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Using the relativistic Vlasov-Uehling-Uhlenbeck (RVUU) equation based on mean fields from
the nonlinear relativistic NLρ and NLρδ models, which have same nuclear equation of state and
symmetry energy but different symmetry energy slope parameters, we study the effect of medium
modification of the pion production threshold on the total pion yield and the π−/π+ ratio in Au+Au
collisions. We find that the in-medium threshold effect enhances both the total pion yield and the
π−/π+ ratio, compared to those without this effect. Furthermore, including the medium modifi-
cation of the pion production threshold leads to a larger π−/π+ ratio for the NLρδ model with a
larger symmetry energy parameter than the NLρ model with a smaller symmetry energy parameter,
opposite to that found without the in-medium threshold effect. To reproduce the total pion yield
measured by the FOPI Collaboration, we introduce a density-dependent cross section for ∆ baryon
production from nucleon-nucleon collisions, which suppresses the total pion yield but hardly changes
the π−/π+ ratio. Because of the small difference in the stiffness of their symmetry energies, the
π−/π+ ratios obtained from both the NLρ and NLρδ models are consistent with the FOPI data
within the experimental errors.

PACS numbers: 25.70.-z, 25.60.-t, 25.80.Ls, 24.10.Lx

I. INTRODUCTION

The nuclear symmetry energy is an important quantity
for describing the properties of asymmetric nuclear mat-
ter. It is defined as one half of the second derivative of the
energy per nucleon in asymmetric nuclear matter with re-
spect to its isospin asymmetry α = (ρn − ρp)/(ρn + ρp),
where ρn and ρp are the neutron and proton densities, re-
spectively. Although our knowledge on the nuclear sym-
metry energy at normal and subnormal densities have
been relatively well determined from the properties of nu-
clei and the isospin sensitive observables in intermediate-
energy heavy ion collisions, very little is known about
its behaviors at high densities [1, 2]. In Ref. [3], it was
suggested that the π−/π+ ratio in heavy ion collisions
induced by neutron-rich nuclei at energies near the pion
production threshold in nucleon-nucleon collisions in free
space would be sensitive to the stiffness of nuclear sym-
metry energy at high densities. This can be understood
by noting that pions are produced in these collisions
from the decay of Delta resonances created from nucleon-
nucleon collisions during the compression stage of heavy
ion collisions, with ∆− mainly from n+ n collisions and
∆++ mainly from p+p collisions [4]. Since the stiffness of
nuclear symmetry energy affects the isospin asymmetry
of produced dense nuclear matter, with a soft one lead-
ing to more neutrons than protons, more ∆− and thus
more π− are produced, resulting in a larger π−/π+ ra-
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tio in the final pion yield [5]. Many theoretical studies
based on various transport models have since been car-
ried out to study the π−/π+ ratio in heavy ion collisions.
Comparing these theoretical results with the experimen-
tal data from the FOPI Collaboration [6] has led, how-
ever, to widely different conclusions on the stiffness of
the nuclear symmetry energy at high densities. Some of
these studies indicate that the nuclear symmetry energy
is stiff and increases approximately linearly with the nu-
clear density [7], while others claim that it is supersoft
and vanishes at about three times the normal nuclear
matter density [8, 9].

In all above studies, the cross section for Delta reso-
nance production in nucleon-nucleon collisions is taken
from that in free space. As pointed out in Ref. [10],
the threshold for this reaction is modified in neutron-
rich matter when one takes into account the effect of
the nuclear symmetry energy on the mean-field poten-
tials acting on the initial and final particles. This effect
also changes the branching ratio of a Delta resonance de-
caying to different pion charged states. As a result, the
final π−/π+ ratio in a heavy ion collision including such
threshold effect is different from that without this effect.
In the study of Ref. [10] based on the relativistic mean-
field models, it was found that the threshold effect tends
to cancel the effect of the symmetry energy on the π−/π+

ratio in heavy ion collisions, thus reducing the sensitivity
of this ratio to the stiffness of nuclear symmetry energy
at high densities.

How the threshold effect on pion production is imple-
mented in Ref. [10] is, however, not described in sufficient
detail. Also, no comparison of the theoretical results with
experimental data is made in this study. In the present
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study, we give the procedure for the determination of the
in-medium threshold energy and also compare the theo-
retical results with available data to extract the nuclear
symmetry energy at high densities. Specifically, we ex-
tend the Relativistic Vlasov-Uhling-Uhlenbeck (RVUU)
model [11–13] by including explicitly the different isospin
states of nucleons, Delta resonances, and pions. As in
Ref. [10], our study is based on the nonlinear relativistic
NLρ and NLρδ mean-field models that describe the in-
teraction between nucleons by the exchange of scalar and
vector mesons as well as isoscalar and isovector mesons.
We find that the threshold effect due to the vector mean
fields cancels or even reverses the effect of nuclear sym-
metry energy on the π−/π+ ratio as in Ref. [10]. On the
other hand, the threshold effect due to the scalar mean
fields enhances the pion yield regardless of the stiffness
of nuclear symmetry energy, assuming that the cross sec-
tions for ∆ production have the same form as in vac-
uum. To reproduce the experimental data on the pion
yield requires, however, the introduction of a density de-
pendence in the cross sections for ∆ production in the
nuclear medium. Because of the small difference in the
stiffness of their symmetry energies, the π−/π+ ratios ob-
tained from both the NLρ and NLρδ models are found
to be consistent with the FOPI data within the experi-
mental errors.
This paper is organized as follows: In Sec. II, we briefly

