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We present a parameterization of the statistical rate function, f , for 20 superallowed 0+→ 0+

nuclear β transitions between T=1 analog states, and for 18 superallowed “mirror” transitions
between analog T=1/2 states. All these transitions are of interest in the determination of Vud.
Although most of the transition QEC values have been measured, their precision will undoubtedly
be improved in future. Our parameterization allows a user to easily calculate the corresponding new
f value to high precision (±0.01%) without complicated computing.

PACS numbers: 23.40.-s, 23.40.Bw

I. INTRODUCTION

Precise measurements of nuclear β decay provide a
valuable window into the electroweak standard model.
In particular, superallowed 0+→ 0+ transitions between
T=1 analog states are used to set a limit on the presence
of scalar interactions and to determine Vud, the upper left
element of the Cabibbo-Kobayashi-Maskawa (CKM) ma-
trix and a key contributor to the most demanding avail-
able test of the unitarity of that matrix. While these
transitions currently lead to the most precise determi-
nation of Vud, mirror transitions between T=1/2 analog
states are becoming of interest as a means of confirming
Vud via a different experimental approach. To be useful,
not only must the QEC value for each of these transitions
be measured very precisely but the statistical rate func-
tion, f , which uses the QEC as input, must be calculated
with equivalent precision.

Because there is no widely available means for calcu-
lating f to the required level of precision, we have devised
a simple parameterization that reproduces the results of
our full code for energies spanning a small range around
the currently known QEC values for both types of su-
perallowed transition. Together, these should provide a
convenient resource for experimentalists to use in future
to obtain high-precision f values from improved QEC -
value measurements for these transitions.

Our goal in what follows is to parameterize f and
present tables of the parameters for the two sets of tran-
sitions: 1) the 20 superallowed 0+→ 0+ nuclear β transi-
tions between T=1 analog states, whose properties have
been surveyed in Refs. [1, 2]; and 2) the 18 superallowed
“mirror” β transitions between the analog T=1/2 states
surveyed in Ref. [3]. For each transition, we have com-
puted f for 100 values of QEC taken over a range of ±60
keV around the transition QEC -value

1 and fitted these
results to determine the coefficients in our parameteriza-
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1 For 70Br the QEC-value is less precisely known, so the QEC-

value range for fitting was extended to ±600 keV.

tion. Our aim in fitting these 100 values is to achieve
an accuracy of 0.01%, nearly a factor of ten more precise
than is currently required.

II. PARAMETERIZATION OF THE
STATISTICAL RATE FUNCTION

To achieve 0.01% accuracy, the electron wave function
must be determined with great precision. In our detailed
evaluation of f [4], we accomplished this by solving the
Dirac equation for the emerging electron moving in the
Coulomb field of the nuclear charge distribution. The full
expression for the computation of f is

f = ξR(W0)

∫ W0

1

pW (W0 −W )2F (Z,W )f1(W )

Q(Z,W )r(Z,W ) dW, (1)

whereW is the electron total energy in electron rest-mass
units, W0 is the maximum value of W , p = (W 2 − 1)1/2

is the electron momentum, Z is the charge number of the
daughter nucleus (positive for electron emission, negative
for positron emission), F (Z,W ) is the Fermi function and
f1(W ) is the shape-correction function as defined by Hol-
stein [5] (but with kinematic recoil corrections omitted).
Further, Q(Z,W ) is a screening correction for which we

use the analytic prescription of Rose [6] (see Eq. (A44) in
Ref. [4]), and r(Z,W ) is an atomic overlap correction de-
scribed in Ref. [1]. The kinematic recoil corrections that
Holstein includes in f1(W ) are here written as R(W0).
The expression for R(W0) is derived in Appendix A, with
the result that

R(W0) ≃ 1− 3W0

2MA
, (2)

where MA is the average of the initial and final nuclear
masses expressed in electron-mass units. Last, for al-
lowed transitions it is customary to remove the leading
nuclear matrix element from the definition of f . Thus
we have introduced ξ in Eq. (1), where ξ = 1/|MF |2 for
superallowed Fermi transitions, MF being the Fermi ma-
trix element. For mixed Fermi and Gamow-Teller tran-
sitions, ξ = 1/[M2

