinuum [2-9] with the advantage that the CSM may be
combined with a variety of bound state techniques. This
combination is particularly important for exploiting re-
cent advances in high-performance computing.

Solving the many-body nuclear scattering problem is a
very formidable task. For an exact treatment one solves
the scattering equations in either momentum or coor-
dinate space. Then, in order to describe resonance fea-
tures and also access several elastic and inelastic channels
the equations are solved over a range of energies. Coor-
dinate space methods include the Faddeev-Yakubovsky,
Hyperspherical Harmonics using the Kohn variational
principle, as well as the Alt-Grassberger-Sandhas equa-
tions in momentum space. Especially the latter, after
the Coulomb singularity |10] issue was resolved, is the
most tractable route among the exact methods, since
the scattering boundary conditions are naturally imposed
when working in momentum space. All of the above
methods provide precision results for the description of
three-nucleon scattering using realistic nucleon-nucleon
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(NN) plus three-nucleon (3N) interactions[11-14]. Nev-
ertheless, the calculations are very involved computation-
ally ] making it hard to obtain solutions for systems
with A > 4. Only recently has the four-body scatter-
ing problem above the breakup threshold been solved
exactly using realistic interactions HE] The combined
mathematical and computational challenge for the im-
position of the appropriate scattering boundary condi-
tions in coordinate space techniques, the factorial scaling
of the antisymmetrization between the colliding parti-
cles, the difficulty of including 3N interactions in mo-
mentum space formulations for scattering and also the
rapid increase of equations one needs to solve in momen-
tum space, are the basic bottlenecks for applications of
these approaches to heavier systems. On the other hand
bound state techniques such as No-Core Shell Model ﬂﬂ],
Green’s Functions Monte Carlo[18], Coupled Cluster the-
or @] , In-Medium Similarity Renormalization Group
ﬂﬁ,], self-consistent, (Gorkov) Green’s Functions [21] are
not limited by the demands of antisymmetrization. The
many-body correlations are well-treated and with the in-
crease in computer power they have reached highly accu-
rate numerical standards. Hence it is very important to
develop a unification of the bound state and scattering
domains by taking full advantage of the recent advances
in the technologies for solving the bound state domain.

Some of the methods in NP that employ bound state
techniques to solve the scattering problem include the
Wigner’s R-matrix m], the Lorentz Inverse Transforma-
tion [23], momentum lattice technique [24], continuum
discretized coupled-channels [25] and CSM [d]. For a re-
cent review of bound-state techniques for the scattering
problem we refer the reader to [26]. For example the CSM
was employed to solve the four body scattering problem
above breakup threshold ﬂﬂ] with phenomenological nu-
clear interactions acting only in the S-wave.

In this Communication we describe the bound and
scattering problem with the CSM using for first time
non-local realistic interactions (JISP16) [28] and chiral
microscopic interactions (N*LO, N2LO,,:) [29, [30]. We
apply our technique to the proton-neutron system. We
calculate the ground state energy of the deuteron and
scattering phase-shifts with a single diagonalization with-
out imposing any scattering boundary conditions. The
method itself is a basis expansion technique which em-
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ploys L2 integrable functions for the description of both
the negative and positive energy spectrum. We show the
method with realistic strong and non-local interactions
has controllable precision which portends the path to a
unified description of structure and scattering in heavier
nuclear systems.

Formalism. In the CSM the coordinates and momenta
of the underlying Hamiltonian are rotated as: r — re®
and p — pe~?. Hence a complex rotated local Hamil-
tonian, with kinetic energy T and potential V, takes the
form: H(r,0) = e 29T + V(re'?), where 6 is a real pa-
rameter and the resulting Schréodinger equation becomes:

H(r,0)¥(r,0) = E(6)¥(r,0) (1)