review the nonlinear relativistic mean-field model. We
then describe in Sec. III the RVUU equation for the time
evolutions of the nucleon, ∆, and pion phase-space dis-
tribution functions under the influence of the relativistic
mean fields as well as the nucleon and ∆ scatterings, and
∆ decays. The covariant threshold effect is explained in
Sec. IV, and the results from Au+Au collisions are given
in Sec. V. Finally, a summary is given in Sec. VI. The
derivations of the symmetry energy and the threshold
energy in the relativistic mean-field model are given in
Appendix A and B, respectively.

II. NONLINEAR RELATIVISTIC MEAN-FIELD

MODEL

The Lagrangian for the relativistic mean-field model
NLρ or NLρδ is given by [14]

L = N̄

[

γµ(i∂
µ − gωω

µ − gρτ · ρµ)

−(mN − gσσ − gδτ · δ)
]

N

+
1

2
(∂µσ∂

µσ −m2
σσ

2)− a

3
σ3 − b

4
σ4

−1

4
ΩµνΩ

µν +
1

2
m2

ωωµω
µ

+
1

2
(∂µδ∂

µδ −m2
δδ · δ)

−1

4
Rµν ·Rµν +

1

2
m2

ρρµ · ρµ, (1)

where Ωµν = ∂µων − ∂νωµ and Rµν = ∂µρν − ∂νρµ.
In the above Lagrangian, N , σ, ωµ, δ, and ρµ denote
the nucleon, isoscalar-scalar, isoscalar-vector, isovector-
scalar, and isovector-vector fields, respectively, with their
corresponding masses mN , mσ, mω, mδ, and mρ. The
couplings of the mesons to nucleons are given by gσ, gω,
gδ, and gρ, while the σ meson self interaction is described
by the strength parameters a and b. Values of the param-
eters in the NLρ and NLρδ models are given in Table
I [14]. We note that the δ field is absent in the NLρ
model.

NLρ NLρδ

fi ≡ (gi/mi)
2

fσ (fm2) 10.33

fω (fm2) 5.42

fρ (fm2) 0.95 3.15

fδ (fm2) 0 2.5

a/g3σ (fm−1) 0.033

b/g4σ -0.0048

TABLE I: Parameters in the NLρ and NLρδ models with fi
defined by (gi/mi)

2 [14].

In the mean-field approximation, one neglects the
derivatives of meson fields and obtains following field
equations:

[

γµ(i∂
µ − gωω

µ − gρτ3ρ
µ
3 )

−(mN − gσσ − gδτ3δ3)

]

N = 0, (2)

m2
σσ + aσ2 + bσ3 = gσN̄N,

m2
δδ3 = gδN̄γ0τ3N,

m2
ωω

µ = gωN̄γµN,

m2
ρρ

µ
3 = gρN̄τ3N. (3)

Eq.(1) then becomes the Lagrangian for noninteracting
nucleons with the effective mass m∗

i and the kinetic or
physical energy-momentum pµ∗i ,

m∗
i = mN − gσσ ∓ gδδ3,

pµ∗i = pµ − gωω
µ ∓ gρρ

µ
3 , (4)

where i = p, n for the upper and lower signs, respectively.
In terms of the nucleon scalar and vector densities,

φi =

∫

d3p∗
i

(2π)3
E∗

i

m∗
i

fi(p
∗
i ),

jµi =

∫

d3p∗
i

(2π)3
pµ∗i
E∗

i

fi(p
∗
i ), (5)

with E∗
i =

√

m∗2
i + p∗2

i and fi(p
∗
i ) being the nucleon

distribution function including the spin degeneracy, the
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meson field equations can then be expressed as

m2
σσ + aσ2 + bσ3 = gσ(φp + φn),

m2
δδ3 = gδ(φp − φn),

m2
ωω

µ = gω(j
µ
p + jµn),

m2
ρρ

µ
3 = gρ(j

µ
p − jµn). (6)

We note that the time component of the vector density
corresponds to the proton or neutron density, i.e., j0p = ρp
and j0n = ρn.
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FIG. 1: (Color online) Proton and neutron effective masses in
asymmetric nuclear matter of isospin asymmetry α = 0.2 and
at zero temperature as functions of nuclear matter density in
the NLρ and NLρδ models [14].