F + g2AM2
GT ] with MGT being the
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Gamow-Teller matrix element and gA the axial-vector
coupling constant.
In order to parameterize f , it is convenient to factor it

into two contributions:

f = f0(1 + δS), (3)

f0 =

∫ W0

1

pW (W0 −W )2F (Z,W )Q(Z,W )r(Z,W ) dW,

(4)

δS = (f − f0)/f0. (5)

The purpose of this factorization is to place the role of
the shape-correction function f1(W ) entirely within the
correction term δS , which is typically of the order of a few
percent. The shape-correction function depends on nu-
clear matrix elements and differs for Fermi and Gamow-
Teller transitions. This piece of the calculation is some-
what less certain since it is nuclear-structure dependent;
however, being small, its accuracy is also less critical.
In the limit that F (Z,W )Q(Z,W )r(Z,W ) → 1, which

occurs when Z = 0, the integral f0 has an analytic value:

f0(Z = 0) = 1

30
W 4

0 p0− 3

20
W 2

0 p0− 2

15
p0+

1

4
W0 ln(W0+p0),

(6)
with p0 = (W 2

0 − 1)1/2. This suggests a fitting function
of the form

f0 = a0W
4
0 p0 + a1W

2
0 p0+ a2p0+ a3W0 ln(W0 + p0). (7)

In fitting 100 values of f0, we found that the four param-
eters a0, a1, a2 and a3 could not be uniquely determined
with precision. Thus it was decided to fix a2 and a3 to
their Z = 0 values, namely a2 = −2/15 and a3 = 1/4,
and use the fitting process to determine a0 and a1. This
procedure yielded the required precision for f0. The re-
sultant values of a0 and a1 are given in Table I for the
0+→ 0+ transitions, and in Table II for the T=1/2 mir-
ror transitions.
We note that in Eq. (7) each successive term gives a

smaller and smaller contribution to the total. Thus in de-
ciding to fix a2 and a3 to their Z = 0 values, we have fixed
the coefficients for the two smallest terms in the expres-
sion for f0. This parameterization is not unique however.
We could equally well have chosen to hold two different
coefficients to their Z = 0 values and consequently have
obtained another parameterization that would also pro-
duce f0 values accurate to within 0.01%.
For the correction δS we start with the approximate

expression

f0δS ≃
∫ W0

1

pW (W0 −W )2F (Z,W )

[

ξf1(W )− 1− 3W0

2MA

]

dW (8)

and write

ξf1(W )− 1 = B0 + B1W +B2/W +B3W
2. (9)

The coefficients B0, B1, B2 and B3 are different for Fermi
and Gamow-Teller transitions. This choice of parameter-
ization is guided by the early work of Schopper [7] who
used such a parameterization for the shape-correction
function.

A. Superallowed 0+→ 0+ Fermi transitions

For Fermi (vector) transitions,

BF
0 = − 1

5
(W0R)2 + 1

15
R2 − 6

35
(αZ)(W0R) + 61

630
(αZ)2,

BF
1 = 4

15
(W0R)R− 48

35
(αZ)R,

BF
2 = 2

15
(W0R)R− 18

35
(αZ)R,

BF
3 = − 4

15
R2, (10)

where R is the radius of the nuclear charge distribution
expressed in electron Compton wavelength units. We
derived these equations from the work of Behrens and
Bühring [8] who give algebraic expressions for the shape-
correction function as expansions in the small quanti-
ties R and (αZ). Our Eqs. (10) and (14) below are cor-
rect to second order in these quantities, namely to order
R2, (αZ)2 and (αZ)R. Inserting Eqs. (10) and (9) into
Eq. (8) we obtain

δS ≃ B0 +B1〈W 〉+B2〈1/W 〉+B3〈W 2〉 − 3W0

2MA
, (11)

where 〈Wn〉 is the value of Wn averaged over the elec-
tron spectrum. Estimates of these quantities are: 〈W 〉 =
W0/2, 〈W−1〉 = 5W−1

0 /2 and 〈W 2〉 = 2W 2
0 /7.