The Hamiltonian becomes non-Hermitian and its spec-
trum contains resonant (bound states and resonances)
and non-resonant continuum states. It is then a con-
sequence of the Aguilar-Balslev-Combes (ABC) [31, [32]
theorem that resonant states above the 26 line are in gen-
eral invariant with respect to the rotation angle 6, while
the non-resonant continuum states are distributed along
cuts rotated by an angle of 20 in the complex energy
plane. The rotation point of the continuum states is as-
sociated with a many particle threshold. Another conse-
quence of the ABC theorem is that the resonant solutions
of the Hamiltonian have decaying asymptotics, e.g. they
behave as bound-states, hence any bound state technique
for the solution of () could be employed. For an or-
thonormal basis ensemble ¢;(r), such as the Harmonic
Oscillator (HO) basis, the many-body solution is ap-
proximated as: ¥(r,0) = Zﬁl Ci(0)¢;(r) and () leads
to a matrix eigenvalue problem: Zjvzl H;;(6)C;(0) =
EC;(#). The main task is to calculate the complex scaled
(CS) matrix elements of the Hamiltonian in the real HO
basis. The transformation is trivial for the kinetic en-
ergy operator and only a phase factor e~2% is introduced.
For the kinetic energy in the HO basis the CS matrix ele-
ments are given by the analytical tri-diagonal expressions
multiplied by the phase factor. When the effective po-
tential is local and analytical (e.g. Yukawa, Gaussian),
the CS matrix elements are also easily calculated, since
the complex rotation of the coordinate is equivalent to
making potential parameters complex ﬂQ] and the matrix
elements can be calculated either numerically or even an-
alytically in some cases ﬂﬁ] That is also the case for re-
alistic meson-exchange potentials as shown for Argonne
v8'[34]. The difficulty with such potentials that are char-
acterized by a hard core lies in their singular nature at
short distances, which limits the range of 6 values one
may employ. It was demonstrated that results become
unstable with increasing 6 @ and the problem needs
special numerical techniques [36]. Nowadays, after the
successful application of the chiral perturbation theory
in NP and also by the application of additional renormal-
ization techniques for the construction of an effective NN
force, the realistic nuclear potentials are characterized by
a softer short range repulsion which may facilitate the use
of CSM. However, these potentials are no longer local and
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FIG. 1. (Color online) Eigenvalues of the CS coupled-channel
Hamiltonian (@) for the N?LOop: (a) and JISP16 (b) realis-
tic potentials. The deuteron bound state (indicated by the
arrows) is shown to be invariant under complex rotations of
momenta and coordinates.

have a complicated structure, which makes the direct ap-
plication of the CS transformation cumbersome. In this
work we adopt a method first proposed in Refs.m, @]
for the calculation of CS matrix elements. The method
involves shifting the CS transformation from the poten-
tial to the basis states which we illustrate with a local
potential:
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where ¢, (r) are the HO radial basis states which are
known analytically. It is straightforward to notice that
the CS transformation on the HO radial basis, corre-
sponds to making the HO length parameter b a com-
plex number, scaled by b — be?®. In order to pro-
ceed we express our non-local potential operator in
terms of relative HO projection operators as: V, =
> it AGPInl, C;b) (', C;b| where the real num-

bers Agjﬁ,l, = (nl,C;b|VIn'l’,C;b) are the relative HO



matrix elements characterized by the relative quantum
numbers n,l, the channel C of the interaction (e.g. 3Fp)
and the HO length parameter b. For a general non-local
potential in coordinate space we have that:

V(r,r') = Z App & (1) (1) (3)

where we suppress additional indeces for compactness.
In @) we apply the approach of Refs.m, @] to obtain
the CS expression:

VbCS = // T2r2’drdr’¢ffw (r)V(r, T’)gbfﬁw (r") (4)

The implementation of the CSM reduces to a calculation
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FIG. 2. (Color online) *P; (a) and *Dy (b) channel phase-
shifts obtained with the CSM with the JISP16 interaction, as
compared with the exact solution and the Nijmegen data @]
We observe an independence of the results starting already for
values of 0 as small as 0.2 rad. Even for § = 0.1 rad the phase-
shift fluctuations are fairly small and follow the trend of the
exact phase-shift.

of this double integral. We first tested the validity of
this treatment against local Gaussian potentials where we
knew both analytical and numerical solutions ﬂﬁ] In the
following, once we have obtained the CS representation
of the nuclear potential matrix elements, we diagonalize
(@D for the two-body proton-neutron (pn) system.