The nucleon effective mass can be obtained by solv-
ing above equations iteratively. Figure 1 shows the pro-
ton and neutron masses in asymmetric nuclear matter of
isospin asymmetry α = (j0n − j0p)/(j

0
n + j0p) = 0.2, com-

parable to that of a Au nucleus, and at zero temperature
as functions of nuclear matter density for the NLρ and
NLρδ models. It is seen that the proton and neutron
masses in asymmetric nuclear matter are degenerate in
the NLρ model but become different in the NLρδ model
with the proton mass larger than the neutron mass as
a result of their interactions with the isovector-isoscalar
meson δ [14].
In the mean-field approximation, the energy-

momentum tensor of a nuclear matter is given by [14]

Tµν =
∂L

∂(∂µN)
∂νN − gµνL

= iN̄γµ∂νN + gµν

[

1

2
m2

σσ
2 +

a

3
σ3 +

b

4
σ4

−1

2
m2

ωωλω
λ +

1

2
m2

δδ
2
3 −

1

2
m2

ρρ3λρ
λ
3

]

, (7)

where Eq. (2) has been used in obtaining the expression
in the square bracket.

In a static nuclear matter with p∗
i = pi, the energy

density and pressure are then

ǫ = T00 =
∑

i=n,p

2

∫

d3pi

(2π)3
E∗

i fi(pi)

+
1

2
m2

σσ
2 +

a

3
σ3 +

b

4
σ4 +

1

2
m2

ωω
2
0

+
1

2
m2

δδ
2
3 +

1

2
m2

ρ(ρ3)
2
0, (8)

p =
1

3
Tjj =

∑

i=n,p

2

3

∫

d3pi

(2π)3
|pi|2
E∗

i

fi(pi)

+
1

2
m2

σσ
2 +

a

3
σ3 +

b

4
σ4 − 1

2
m2

ωω
2
0

+
1

2
m2

δδ
2
3 −

1

2
m2

ρ(ρ3)
2
0. (9)
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FIG. 2: (Color online) Binding energy per nucleon of sym-
metric nuclear matter at zero temperature as a function of
nuclear matter density.

The binding energy of a nucleon in nuclear matter is
given by

E/N = ǫ/ρN −mN , (10)

where ρN = j0n + j0p is the density of the nuclear mat-
ter. For symmetric nuclear matter, both NLρ and NLρδ
models give the same binding energy as a result of vanish-
ing isospin asymmetry. This is shown in Fig. 2 for sym-
metric nuclear matter at zero temperature. It indicates
that the binding energy per nucleon of symmetric nuclear
matter in both NL/ρ and NLρδ model is 16 MeV at the
saturation density of ρ0 = 0.16 fm−3. The curvature of
the binding energy at ρ0 is related to the incompressibil-
ity of symmetric nuclear matter, given by [15]

K = 9ρ20
∂2(E/N)

∂ρ2N

∣

∣

∣

∣

ρN=ρ0

. (11)
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Its value in both NLρ and Nlρδ models is about
240 MeV.
In asymmetric nuclear matter, the energy per nucleon

is a function of the density ρN and isospin asymmetry α.
When expanded in terms of α, it is written as

E/N(ρN , α) = E/N(ρN , 0) + Esym(ρN )α2 + · · · , (12)

where

Esym(ρN ) =
1

2

∂2(E/N)

∂α2

∣

∣

∣

∣

α=0

=
1

2
ρN

∂2ǫ

∂ρ2I

∣

∣

∣

∣

ρI=0

, (13)

with ρI = j0p − j0n, is the nuclear symmetry energy.
For nuclear matter at zero temperature, the symmetry

energy in the NLρ andNLρδ models are given by [14, 16]

Esym(ρN ) =
p2F
6EF

+
ρN
2

[

fρ −
fδm

∗2

E2
F {1 + fδA(pF ,m∗)}

]

,

(14)

where pF and EF are the nucleon Fermi momentum and
energy, respectively, and

A(pF ,m
∗) =

4

(2π)3

∫ pF

d3p
p2

(p2 +m∗2)3/2
. (15)

Details of the derivation are given in Appendix A.
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FIG. 3: (Color online) Symmetry energy as a function of nu-
clear density in the NLρ and NLρδ models [14].

Figure 3 shows the symmetry energy as a function of
nuclear density obtained in the NLρ and NLρδ mod-
els. Compared to that in the NLρ model, the symmetry
energy in the NLρδ model is slightly smaller below the
saturation density and larger above it. Both are, how-
ever, about 30 MeV at saturation density.
Defining the symmetry energy slope parameter by its

density derivative at normal nuclear density,

L = 3ρ0
dEsym(ρN )

dρN

∣

∣

∣

∣

ρN=ρ0

, (16)

its value is 83 MeV for the NLρ model and 98 MeV for
the NLρδ model. Because of its larger symmetry energy
slope parameter, the NLρδ model has a stiffer symmetry
energy at high densities than the NLρ model.