This leads to our final choice of parameterization for
the correction δS :

δS = b0 + b1W0 + b2/W0 + b3W
2
0 , (12)

where approximate values of the coefficients are

bF0 ≃ 2

5
R2 + 61

630
(αZ)2,

bF1 ≃ − 6

7
(αZ)R − 3

2MA
,

bF2 ≃ − 9

7
(αZ)R,

bF3 ≃ − 1

7
R2. (13)

We fitted the expression in Eq. (12) to the exactly com-
puted value of δS from Eq. (5) to obtain the parameters
b0, b1, b2 and b3. Again, it was found that all four param-
eters could not be uniquely determined with precision, so
the coefficients b2 and b3 were fixed at the values given
in Eq. (13) for bF2 and bF3 , and the fitting process was
used to determine b0 and b1. Table I gives the values
of the parameters b0, b1, b2 and b3 for the superallowed
0+→ 0+ Fermi transitions.

B. Mirror T=1/2 transitions

For pure Gamow-Teller (axial-vector) transitions, co-
efficients in the expression for the shape-correction func-
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TABLE I: Values of the coefficients a0 and a1 that yield the statistical rate function f0 from Eq. (7), and coefficients b0, b1, b2
and b3 that yield the correction δS from Eq. (12). Coefficients a2 and a3 are held fixed at the values: a2 = −2/15 and a3 = 1/4.
The cases shown are the superallowed Fermi transitions between T=1, Jπ=0+ analog states surveyed in Ref. [1, 2].

Parent
nucleus a0 a1 b0(%) b1(%) b2(%) b3(%)

10C 0.0297225 −0.1431540 0.01178 0.02006 0.05203 −0.00096
14O 0.0285463 −0.1417222 0.03176 0.03123 0.06506 −0.00101

18Ne 0.0274005 −0.1398743 0.04750 0.04995 0.08945 −0.00134
22Mg 0.0263237 −0.1374785 0.07036 0.06393 0.10796 −0.00139
26Si 0.0253385 −0.1369946 0.10306 0.07827 0.12856 −0.00146
30S 0.0242904 −0.1271838 0.14905 0.09529 0.15413 −0.00161

34Ar 0.0233252 −0.1182701 0.15336 0.11896 0.18478 −0.00184
38Ca 0.0223867 −0.1018182 0.17301 0.13558 0.20674 −0.00186
42Ti 0.0216593 −0.1105386 0.15625 0.15293 0.23380 −0.00196

26mAl 0.0257927 −0.1355697 0.09813 0.07208 0.12037 −0.00149
34Cl 0.0238533 −0.1281700 0.16759 0.10598 0.16911 −0.00173

38mK 0.0228360 −0.1090747 0.17630 0.12480 0.19325 −0.00180
42Sc 0.0220302 −0.1082192 0.17335 0.14265 0.22147 −0.00193
46V 0.0211437 −0.0894977 0.20200 0.16556 0.25213 −0.00208

50Mn 0.0202722 −0.0597791 0.25281 0.18330 0.27834 −0.00214
54Co 0.0195698 −0.0524836 0.32812 0.19757 0.30337 −0.00217
62Ga 0.0181322 −0.0141676 0.49342 0.24418 0.36915 −0.00243
66As 0.0173202 0.0473840 0.57218 0.27260 0.40770 −0.00261
70Br 0.0167829 0.0417070 0.56671 0.29670 0.43602 −0.00265
74Rb 0.0162385 0.0446304 0.44643 0.32180 0.46490 −0.00269

tion in Eq. (9) are:

BGT
0 ≃ − 1

5
(W0R)2 + 11

45
R2 (1− 2

11
x)

+ 2

35
(αZ)(W0R)(1− x) + 1

3
(W0R)

[

∓2b+ d
]

+ 1

3
β(αZ)

[

±2b+ d
]

+ 61

630
(αZ)2,

BGT
1 ≃ 4

9
(W0R)R (1− 1

10
x)− 8

5
(αZ)R (1− 1

28
x)

± 4

3
Rb,

BGT
2 ≃ − 2

45
(W0R)R(1− x)− 18

35
(αZ)R

− 1

3
R
[

±2b+ d
]

,

BGT
3 ≃ − 4

9
R2 (1− 1

10
x) , (14)

where

x = −
√
10M1y/Mσr2 , (15)

b =
1

MR

[

gM
gA

+
ML

MGT

]

, (16)

d =
1

MR

MσL

MGT
, (17)

and also β ≃ 6/5, gM = 4.706 and M is the nucleon
mass in electron rest-mass units. Where there is a ±
symbol, the upper sign is used for electron emission beta
decays, the lower sign for positron emitters. All the tran-
sitions discussed in this work are positron emitters, so the

lower sign is consistently used. The nuclear matrix ele-
ments are defined in Eq. (68) of Ref. [5]. Schematically,
they are written: MGT = 〈σ〉, Mσr2 = 〈r2σ〉, M1y =