Results. We first apply the formalism to the ground
state (g.s.) of the deuteron (*S; - 3D; coupled chan-
nels). Our goal is to show if the consequences of the
ABC theorem, namely the invariance of the bound state
with respect to the rotation angle, holds for the general
potentials that we are investigating here. In this demon-
stration we are using the JISP16 and the N2L00pt chiral
interactions at b = h/\/uw = 1.4399 fm or (hw = 40
MeV). We gather our results in Fig.1. For this calcula-
tion we used rotation angles ranging from 0.1 rad to 0.3
rad. We see that the deuteron ground state energy is
invariant. For this application we used the cutoff N =
45 for the number of HO basis states.

Having diagonalized the CS Hamiltonian, in addition
to the bound-state(s) and resonanse(s) (if they exist), we
also obtain the non-resonant scattering continua along
the 20 rays in the complex plane. It has been shown

] that the scattering solutions may be used to cal-
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FIG. 3. (Color online) Same as Fig2lbut for the *F3 (a) and
3G4 (b) channel phase-shifts.

culate elastic scattering phase-shifts, by evaluating the
CS Continuum Level Density (CLD). The proof is based
on the utilization of an extended completeness relation
, ] which involves resonant and non-resonant scat-
tering states and was originally proposed by Berggren
[43]. Following [40] we calculate the CLD in the CSM



which is defined as:
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AY(E) = —%Im/dr<r|E )y (5)

where H{ is the CS asymptotic part of the Hamiltonian,
which in our case is identical to the kinetic energy and
HY is the total CS interacting Hamiltonian.

The phase shift then is obtained from () after inte-
grating over the range of energies. We apply these for-
mulae using our solutions for realistic interactions and
we calculate selected uncoupled channel phase-shifts with
angular momentum L=1,2,3.4. When using the formula
@) for the evaluation of the CLD and hence the scat-
tering phase-shift for the 'Sy channel, we encounter a
need, as others have shownﬂﬂ], for more advanced nu-
merical techniques. The challenge is the very rapid rise
in the phase shift at low energy due to the virtual (anti-
bound) state (pole on the second Riemann sheet) of the
'Sy channel. This special case for phase shifts requires
larger HO basis sets beyond our current numerical tech-
niques. However, we would still use the standard proce-
dure to identify a true resonance without the phase shifts
by its complex pole (eigenvalue of the CS Hamiltonian)
that is stable with increasing 6, as we saw above for the
deuteron ground state. As expected, we find no true con-
tinuum resonance in the np channels investigated here.

For the orbital angular momentum L > 1 uncoupled
channels we solve for the phase shifts using the CSM
plus CLD treatment and compare with results of exact
calculations using the Schrodinger equation. The results
are gathered in Figs2Bl For 6=0.1 rad the phase-shifts
exhibit small fluctuations which are smeared out with in-
creasing rotation angle. We notice that results already
for # = 0.2 rad are practically indistinguishable, coin-
cide with the exact ones and become independent of the
rotation angle 6. In order to demonstrate the general
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FIG. 4. (Color online) *Pg channel phase shift calculated with
the CSM with the N®LO SRG (A = 2.0fm™" and the N?LO,¢
realistic interactions. N?LO,p; phase shift data are from )