III. RELATIVISTIC

VLASOV-UEHLING-UHLENBECK EQUATION

To describe the time evolution of the nucleon distri-
bution function f(~r, ~p; t) in phase space under the influ-
ence of the relativistic mean fields, we use the relativistic
Vlasov-Uehling-Uhlenbeck (RVUU) equation, which can
be concisely written as [13]

∂

∂t
f + ~v · ∇rf −∇rH · ∇pf = C. (17)

In the above, H =
√

M∗2 + p∗2 + gωω
0 ± gρ(ρ3)0 is the

Hamiltonian of a nucleon in the presence of mean fields
with the upper sign for proton and the lower sign for
neutron, and C denotes the collision integral. For the
latter, we include both nucleon-nucleon elastic and in-
elastic scattering that produces a ∆ resonance.
For the ∆ resonance, which has an isospin of three

halves, we assume that its interactions with the δ and
ρ fields are related to those of nucleons via its isospin
structure in terms of those of the nucleon and pion. For
example, a ∆+ is related to the nucleon and pion by

∣

∣

∣

∣

3

2

1

2
;∆+

〉

=

√

2

3

∣

∣

∣

∣

1

2

1

2
; p

〉∣

∣

∣

∣

10;π0

〉

+

√

1

3

∣

∣

∣

∣

1

2

−1

2
;n

〉∣

∣

∣

∣

11;π+

〉

, (18)

and its coupling to δ and ρ has contributions of two thirds
from the proton and one third from the neutron. The
effective mass and canonical energy-momentum of ∆+

are thus

m∗
∆+ = m∆ − gσσ − 1

3
gδδ3,

pµ
∆+ = pµ∗ + gωω

µ +
1

3
gρρ

µ
3 . (19)

Similarly, the effective mass and canonical energy-
momentum of other charged states of ∆ resonance are

m∗
∆++ = m∆ − gσσ − gδδ3,

m∗
∆0 = m∆ − gσσ +

1

3
gδδ3,

m∗
∆−

= m∆ − gσσ + gδδ3, (20)

and

pµ
∆++ = pµ∗ + gωω

µ + gρρ
µ
3 ,

pµ
∆0 = pµ∗ + gωω

µ − 1

3
gρρ

µ
3 ,

pµ
∆−

= pµ∗ + gωω
µ − gρρ

µ
3 . (21)
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The time evolution of the ∆ resonance phase space dis-
tribution functions is then described by a similar RVUU
equation as the one for nucleons.
For the collision integral in the RVUU equation, which

changes the momenta of nucleons and ∆ resonances, we
use the baryon-baryon total elastic scattering

σelastic
BB→BB(mb) = 55,

√
s < 1.8993 GeV,

= 20 +
35

1 + 100(
√
s− 1.8993)

,
√
s ≥ 1.8993 GeV (22)

and differential cross section

dσelastic
BB→BB

dt
∼ exp

[

6{3.65(√s− 1.866)}6
1 + {3.65(√s− 1.866)}6 t

]

(23)

parameterized in Ref. [18].
For ∆ resonance production in a nucleon-nucleon scat-

tering, we use the cross section calculated in the one-
boson exchange model [4] and employ the detailed bal-
ance relation to obtain its absorption cross section by a
nucleon [19, 20]. In particular, we include only the re-
action NN ↔ N∆ as the heavy ion collision energies
considered in the present study are relatively low. Be-
cause of its resonance nature, a ∆ is produced with a
mass distribution of

f∆(m) =
Γ2(q)/4

(m−m0)2 + Γ2(q)/4
, (24)

with m0 being the resonance peak of ∆ baryon shifted
from its free-space value of 1.231 GeV by the scalar mean
field and Γ(q) being the width given by

Γ(q) =
0.47

1 + 0.6(q/mπ)2
q3

m2
π

, (25)

where mπ and q are, respectively, the pion mass and its
three momentum from the decay ∆ → Nπ in the ∆ rest
frame.
For pions from the decays of ∆ resonances, they are

treated in the RVUU model as free propagating particles
except inelastic scattering with nucleons to form the ∆
resonances. The cross section for ∆ formation in pion-
nucleon scattering has the Breit-Wigner form,

σπN→∆ = σmax

(

q0
q

)2
Γ2(q)/4

(
√
s−m0)2 + Γ2(q)/4

, (26)

where the maximum cross section σmax is taken to be
190, 50, and 30 mb for π+p → ∆++ and π−n → ∆−,
for π0p → ∆+ and π0n → ∆0, and for π−p → ∆0 and
π+n → ∆+, respectively; q is same as in Eq. (25) and q0
is the three momentum of the pion at

√
s = m0 [20].

The phase space distribution function of pions thus
satisfies a similar equation as given by Eq. (17) but with-
out the mean-field term. There have been attempts to
include the pion mean-field potential on pion production
in heavy ion collisions [21]. Although the effect of pion

mean-field potential on the charged pion ratio is not neg-
ligible [22, 23], it is nontrivial to be included in the trans-
port model and will thus not be addressed in the present
study.
We note that in both NN ↔ N∆ and ∆ ↔ Nπ pro-

cesses, the Pauli blocking for final-state baryons is taken
into account via the method of Ref. [18]. Specifically,
we determine the numbers of baryons N3 and N4 in the
phase space volume defined by |∆~r | = [3/(4πρ0)]

1/3

and |∆~p | = [6π2ρ0/(2s + 1)]1/3, with s being the spin
of baryon, around the phase space points (r3,p3) and
(r4,p4) of the two final baryons and then take the prob-
ability of not being Pauli blocked to be (1−N3)(1−N4).

