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Synchrotron photon spectrum in heavy-ion collisions is computed taking into account the spatial
and temporal structure of magnetic field. It is found that a significant fraction of photon excess in
heavy-ion collisions in the region k⊥ = 1 − 3 GeV can be attributed to the synchrotron radiation.
Azimuthal anisotropy of the synchrotron photon spectrum is characterized by the Fourier coefficients
v2 = 4/7 and v4 = 1/10 that are independent of photon momentum and centrality.

I. INTRODUCTION

One of the outstanding puzzles in the phenomenology of the heavy-ion collisions is excess of photons at low transverse
momenta above the photon spectrum in pp collisions scaled in proportion to the number of binary nucleon collisions [1].
Another related problem is large azimuthal asymmetry of the photon spectrum [2]. The traditional phenomenological
approaches [3–13] has recently improved their agreement with the data, although the discrepancy is not completely
eliminated [9, 14, 15, 17, 18]. A novel mechanism of photon production was proposed in [16]. In [19, 20] synchrotron
photon radiation by the quark-gluon plasma was investigated and found to give an important contribution to the total
photon spectrum. In this paper I go beyond the constant field approximation, employed in [19, 20], and compute the
synchrotron photon spectrum taking into account the realistic space-time structure of the electromagnetic field.

Electromagnetic field is initially generated by the valance charges of the colliding ions, but at very early times
gives way to the induced field generated by the electric currents in the produced matter and travels along with the
expanding system [21, 22]. The proof of its existence relies only upon the applicability of the effective hydrodynamic
description of the final state. Important features of this field are: (i) Its strength at time t is determined only by the
collision impact parameter b and the electrical conductivity σ. It does not explicitly depend on the collision energy.
Rather, energy dependence comes through the variation of σ with the temperature T . (ii) Its dominant component
is magnetic field perpendicular to the event plane [23].

Motion of charged particles of energy ε and charge e in magnetic field B is quantized, with the distance between
the nearby Landau levels being on the order of ωB = eB/ε. However, if eB � ε2, the quantization effect is small. In
a thermal medium of temperature T this condition becomes eB � T 2. The peak strength of magnetic field at the
collision energy

√
sNN = 200 GeV is estimated to be eB = m2

π implying that one can treat the synchrotron emission
in the quasi-classical approximation. This argument is supported by an explicit calculation in [19], where I showed
that the number of Landau levels contributing to the synchrotron radiation at the field strength eB = m2

π is on the
order of a hundred.

It is well-known, that the synchrotron radiation is emitted over a short time ∆t ∼ ω−1B (m/ε)3 [24], which is

much shorter than the characteristic time of the magnetic field variation tB ∼ |B/Ḃ|. This allows me to treat the
synchrotron radiation as an adiabatic process, viz. to substitute the expression for the time-dependent field (A3) into
the emission rate in a constant B (1), which is well-known in the literature.

The results of my calculation indicate that although the synchrotron radiation cannot be responsible for all the
observed photon excess, it gives a significant contribution at photon energies k⊥ = 1− 3 GeV in the central rapidity
region. Since radiation in the direction of the magnetic field vanishes, the synchrotron spectrum exhibits strong
azimuthal asymmetry with the following Fourier coefficients: v2 = 4/7, v4 = 1/10. This may explain the strong
elliptic flow of prompt photons observed in the data [2].

The paper is structured as follows: In Sec. II an analytic expression for the synchrotron spectrum emitted by a
relativistic charge is presented. In Sec. III I compute the photon spectrum radiated by the quark-gluon plasma during
its entire life-time using the explicit space-time dependence of magnetic field discussed in Appendix. The results are
shown in Fig. 1, Fig. 2 and Fig. 3. In Sec. IV the summary is presented.

II. PHOTON RADIATION BY A RELATIVISTIC QUARK

Consider a relativistic quark or antiquark of energy ε0, velocity v0 and electric charge qfe moving in a plane
perpendicular to magnetic field B0. I will call the corresponding reference frame K0. Emission rate of photon of
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energy ω0 and momentum k0 = ω0n0 is given by [25]

dẇ0 =
αq2f

(2π)2
d3k0
ω0

∫ +∞

−∞
dτ exp

{
− iε0
ε′0
ω0τ

[
1− n0 · v0 +

(
qfeB0

ε0

)2
τ2

24

]}

×

[
−ε
′2
0 + ε20
4ε′20

(
qfeB0

ε0

)2

τ2 − m2

ε0ε′0

]
, (1)

where ε′0 = ε0 − ω0.
Consider now another reference frame K where quarks have an arbitrary direction of momentum. Let the y-axis

be in the magnetic field direction B = Bŷ and V = V ŷ be the velocity of K with respect to K0. Then the Lorentz
transformation reads

px0 = px , 0 = py0 = γ(py + V ε) , pz0 = pz , ε0 = γ(ε+ V py) . (2)

kx0 = kx , ky0 = γ(ky + V ω) , kz0 = kz , ω0 = γ(ω + V ky) . (3)