nature of our approach we present results (Figll) for
the ®P( channel scattering phase shift using the Entem-
Machleidt N3LO interaction which was evolved via a Sim-
ilarity Renormalization Group (SRG) [46] transformation
at a cutoff A = 2.0 fm~! and also with the bare N2L00pt.
Similar to the results obtained with the JISP16 interac-
tion, our phase shifts obtained from the CS non-resonant
scattering solution of (Il) show a fast convergence with
respect to the CSM rotation angle variations and already
for 8 = 0.2 rad the fluctuations are diminished. For
this calculation we used N = 35. The JISP16 poten-
tial HO basis matrix elements are characterized select-
ing, in Eq.@), a value b = 1.4399 fm (hw = 40 MeV),
while b = 1.5178 fm (lw = 36 MeV) for N3LO, and b =
1.6099 fm (hw = 32 MeV) for N?LO,,;. We note that
for the phase-shifts calculation using the CLD formulas
we limited ourselves to uncoupled channels. In general,
the evaluation of phase-shifts for coupled-channels within
the CSM could be feasible by either of two routes. We
may follow the path of Suzuki et al [47] where the au-
thors defined the CLD in a matrix form for coupled chan-
nels. One then diagonalizes the CLD matrix and takes
the eigenvalues as the partial level densities in a specific
eigenchannel. Having obtained the partial level density
we hope that one could apply formulas similar to the
ones used in the uncoupled case for the phase-shifts, even
though Suzuki et al warn that this may be problematic.
An alternative route would be to use the formalism of [4§]
and @ which resembles the initial work of Nuttall and
Cohen iﬁ] and was applied for the calculation of scat-
tering amplitudes and phase-shifts in a coupled channel
case using the CSM. Then we may employ the technology
we developed for treating realistic non-local interactions
within the CSM.

Conclusions. The CSM is a state-of-the-art method
which truly unifies structure and scattering problems. It
is a bound state technique which eliminates the need to
impose boundary condition for the scattering problem.
We applied the CSM to the pn system and demon-
strated numerically the validity of the ABC the-
orem for a general class of potentials (i.e. lo-
cal potentials were assumed for the proof of the
ABC theorem). Specifically, we showed the in-
variance with respect to the rotation angle 0 for
the deuteron g.s. with realistic, even nonlocal,
NN interactions for the first time. In addition, using
the solutions we obtained from the CSM, we calculated
single channel scattering phase-shifts by discretizing the
continuum in a HO basis and evaluating the continuum
level density. The convergence of the phase-shifts
as a function of the CS rotation angle parame-
ter is rather rapid. The success of the CSM is tied
to the fact that the modern nuclear interactions (either
chiral or phenomenological) are characterized by a man-
ageable short-range repulsion which eliminates possible
numerical instabilities appearing in older realistic force
applications of CSM (with strictly local and analytical
forces) in NP. Using the HO basis for our calculations



one may transform the Hamiltonian matrix elements, in-
cluding 3N interactions, into the laboratory frame and
use current many-body solvers. The fact that we are
able to apply this powerful technique without limiting
the type of the potential, opens a window for more re-
liable calculations of exotic nuclei and enables assess to
energies below threshold, resonance parameters and scat-
tering observables, within a unified approach.

ACKNOWLEDGMENTS

Discussions with A.T. Kruppa, G. Hagen on CSM with
realistic interactions matters and P. Maris and C. Yang
on the diagonalization of complex matrices using numer-
ical libraries such as ARPACK are gratefully acknowl-
edged. We would like to thank C. W. McCurdy for send-
ing us useful references to CSM in Quantum Chemistry.
This work was supported by the US DOE under grants
No. DESC0008485 (SciDAC/NUCLEI) and DE-FGO02-
87TERA40371.

[1] T. Duguet, H. Hergert, J. D. Holt, and V. Soma, (2014),
nucl-th/1411.1237.

[2] K. M. Nollett, S. C. Pieper, R. B. Wiringa, J. Carlson,
and G. M. Hale, Phys. Rev. Lett. 99, 022502 (2007).

[3] S. Baroni, P. Navrétil, and S. Quaglioni, Phys. Rev. C
87, 034326 (2013).

[4] G. Hagen and N. Michel, Phys. Rev. C 86, 021602 (2012).

[5] A. Volya and V. Zelevinsky, Phys. Rev. C 74, 064314
(2006).

[6] N. Michel, W. Nazarewicz, M. Ploszajczak, and
T. Vertse, J. Phys. G: Nucl. Part. Phys. 36, 013101
(2009).

[7] T. Luu, M. J. Savage, A. Schwenk,
Phys. Rev. C 82, 034003 (2010).