IV. THRESHOLD EFFECTS

For inelastic reactions in a medium such as NN →
N∆, their thresholds can be different from those in free
space when mean-field potentials in the initial and fi-
nal states are different. Following the condition derived
in Appendix B for the threshold ∆− mass in the de-
cay ∆− → nπ−, the threshold energy for the reaction
NN → N∆ in a medium described by the relativistic
mean fields is determined by requiring vanishing kinetic
momenta of final nucleon and ∆ in the frame where the
total kinetic momentum of the final state is zero, i.e.,
p ∗
3

+ p ∗
4

= 0 [10]. Since the canonical momentum is
conserved in a collision, i.e., p1 + p2 = p3 + p4, this
frame can be obtained from the Laboratory frame by a
Lorentz transformation with the velocity,

~β =
~p ∗
3 + ~p ∗

4

E ∗
3 + E ∗

4

=
~p1 + ~p2 − ~Σ3 − ~Σ4

E1 + E2 − Σ0
3 − Σ0

4

, (27)

where Σµ
3 and Σµ

4 are mean fields in the laboratory frame.
The threshold energy for the reactionNN → N∆ is then
given by

√
sth =

√

(m∗
3 +Σ0

3 +m∗
4 +Σ0

4)
2 − |Σ3 +Σ4|2. (28)

For a static nuclear matter, i.e., Σi = 0 and p∗
i
≃ 0,

the difference between the incident and threshold ener-
gies [10] is

√
sin −

√
sth ≃ E∗

1 + E∗
2 +Σ0

1 +Σ0
2

−m∗
3 −m∗

4 − Σ0
3 − Σ0

4, (29)

which in the nonrelativistic limit becomes
√
sin −

√
sth ≃ m1 +m2 −m3 −m4

+Σs
1 +Σs

2 − Σs
3 − Σs

4 +
|p∗

1
|2

2m∗
1

+
|p∗

2
|2

2m∗
2

+Σ0
1 +Σ0

2 − Σ0
3 − Σ0

4 (30)

with Σs
i = m∗

i −mi.
Table II shows the differences between the initial and

final scalar and vector mean fields in both nucleon-
nucleon elastic and inelastic scatterings as well as in the
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scattering Σs
1 + Σs

2 − Σs
3 − Σs

4 Σµ
1 + Σµ

2 − Σµ
3 − Σµ

4

elastic

NN → NN 0 0

N∆ → N∆ 0 0

∆∆ → ∆∆ 0 0

inelastic

pp → n∆++
−2gδδ3 2gρρ

µ
3

pp → p∆+
−(2/3)gδδ3 (2/3)gρρ

µ
3

pn → n∆+
−(2/3)gδδ3 (2/3)gρρ

µ
3

pn → p∆0 (2/3)gδδ3 −(2/3)gρρ
µ
3

nn → n∆0 (2/3)gδδ3 −(2/3)gρρ
µ
3

nn → p∆− 2gδδ3 −2gρρ
µ
3

decay Σs
1 − Σs

2 Σµ
1 − Σµ

2

∆++
→ pπ+ 0 0

∆+
→ pπ0 (2/3)gδδ3 −(2/3)gρρ

µ
3

∆+
→ nπ+

−(4/3)gδδ3 (4/3)gρρ
µ
3

∆0
→ pπ− (4/3)gδδ3 −(4/3)gρρ

µ
3

∆0
→ nπ0

−(2/3)gδδ3 (2/3)gρρ
µ
3

∆−
→ nπ− 0 0

TABLE II: Difference between the initial and final scalar and
vector mean fields in the nucleon-nucleon elastic and inelastic
scatterings as well as in the decay of ∆ resonances.

decays of ∆ resonances. A positive difference reduces
the threshold for a reaction, while a negative difference
increases its threshold. Since δ3 and ρ03 are negative in
the neutron-rich matter, the change in the threshold due
to the isovector-scalar mean field thus enhances the pro-
duction of ∆+ and ∆++ and suppresses that of ∆0 and
∆−, while the effect of the isovector-vector mean field is
opposite.

In the NLρ model, where gδ = 0, only Σµ can be
different between initial and final states. As a result, the
production of ∆0 and ∆− is enhanced and that of ∆+ and
∆++ is suppressed. Because the former mainly decay to
Nπ− and the latter mainly toNπ+, the π−/π+ ratio thus
increases in heavy ion collisions. Also, the difference in
Σµ between the initial and finite states favors ∆+ → pπ0

over ∆+ → nπ+ and ∆0 → pπ− over ∆0 → nπ0.

In the NLρδ model, both Σs and Σµ can be different
between initial and final states. However, the difference
in Σµ is larger than that in Σs. For example, in a nuclear
matter of ρN = 0.3 fm−3 and α = 0.2, the Σ0 differs by 75
MeV and the Σs by -49 MeV between the initial and final
states of the reaction pp → n∆++. The net difference of
26 MeV is larger than the 22 MeV in the difference of
Σ0 in the NLρ model. Therefore, the π−/π+ ratio is
expected to be more enhanced in the NLρδ than in the
NLρ model.