(16π/5)1/2〈r2 [Y2 × σ]〉, ML = 〈L〉 and MσL = 〈σ × L〉.
Note that the matrix element MσL, and hence d, van-
ishes in diagonal matrix elements, as would occur in a
mirror transition between isobaric analogue states.
The correction δS is again parameterized as in Eq. (12)

with approximate expressions for the coefficients derived
from Eq. (14). For pure Gamow-Teller transitions they
yield

bGT
0 ≃ 2

15
R2 + 1

15
R2x+ 1

3
β(αZ)

[

±2b+ d
]

+ 61

630
(αZ)2,

bGT
1 ≃ − 26

35
(αZ)R− 1

35
(αZ)Rx+ 1

3
Rd− 3

2MA
,

bGT
2 ≃ − 9

7
(αZ)R − 5

6
R
[

±2b+ d
]

,

bGT
3 ≃ − 11

105
R2 (1 + 1

11
x) . (18)

Again in fitting the exact values of δS from Eq. (5) with
the expression in Eq. (12) we held the parameters b2 and
b3 fixed at the values given for bGT

2 and bGT
3 in Eq. (18)

and then obtained the parameters b0 and b1 from the fit.
The T=1/2 mirror transitions are mixed transitions,

with both Fermi and Gamow-Teller components. The
fitted b coefficients for both the Fermi and Gamow-Teller
components are given in Table II along with the a0 and
a1 coefficients. In such mixed transitions the inverse of
the partial lifetime is proportional to

t−1 ∝ fV

[

|MF |2 +
fA
fV

|gAMGT |2
]

, (19)
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TABLE II: Values of the coefficients, a0 and a1, that yield the statistical rate function f0 from Eq. (7), and coefficients, b0,
b1, b2 and b3, that yield the correction, δS , from Eq. (12). For each case, the b coefficients in the first row correspond to the
Fermi component, bF0 etc., and those in the second row correspond to the Gamow-Teller component, bGT

0 etc. Coefficients a2

and a3 are held fixed at values: a2 = −2/15 and a3 = 1/4. The cases shown are the mixed Fermi and Gamow-Teller transitions
between mirror T=1/2 states in odd-mass nuclei surveyed in Ref. [3].

Parent
nucleus a0 a1 b0(%) b1(%) b2(%) b3(%)

11C 0.0297280 −0.1431964 0.01227 0.02003 0.05030 −0.00093
0.71578 0.07695 0.56495 −0.00055

13N 0.0291054 −0.1420911 0.02166 0.02566 0.05640 −0.00095
0.31915 0.04052 0.36491 −0.00026

15N 0.0285370 −0.1416159 0.04552 0.03330 0.06846 −0.00117
0.25027 0.02949 0.31261 −0.00024

17F 0.0279301 −0.1400527 0.02528 0.04132 0.07482 −0.00113
1.47963 0.06556 0.67635 −0.00074

19Ne 0.0273984 −0.1398186 0.05521 0.04998 0.08914 −0.00135
1.34270 0.05876 0.55039 −0.00099

21Na 0.0268709 −0.1394429 0.05922 0.05859 0.09992 −0.00142
1.73365 0.06313 0.64005 −0.00101

23Mg 0.0263324 −0.1378844 0.06375 0.06436 0.10731 −0.00138
1.91334 0.06348 0.64697 −0.00093

25Al 0.0258123 −0.1364357 0.08154 0.07160 0.11849 −0.00144
2.34766 0.07237 0.73737 −0.00090

27Si 0.0252815 −0.1330446 0.09398 0.07980 0.12945 −0.00149
2.75164 0.07192 0.79082 −0.00086

29P 0.0247788 −0.1301483 0.11110 0.08717 0.13982 −0.00151
2.41055 0.06857 0.66134 −0.00086

31S 0.0243506 −0.1328386 0.14554 0.09612 0.15460 −0.00163
2.17479 0.07799 0.60883 −0.00092

33Cl 0.0239077 −0.1333333 0.15209 0.10627 0.16772 −0.00170
−0.78012 0.06397 0.14681 −0.00050