[8] G. Papadimitriou, J. Rotureau, N. Michel,
M. Ploszajczak, and B. R. Barrett, Phys. Rev. C
88, 044318 (2013).

[9] T. Myo, Y. Kikuchi, H. Masui, and K. Kato,
Progress in Particle and Nuclear Physics 79, 1 (2014).

[10] A. Deltuva, A. C. Fonseca, and P. U. Sauer, Phys. Rev.
C 71, 054005 (2005).

[11] W. Glockle, H. Witala, D. Hiiber, H. Kamada, and
J. Golak, Physics Reports 274, 107 (1996).

[12] M. Viviani, L. Girlanda, A. Kievsky, and L. E. Marcucci,
Phys. Rev. Lett. 111, 172302 (2013).

and J. P. Vary,

[13] R. Lazauskas and J. Carbonell,
Phys. Rev. C 70, 044002 (2004).

[14] R. Lazauskas, J. Carbonell, A. C. Fonseca,
M. Viviani, A. Kievsky, and S. Rosati,

Phys. Rev. C 71, 034004 (2005).
[15] A. Nogga, H. Kamada, W. Glockle, and B. R. Barrett,
Phys. Rev. C 65, 054003 (2002).
[16] A. Deltuva and A C.
Phys. Rev. Lett. 113, 102502 (2014).
[17] B. R. Barrett, P. Navratil,

Fonseca,

and J. P. Vary,

Progress in Particle and Nuclear Physics 69, 131 (2013).

[18] S. C. Pieper, R. B. Wiringa, and J. Carlson, Phys. Rev.
C 70, 054325 (2004).

[19] G.  Hagen, T.  Papenbrock, M.
Jensen, and D. J.
Reports on Progress in Physics 77, 096302 (2014).

[20] H. Hergert, S. K. Bogner, T. D. Morris, S. Binder,
A. Calci, J. Langhammer, and R. Roth, Phys. Rev. C
90, 041302 (2014).

[21] V. Soma, T. Duguet, and C. Barbieri, Phys. Rev. C 84,
064317 (2011).

[22] P. Descouvemont and D.

Hjorth-
Dean,

Baye,

Reports on Progress in Physics 73, 036301 (2010).

[23] V. D. Efros, W. Leidemann, and G. Orlandini,
Physics Letters B 338, 130 (1994).

[24] V. Kukulin, V. Pomerantsev, and O. Rubtsova,
Theoretical and Mathematical Physics 150, 403 (2007).

[25] 1. J. Thompson and F. Nunes, Nuclear Reactions for
Astrophysics Principles, Calculation and Applications
of Low-Energy Reactions (Cambridge University Press,
2009).

[26] J. Carbonell, A. Deltuva, A. Fonseca, and R. Lazauskas,
Progress in Particle and Nuclear Physics 74, 55 (2014).

[27] R. Lazauskas, Phys. Rev. C 86, 044002 (2012).

[28] A. Shirokov, J. Vary, A. Mazur, and T. Weber, Physics
Letters B 644, 33 (2007).

[29] D. R. Entem and R. Machleidt,
Phys. Rev. C 68, 041001 (2003).
[30] A. Ekstrom, G. Baardsen, C. Forssén, G. Ha-

gen, M. Hjorth-Jensen, G. R. Jansen, R. Machleidt,
W. Nazarewicz, T. Papenbrock, J. Sarich, and S. M.
Wild, [Phys. Rev. Lett. 110, 192502 (2013).

[31] J. Aguilar and J. M. Combes, Commun. Math. Phys. 22,

266 (1971).

[32] E. Balslev and J. M. Combes, Commun. Math. Phys. 22,
280 (1971).

[33] A. T. Kruppa and K. Kato,
Progress of Theoretical Physics 84, 1145 (1990).

[34] W. Horiuchi, Y. Suzuki, and K. Arai,
Phys. Rev. C 85, 054002 (2012)!

[35] R. Lazauskas and J. Carbonell,
Phys. Rev. C 71, 044004 (2005).