V. RESULTS

Including the threshold effects on ∆ resonance produc-
tion based on the nonlinear relativistic mean-field mod-
els, we study in this Section Au+Au collisions at energies
from 0.3 AGeV to 0.7 AGeV and compare results on the
charged pion ratio with the experimental data from the
FOPI Collaboration. The RVUU equations are solved us-
ing the test particle method [17, 18] with the initial condi-
tions that the positions of nucleons inside in each nucleus
are distributed according to the Wood-Saxon form,

ρ(~r) ∼ 1

1 + exp[(r − c)/a]
, (31)

with the parameters c = 6.38 fm and a = 0.535 fm for
the 197Au nucleus [24], and their momentum-space dis-
tributions are obtained from the Fermi gas model with
the Fermi momentum determined by the local density.
Besides the nuclear mean fields described in Section III,

we also include the effect of electromagnetic fields on
charged particles. For a charged particle i, the electric
and magnetic fields it experiences due to other charged
particles are given by

~E(~ri) =
e

4π

∑

j 6=i

qj
~rij
r3ij

,

~B(~ri) =
e

4π

∑

j 6=i

qj
~βj × ~rij

r3ij
, (32)

where e2/(4π) = 1/137, ~rij = ~ri − ~rj , ~βj = ~pj/Ej , and
qj is the electric charge of particle j in unit of e. The re-
sulting Lorentz force is then added to the nuclear force in
determining the momentum change of a charged particle.
Figure 4 shows the numbers of ∆ baryons and pions

as functions of time for Au+Au collisions at impact pa-
rameter of 1 fm and energy of E/A = 400 MeV in the
NLρ model. It is seen that most ∆ baryons are produced
during the high density stage as shown in the lower panel
of the figure.
Figure 5 shows the π−/π+ ratio and the total pion

yield as functions of the collision energy in Au+Au col-
lisions at impact parameter of 1.4 fm from the NLρ and
NLρδ models. For the case of without the threshold ef-
fect, both nucleon and ∆ scatterings as well as ∆ decays
are treated as if there are no mean-field potentials, that
is taking m∗

i = mi and pµ ∗
i = pµi . In this case, the

π−/π+ ratio is larger for the NLρ model than for the
NLρδ. This is because the high density matter formed
in these collisions, where most ∆ baryons are produced,
is more neutron-rich when the NLρ model, which has a
softer symmetry energy than the NLρδ model, is used.
Since there are more neutron-neutron scattering in more
neutron-rich matter, more ∆− and thus π− are produced.
As a result, the π−/π+ ratio is larger for the NLρ model
as shown by the lower two curves in the left panel of
Fig. 5, similar to that found in Ref. [5]. The symmetry
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FIG. 4: (Color online) Numbers of ∆ baryons and pions (up-
per panel) and central density divided by the saturation den-
sity (lower panel) in the NLρ model as functions of time in
Au+Au collisions at impact parameter of 1 fm and energy of
E/A = 400 MeV.
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FIG. 5: (Color online) π−/π+ ratio (left panel) and pion
yields (right panel) as functions of the collision energy with
and without the threshold effect in Au+Au collisions at im-
pact parameter of 1.4 fm from the NLρ and NLρδ models.
Experimental data are from the FOPI Collaboration [6].

energy effect on the π−/π+ ratio is, however, reversed
by the threshold effect as shown by the upper two curves
in the left panel of Fig. 5. This is due to the fact dis-
cussed in the previous section that the threshold effect
enhances π− production and suppresses π+ production
in neutron-rich nuclear matter in both NLρ and NLρδ
models, and the effect is larger for the NLρδ model than
for the NLρ model. The π−/π+ ratio thus increases for
both models but more for the NLρδ model than for the
NLρ model [10]. Figure 5 further shows that includ-

ing the threshold effect helps reproduce the experimen-
tal data on the π−/π+ ratio, although the effect becomes
smaller as the collision energy increases.
Because of increased nucleon kinetic energy due to its

reduced mass in nuclear medium, the threshold effect in-
creases the total pion yield compared to that without
including the threshold effect as shown in the right panel
of Fig. 5. Since the total pion yield in the case without
the threshold effect is close to the experimental data, in-
cluding the threshold effect leads to an overestimate of
the total pion yield. To reproduce the experimental data,
we take into account the medium effects on the cross sec-
tion for ∆ production by assuming the following density
dependence:

σNN→∆N (ρN ) = σNN→∆N (0) exp(−AρN/ρ0), (33)

where ρN is the nucleon density and A is a fitting pa-
rameter. The cross section for the inverse reaction also
becomes density dependent and is determined by the de-
tailed balance relation. The density-dependent factor
suppresses pion production in the nuclear medium, and it
is consistent with what is found in other studies [25–27].
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FIG. 6: (Color online) π−/π+ ratio (left panel) and total
pion yield (right panel) as functions of the collision energy
obtained with the threshold effect and the density-dependent
∆ production cross section in Au+Au collisions at impact
parameter of 1 fm for both the NLρ and NLρδ models. Ex-
perimental data are from the FOPI Collaboration [6].