B0 = B , (4)

where γ = 1/
√

1− V 2. It follows from the second equation in (2) that

V = −py
ε

(5)

and

ε0 =
√
ε2 − p2y , ω0 =

ωε− pyky√
ε2 − p2y

. (6)

Using the boost invariance of k · p we get

1− n0 · v0 =
ωε

ω0ε0
(1− n · v) , (7)

accurate up to the terms of the order m2/ε2. Transformation of the photon emission rate reads [26]

dẇ

dΩdω
=

1

γ2(1 + V cos θ)

dẇ0

dΩ0dω0
=
ωε0
εω0

dẇ0

dΩ0dω0
, (8)

where θ is the angle between the photon momentum k and the magnetic field, i.e. cos θ = ny, and Ω is the corresponding
solid angle. In the last step I used (5) and (6). dẇ0 in the right-hand-side of (8) is given by (1).

III. ELECTROMAGNETIC RADIATION BY PLASMA

A. Photon rate per unit volume

Quark-gluon plasma in magnetic field radiates photons into a solid angle dΩ in the frequency interval (ω, ω + dω)
with the following rate

dN

dtdΩdω
= 2Nc

∑
f

∫
dVd3p
(2π)3

f(ε)[1− f(ε′)]
dẇ

dΩdω
, (9)

where V stands for the volume, the sum runs over the quark and anti-quark flavors and the quark/antiquark distri-
bution function in plasma at temperature T reads

f(ε) =
1

eε/T + 1
. (10)

Introduce now a Cartesian reference frame span by three unit vectors e1, e2,n, such that vector B lies in plane
span by e1 and n. In terms of the polar and azimuthal angles χ and ψ we can write

v = v(cosχn+ sinχ cosψ e1 + sinχ sinψ e2) , (11)

B = B(cos θn1 + sin θ e1) . (12)
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Then,

py =
p ·B
B

= εv(cosχ cos θ + sinχ cosψ sin θ) , (13)

ky =
k ·B
B

= ω cos θ , (14)

n · v = v cosχ . (15)

Quarks moving in plasma parallel to the magnetic field direction do not radiate due to the vanishing Lorentz force.
Bearing in mind that at high energies quarks radiate mostly into a narrow cone with the opening angle χ ∼ m/ε,
we conclude that photon radiation at angles θ . m/ε can be neglected. Thus, expanding at small χ we obtain from
(6),(13)

ε0 ≈ ε sin θ , ω0 ≈ ω sin θ , θ >
m

ε
. (16)

Omission of terms of order m/ε is consistent with the accuracy of (1). In view of (16), dependence of the integrand
of (9) on angle χ comes about only in (7), viz.

1− n0 · v0 =
1

sin2 θ

(
1− cosχ+

m2

2ε2

)
, (17)

while it is ψ-independent.
To integrate over the quark/antiquark momentum directions do = d cosχdψ we write (9) as

dN

dtdΩdω
=

2Nc
(2π)3

∑
f

∫
dV
∫ ∞
ω

dε ε2f(ε)[1− f(ε′)]

∫
do

dẇ

dΩdω
, (18)

substitute (8) and (1) and integrate first over do and then over τ with the following result (see details in [25]):∫
do

dẇT
dΩdω

=−
αq2fm

2

ε2
sin2 θ

{∫ ∞
zθ

Ai(z′)dz′ + (sin θ)2/3
( ε
ε′

)1/3 (ωB
ω

)2/3 ε2 + ε′2

m2
Ai′(zθ)

}
, (19)

where ωB = qfeB/ε and

zθ =
( ε
ε′

)2/3( ω

ωB

)2/3
m2

ε2 sin8/3 θ
. (20)

B. Photon spectrum

Spatial and temporal dependence of the photon production rate (18) comes about from the corresponding depen-
dence of the background magnetic field. The explicit form of magnetic field is given in Appendix A. Neglecting small
variations of magnetic field strength in the transverse plane, integration over the time and volume of plasma yields
the total photon multiplicity spectrum radiated into a unit solid angle

dN

dΩdω
=

2Nc
(2π)3

S
∑
f

∫ tf

0

dt

∫ t

−t
dz

∫ ∞
ω

dε ε2f(ε)[1− f(ε′)]