[36] H. Witala and W. Glockle,
Phys. Rev. C 60, 024002 (1999)

371 C.  W. McCurdy and T. N. Rescigno,
Phys. Rev. Lett. 41, 1364 (1978).

[38] N. Moiseyev and C. Corcoran,

Phys. Rev. A 20, 814 (1979).
[39] V. G. J. Stoks, R. A. M. Klomp, M. C. M. Rentmeester,
and J. J. de Swart, Phys. Rev. C 48, 792 (1993).

[40] R.  Suzuki, T. Myo, and K. Kato,
Progress of Theoretical Physics 113, 1273 (2005).

[41] T. Myo, A.  Ohnishi, and K. Kato,
Progress of Theoretical Physics 99, 801 (1998).

[42] B. Giraud and K. Kato,

Annals of Physics 308, 115 (2003).

[43] T. Berggren, Nucl. Phys. A 109, 265 (1968).

[44] G. Hagen, J. S. Vaagen, and M. Hjorth-Jensen, Journal
of Physics A: Mathematical and General 37, 8991 (2004).


http://arxiv.org/abs/nucl-th/1411.1237
http://dx.doi.org/10.1103/PhysRevC.82.034003
http://dx.doi.org/ http://dx.doi.org/10.1016/j.ppnp.2014.08.001
http://dx.doi.org/10.1103/PhysRevC.70.044002
http://dx.doi.org/10.1103/PhysRevC.71.034004
http://dx.doi.org/10.1103/PhysRevC.65.054003
http://dx.doi.org/10.1103/PhysRevLett.113.102502
http://dx.doi.org/http://dx.doi.org/10.1016/j.ppnp.2012.10.003
http://stacks.iop.org/0034-4885/77/i=9/a=096302
http://stacks.iop.org/0034-4885/73/i=3/a=036301
http://dx.doi.org/http://dx.doi.org/10.1016/0370-2693(94)91355-2
http://dx.doi.org/10.1007/s11232-007-0030-3
http://dx.doi.org/http://dx.doi.org/10.1016/j.ppnp.2013.10.003
http://dx.doi.org/10.1103/PhysRevC.68.041001
http://dx.doi.org/ 10.1103/PhysRevLett.110.192502
http://dx.doi.org/10.1143/ptp/84.6.1145
http://dx.doi.org/10.1103/PhysRevC.85.054002
http://dx.doi.org/10.1103/PhysRevC.71.044004
http://dx.doi.org/10.1103/PhysRevC.60.024002
http://dx.doi.org/10.1103/PhysRevLett.41.1364
http://dx.doi.org/10.1103/PhysRevA.20.814
http://dx.doi.org/10.1103/PhysRevC.48.792
http://dx.doi.org/10.1143/PTP.113.1273
http://dx.doi.org/10.1143/PTP.99.801
http://dx.doi.org/ http://dx.doi.org/10.1016/S0003-4916(03)00134-9

[45] A. Ekstrom, B. D. Carlsson, K. A. Wendt, C. Forssen,
M. Hjorth-Jensen, R. Machleidt, and S. M. Wild, To
appear in Journal of Physics G (2015).

[46] S. K. Bogner, R. J. Furnstahl, and R. J. Perry,
Phys. Rev. C 75, 061001 (2007).

[47] R. Suzuki, A. T. Kruppa, B. G. Giraud, and K. Kato,

Progress of Theoretical Physics 119, 949 (2008).

[48] A. T. Kruppa, R. Suzuki, and K. Kato,
Phys. Rev. C 75, 044602 (2007).

[49] R. Lazauskas and J. Carbonell, Phys. Rev. C 84, 034002
(2011).

[50] J. Nuttall and H. L.
Phys. Rev. 188, 1542 (1969)!

Cohen,


http://dx.doi.org/10.1103/PhysRevC.75.061001
http://dx.doi.org/10.1143/PTP.119.949
http://dx.doi.org/ 10.1103/PhysRevC.75.044602
http://dx.doi.org/10.1103/PhysRev.188.1542