We find that the experimentally measured total pion
yield can be described very well by taking A = 1.65 in the
density-dependent ∆ production cross section for both
the NLρ and NLρδ models as shown in the right panel
of Fig. 6. The resulting π−/π+ ratio is shown in the left
panel of Fig. 6, and it is seen to increase slightly from
those obtained with the vacuum ∆ production cross sec-
tion, as expected when the pion yield decreases. Because
of the small difference between the π−/π+ ratios from
the NLρ and NLρδ models, both are consistent with the
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FOPI data within the experimental errors, particularly
at the collision energy of E/A = 400 MeV.
We note that the in-medium threshold effect on the

π−/π+ ratio in the present study is smaller than that in
Ref. [28]. This is due to the smaller isovector-vector cou-
pling constant gρ in our model than in theirs, although
the symmetry energies are similar in both studies.
For completeness, we also compare the longitudinal

and transverse rapidity distributions of protons and pi-
ons in Au+Au collisions at E/A = 400 MeV with the
experimental data from the FOPI Collaboration [29, 30].
Following Ref. [6], we introduce the reduced longitudinal
and transverse rapidities, [6]

y0 = ln

[

1 + βz

1− βz

]/

ln

[

1 + β0

1− β0

]

,

yT = ln

[

1 + βx

1− βx

]/

ln

[

1 + β0

1− β0

]

, (34)

where βz and βx are, respectively, the velocities in the
beam direction and in an arbitrary direction in the trans-
verse plane, and β0 is the initial velocity of the projectile
in the center-of-mass frame.
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FIG. 7: (Color online) Reduced longitudinal (left panel) and
transverse (right panel) rapidity distributions of protons in
Au+Au collisions at E/A = 400 MeV and b < 2.25 fm. The
experimental data are those of fragments with charge Z ≤ 6
from the FOPI Collaboration [29].

As shown in Fig. 7, the NLρ and NLρδ models give
essentially the same reduced longitudinal and transverse
momentum distributions for protons in collisions at im-
pact parameter b < 2.25 fm, and both reproduce very
well the experimental data from the FOPI Collabora-
tion [29].
For the reduced longitudinal and transverse rapidity

distributions of pions shown in Fig. 8 for collisions at
impact parameter 3.74 fm< b < 6.74 fm, the NLρ and
NLρδ models again give very similar results and repro-
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FIG. 8: (Color online) Reduced longitudinal (left panel) and
transverse (right panel) rapidity distributions of π− and π+ in
Au+Au collisions at E/A = 400 MeV and 3.74 fm< b < 6.74
fm. The experimental data are from the FOPI Collabora-
tion [30].

duce the FOPI data [30] except for π+ in the mid-yT re-
gion. We note that there are significant differences in the
pion transverse momentum spectrum at small pT among
transport models [31], as it is sensitive to the details in
the treatment of ∆ resonance of small mass. Also, the
pion in-medium effects [21–23] or optical potentials [32],
which are neglected in the present study, may affect the
production of low pT pions as well.

VI. SUMMARY

Using the relativistic Vlasov–Uehling-Uhlenbeck equa-
tion based on the nonlinear relativistic NLρ and NLρδ
mean-field models, we have studied the threshold ef-
fect on the pion yield and the π−/π+ ratio in Au+Au
collisions. We have found that besides enhancing the
pion yield and the π−/π+ ratio, the threshold effect also
reverses the effect of nuclear symmetry energy on the
π−/π+ ratio. Although including the threshold effect
leads to a better description of the measured π−/π+ ratio
from the FOPI Collaboration, it gives too large a total
pion yield compared to the experimental data. Intro-
ducing a density-dependence in the ∆ production cross
sections, we have been able to describe both the pion
yield and the π−/π ratio measured in experiments. Be-
cause of the small difference in the stiffness of their sym-
metry energies, the π−/π+ ratios from both the NLρ
and NLρδ models are found to be consistent with the
FOPI data within the experimental errors. Since the in-
medium threshold effect has an opposite effect on the
π−/π+ ratio in heavy ion collisions from the effect due
to the stiffness of nuclear symmetry energy at high den-
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sity, it is important to include this effect in extracting the
high-density behavior of nuclear symmetry energy from
the experimentally measured π−/π+ ratio. Such a study
is expected to affect the conclusion in Refs. [8, 9] that
a supersoft nuclear symmetry is needed to describe the
FOPI data.
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Appendix A: symmetry energy

Neglecting the σ and ω fields, which depend only on
the total nuclear density ρN and thus are not relevant
to the symmetry energy, the energy density of a nuclear
matter at zero temperature is

ǫ(ρN , ρI) =
∑

i=p,n

2

∫ pi

F d3p

(2π)3

√

m∗2
i + p2

+
1

8fδ
(m∗

n −m∗
p)

2 +
1

2
fρρ

2
I + · · · , (A1)

where δ3 = (m∗
n−m∗

p)/(2gδ) and (ρ3)0 = (gρ/m
2
ρ)ρI with

ρI = j0p − j0n.
The derivative of ǫ with respect to ρI is then

∂ǫ

∂ρI
=

(ppF )
2Ep

F

π2

∂ppF
∂ρI

+
(pnF )