∫
do

dẇ

dΩdω
, (21)

with (A3) substituted into (19),(20) and the overlap area S of two spherical nuclei of radius RA given by

S = R2
A [2 arccos(b/2RA)− sin(2 arccos(b/2RA)] . (22)

The experimental observable is the photon multiplicity at a given transverse momentum k⊥, azimuthal angle φ and
rapidity y with respect to the collisions axis. It reads

dN(k⊥, φ, y)

k⊥dk⊥dφdy
=
dN(ω, θ)

ωdωdΩ
, (23)
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where ω = k⊥ cosh y and cos θ = sinφ/ cosh y. It is usually represented as the cosine Fourier series

dN(k⊥, φ, y)

k⊥dk⊥dφdy
=

〈
dN

d2k⊥dy

〉
φ

(
1 +

∞∑
n=1

2vn cos(nφ)

)
, (24)

where the azimuthally averaged multiplicity is given by〈
dN

d2k⊥dy

〉
φ

=
1

2π

∫ 2π

0

dN

d2k⊥dy
dφ , (25)

and the “flow” coefficients by

vn =
1

2π

∫ 2π

0

dN

d2k⊥dy
cos(nφ)dφ

〈
dN

d2k⊥dy

〉−1
φ

. (26)

In Fig. 1 and Fig. 2 I display the spectrum of synchrotron plasma radiation over time t ≤ tf = 10 fm at different
temperatures and centralities. The values of temperature are chosen as two extremes for which the synchrotron
spectrum is still consistent with the data and physics of the QGP. One can see that at low k⊥ synchrotron photons
cannot account for the bulk of the photon excess. However, is contributes a substantial fraction of photons at
k⊥ = 2− 3 GeV. We also conclude that the data favors temperatures below T = 400 MeV.
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FIG. 1: Spectrum of synchrotron photons averaged over the azimuthal angle versus photon transverse momentum k⊥ at rapidity
y = 0 and centrality 0% − 20% (b = 4.3 fm [27]). Solid line: T = 400 MeV, dashed line: T = 200 MeV. Data is from [1]; it
represents the direct photon kT spectra after subtraction of the Ncoll scaled p+p contribution (figure 8 there).
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FIG. 2: Spectrum of synchrotron photons averaged over the azimuthal angle versus photon transverse momentum k⊥ at rapidity
y = 0 and centrality 40%− 60% (b = 10.2 fm [27]). Solid line: T = 400 MeV, dashed line: T = 200 MeV. Data is from [1]; it
represents the direct photon kT spectra after subtraction of the Ncoll scaled p+p contribution (figure 8 there).

Fig. 3 shows the time evolution of the photon spectrum. It is interesting to note that although the spectrum grows
fastest at early times it is still increasing even near the freeze-out time tf . This is because the photon spectrum is
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proportional to B2/3 (see (27)) while magnetic field decreases as B ∼ 1/t2, so that the spectrum is proportional to

1/t
1/3
f . It seems to me that taking into account the time-dependence of plasma temperature and conductivity will

lead to a faster decrease of the photon emission rate with time, as can be inferred from (27).
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FIG. 3: Time evolution of the photon spectrum (emitted by u and ū quarks) from t = 1 fm (the lowest line) to t = 10 fm (the
highest line) in time increments of 1 fm. T = 400 MeV, 0%− 20% centrality, y = 0.

Concerning the Fourier coefficients (26), the ones with odd indexes vanish v2k+1 = 0, k = 0, 1, 2, . . ., while the
ones with even indexes v2k rapidly decrease with increase of k. Two largest coefficients are v2 = 0.57 and v4 = 0.10.
They turned out to be independent of k⊥ and centrality. I will explain this behavior in the next subsection. Here I
would like to note, that in view of the results shown in Fig. 1 and Fig. 2, large elliptic flow of photons observed in [2]
seems to be at least partially due to the strong azimuthal asymmetry of the synchrotron radiation, which is in turn
a consequence of the v ×B form of the Lorentz force. The above values of v2 and v4 that indicate large anisotropy
of synchrotron protons should not be directly compared to experiment, but rather should be included in an average
over many different sources of azimuthal anisotropy in photon spectrum.