35Ar 0.0233631 −0.1226819 0.19658 0.11636 0.18453 −0.00183
−0.53603 0.07047 0.19515 −0.00055

37K 0.0229710 −0.1251564 0.18369 0.12491 0.19342 −0.00180
0.89286 0.09010 0.41192 −0.00084

39Ca 0.0224606 −0.1123165 0.21779 0.13259 0.20653 −0.00185
0.58246 0.09757 0.37316 −0.00087

41Sc 0.0220044 −0.1046436 0.20989 0.14001 0.22165 −0.00193
3.94590 0.12635 0.91561 −0.00124

43Ti 0.0216749 −0.1134605 0.15801 0.15650 0.23644 −0.00200
3.54635 0.13277 0.82630 −0.00135

45V 0.0211420 −0.0910683 0.31418 0.16234 0.25779 −0.00218
4.54443 0.14448 0.99222 −0.00134

where

fV = f0
(

1 + δFS
)

,

fA = f0
(

1 + δGT
S

)

. (20)

The statistical rate functions fV and fA are easily ob-
tained from the parameters listed in Table II.

III. CONCLUSIONS

We have provided simple parameterizations of the sta-
tistical rate functions, f , for nuclear β transitions of cur-
rent interest in determining Vud and testing CKM uni-

tarity. In most but not all cases, the transition QEC

values have already been measured with ∼1-keV preci-
sion or better. In a few cases they are much less well
known. In all cases, the QEC values will undoubtedly
be remeasured, leading possibly to different values and
certainly to reduced uncertainties. When this happens,
experimenters will need f values of equivalent precision,
and the parameterizations presented here will satisfy that
need without complicated computing.

It is important to note that our parameterization is
only valid for the transitions identified and only for a
limited range of energies (±60 keV for all cases except
for the decay of 70Br which covers ±600 keV) around
the currently accepted QEC values for those transitions
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[2, 3]. The coefficients of our parameterization should
not be applied outside the range of energies specified or
to any other transitions.

Appendix A: Kinematic recoil corrections

Let MA be the average mass of the initial and final
nuclei. Then the kinematic recoil corrections are of or-
der W0/MA and, in all but the most precise work, they
can generally be ignored. The recoil correction enters the
calculation in two places: firstly, the end-point energy is
slightly modified, a correction we denote ∆fa; and sec-
ondly, additional terms are added to the shape-correction
function f1(W ), providing a correction we call ∆f b.
For the first correction: If W0 is the end-point energy

without consideration of recoil and W corr
0 is the corrected

value, then from Eq.(3) of Holstein [5] we get

W corr
0 = W0

(

1 +
1

2W0MA

)(

1 +
W0

2MA

)−1

≃ W0

(

1− W0

2MA
+

1

2W0MA

)

. (A1)

So, since the statistical rate function is approximately
proportional to W 5

0 , the correction to f must be of order

∆fa

f
≃ 1− 5

2

W0

MA
+

5

2

1

W0MA
. (A2)

Unlike ∆fa, the recoil correction to the shape-
correction function, ∆f b, is different for Fermi and
Gamow-Teller transitions. The modifications are

fF,corr
1 (W ) = fF

1 (W )

(

1 + 2
W

MA

)

,

fGT,corr
1 (W ) = fGT

1 (W )

(

1− 2

3

W0

MA
+

10

3

W

MA

−2

3

1

MAW

)

. (A3)

If these corrections are integrated over the electron spec-
trum, they yield corrections to the statistical rate func-
tion of

∆f b,F

f
≃ 1 +

W0

MA
,

∆f b,GT

f
≃ 1− 2

3

W0

MA
+

5

3

W0

MA
− 5

3

1

MAW0

. (A4)

Finally, combining corrections ∆fa and ∆f b, we obtain
the final recoil correction to the statistical rate function

∆fF

f
= 1− 3

2

W0

MA
+

5

2

1

W0MA

≃ 1− 3

2

W0

MA
,

∆fGT

f
= 1− 3

2

W0

MA
+

5

6

1

W0MA

≃ 1− 3

2

W0

MA
. (A5)

Thus, Fermi and Gamow-Teller transitions are subject to
essentially the same correction and it is this correction
that we have recorded in Eq. (2) and used in our fitting
algorithms. Of course, the exactly computed f values,
to which our parameterizations are fitted, include the
complete kinematic recoil treatment.
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