2En
F

π2

∂pnF
∂ρI

+φp

∂m∗
p

∂ρI
+ φn

∂m∗
n

∂ρI
+ fρρI

+
1

4fδ
(m∗

n −m∗
p)

(

∂m∗
n

∂ρI
−

∂m∗
p

∂ρI

)

, (A2)

where piF and Ei
F are the Fermi momentum and energy of

nucleon type i, respectively, and φi is the scalar density
defined in Eq. (5), which has the explicit expression

φi =
m∗

i

2π2

[

Ei
F p

i
F −m∗2

i ln

(

Ei
F + piF
m∗

i

)]

(A3)

at zero temperature.
In terms of the relations

j0p =
1

2
(ρN + ρI) =

1

3π2
(ppF )

3,

j0n =
1

2
(ρN − ρI) =

1

3π2
(pnF )

3, (A4)

the derivatives of the Fermi momentum of protons and
neutrons with respect to ρI are, respectively,

∂ppF
∂ρI

=
π2

2(ppF )
2
,

∂pnF
∂ρI

= − π2

2(pnF )
2
. (A5)

Using Eq. (4)−(6), and (A3), the derivatives of the pro-
ton and neutron masses with respect to ρI are then

(

1 + fδAp

)

∂m∗
p

∂ρI
= −

fδm
∗
p

2Ep
F

− fδm
∗
n

2En
F

+ fδAn
∂m∗

n

∂ρI
,

(

1 + fδAn

)

∂m∗
n

∂ρI
=

fδm
∗
p

2Ep
F

+
fδm

∗
n

2En
F

+ fδAp

∂m∗
p

∂ρI
,

(A6)

where

Ap(p
p
F ,m

∗
p) =

∂φp

∂m∗
p

, An(p
n
F ,m

∗
n) =

∂φn

∂m∗
n

.

In symmetric nuclear matter (ρI = 0), Ap = An and
Ap +An = A(pF ,m

∗) reduces to Eq. (15).
Solving the simultaneous equations (A6) gives

∂m∗
p

∂ρI
= − fδ

1 + fδ(Ap +An)

(

m∗
p

2Ep
F

+
m∗

n

2En
F

)

,

∂m∗
n

∂ρI
= −

∂m∗
p

∂ρI
. (A7)

Therefore, Eq. (A2) vanishes at ρI = 0, that is

∂ǫ

∂ρI

∣

∣

∣

∣

ρI=0

= 0. (A8)

The nuclear symmetry energy is obtained in the same
way by taking the second derivative of ǫ with respect to
ρI , and the result is

Esym(ρN ) =
1

2
ρN

∂2ǫ

∂ρ2I

∣

∣

∣

∣

ρI=0

=
p2F
6EF

+
ρN
2

[

fρ −
fδm

∗2

E2
F {1 + fδA(pF ,m∗)}

]

, (A9)

where ppF = pnF = pF and m∗
p = m∗

n = m∗.

Appendix B: threshold energy in a medium

To illustrate how mean fields affect the threshold en-
ergy of a reaction in a medium, we consider for simplicity
the decay of ∆− into n and π−. In the frame of p∆− = 0,
the energy conservation gives

√
s =

√

m∗2
∆− + |Σ∆−|2 +Σ0

∆−

=
√

m∗2
n + |p−Σn|2 +Σ0

n +
√

m2
π + |p|2, (B1)

assuming the pion mass and momentum are not affected
by nuclear mean fields. Requiring the threshold for a ∆−

to decay to n and π− corresponds to |p| = 0 as in free
space, the minimum ∆− mass is then

m∗2
∆− = m∗2

n +m2
π + 2mπ

√

m∗2
n + |~Σn|2, (B2)
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where Σµ
∆− = Σµ

n from Eq. (21).

On the other hand, the minimum ∆− mass can be
found by minimizing Eq. (B1) with respect to |p|, that
is

∂
√
s

∂|p| = 0, (B3)

which leads to
{

m∗2
n −m2

π + |Σn|2 sin2 θ
}

|p|2

+2m2
π|Σn| cos θ|p| −m2

π|Σn|2 cos2 θ = 0, (B4)

where θ is the angle between p and Σn. If cos θ = 0,
i.e., p and Σn are perpendicular, then p = 0 and the
minimum value for ∆− mass is that given by Eq.(B2).

For cos θ = 1, i.e., p and Σn are in the same direction,√
s has instead the minimum value

√
s =

√

(m∗
n +mπ)2 + |Σn|2 +Σ0

n, (B5)

at |p| = mπΣn/(m
∗
n +mπ) or

m∗
∆− = m∗

n +mπ, (B6)

according to Eq. (B1), which is less than that given in
Eq. (B2). Therefore, the minimum or threshold ∆− mass
is not determined by |p| = 0 but by a nonvanishing p that
is in the same direction as Σn in the frame of p∆− = 0.
Transforming to the frame where p∗

n
+ p∗

π = 0, with
p∗
n = pn −Σn and p∗

π = pπ, the threshold energy then
corresponds to the condition of p∗

n
= p∗

π = 0.
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