C. Photon spectrum at high k⊥

Analytical expressions for the photon spectrum can be found for photons with k⊥ � T , which in fact applies to
most of the phenomenologically relevant photons. In this limit we approximate f(ε) ≈ e−ε/T and zθ � 1. Keeping in
(21) only the leading terms in zθ and neglecting m compared to T we obtain

dN

d2kdy
= α

2Nc
(2π)3

Γ(2/3)

31/3Γ(1/3)
(sin θ)8/3e−k/TT 2/3

∑
f

∫
dV
∫ tf

0

dt (qfeB)2/3 . (27)

Substituting into (25) we derive for the average photon multiplicity〈
dN

d2k⊥dy

〉
φ

= α
2Nc

(2π)3
Γ(11/6)

3 · 61/3Γ(7/6)Γ(7/3)
e−k/TT 2/3

∑
f

∫
dV
∫ tf

0

dt (qfeB)2/3 , (28)

while the Fourier coefficients follow from (26):

v2 =

∫ π/2

−π/2
cos(2φ)(cosφ)8/3dφ

/∫ π/2

−π/2
(cosφ)8/3dφ =

4

7
, (29)

v4 =

∫ π/2

−π/2
cos(4φ)(cosφ)8/3dφ

/∫ π/2

−π/2
(cosφ)8/3dφ =

1

10
. (30)

Eq. (28) gives a reasonable approximation for the high k⊥ tail of the photon spectrum. Especially striking is the
agreement between (29) and (30) and the values of v2 and v4 cited in the previous subsection. Apparently, the
dominant contribution to the azimuthal angle integration arises at high k⊥. This fact then explains independence of
the Fourier coefficients on k⊥, T , B and other parameters.
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IV. CONCLUSIONS

In this paper I computed the synchrotron photon spectrum in heavy-ion collisions taking into account the spatial
and temporal structure of magnetic field. Results obtained in this paper indicate that a significant fraction of
photon excess in heavy-ion collisions in the region k⊥ = 1 − 3 GeV can be attributed to the synchrotron radiation.
Azimuthal anisotropy is characterized by the “flow” coefficients v2 = 4/7 and v4 = 1/10 that are independent of
photon momentum and centrality. Although synchrotron photons alone cannot account neither for the total photon
spectrum, nor for its azimuthal asymmetry, it nevertheless gives an important contribution to both. In my opinion,
any comprehensive description of photons produced in heavy-ion collisions must include a contribution of synchrotron
radiation.

Throughout the paper I assumed that plasma temperature and electrical conductivity are time-independent which
allowed me to use the the analytical expressions for magnetic field (A1)-(A3). This approach should give rather
accurate estimate of the photon spectrum because time variation of temperature and electrical conductivity is rather
mild. For example, in the Bjorken scenario σ, T ∝ t−1/3 [28]. Nevertheless, a more accurate approach should
incorporate a realistic flow of plasma, see e.g. [29, 30].
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Appendix A: A model for magnetic field in heavy-ion collisions

Analytic expression for electromagnetic field created in heavy-ion collisions was found in [21, 22]. It is a sum over
Z point charges moving in the positive z direction and Z point charges moving in the opposite direction. Equations
simplify in the relativistic limit γσb� 1. In this case magnetic field created at the origin by a point charge e moving
along the positive z-axis at transverse distance b reads

B =
e

2π
φ̂

(
γb

2(b2 + γ2t2)3/2
+
bσ

4t2
e−

b2σ
4t

)
. (A1)

The first term in the bracket is the boosted Coulomb field in vacuum, while the second term is the field induced in
the medium. The quark-gluon system is released from the nuclear wave-functions by t ∼ 1/Qs ∼ 0.2 fm, where Qs is
the saturation momentum. By that time the Coulomb term is negligible so that the field in the medium is determined
only by b and σ. Therefore, the total magnetic field is given by

B =
e

2π

[
θ(t− z)

Z∑
a=1

σ(b/2− ba)

4(t− z)2
e−

σ(b/2−ba)2

4(t−z) + θ(t+ z)

Z∑
a=1

σ(b/2− ba)

4(t+ z)2
e−

σ(b/2−ba)2

4(t+z)

]
, (A2)

where ba’s are the proton transverse coordinates, b is the impact parameter, z is the longitudinal position, θ is a
step-function and α = e2/4π is the fine structure constant. At large Z magnetic field (A2) is approximately isotropic
in the xy-plane (i.e. in the plane transverse to the collision axis) and can be well described by the following model

B =
eZ

2π
ŷ

[
θ(t− z)σ(Rp + b/2)

4(t− z)2
e−

(Rp+b/2)
2σ

4(t−z) + θ(t+ z)
σ(Rp + b/2)

4(t+ z)2
e−

(Rp+b/2)
2σ

4(t+z)

]
. (A3)

Quantum uncertainty of a proton position is accounted for by a finite parameter Rp = 1 fm [31].
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