
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Neutron drip line: Single-particle degrees of freedom and
pairing properties as sources of theoretical uncertainties

A. V. Afanasjev, S. E. Agbemava, D. Ray, and P. Ring
Phys. Rev. C 91, 014324 — Published 29 January 2015

DOI: 10.1103/PhysRevC.91.014324

http://dx.doi.org/10.1103/PhysRevC.91.014324


The neutron drip line: single-particle degrees of freedom and pairing properties as

sources of theoretical uncertainties.

A. V. Afanasjev,1 S. E. Agbemava,1 D. Ray,1 and P. Ring2

1Department of Physics and Astronomy, Mississippi State University, MS 39762
2Fakultät für Physik, Technische Universität München, D-85748 Garching, Germany

(Dated: January 9, 2015)

The sources of theoretical uncertainties in the prediction of the two-neutron drip line are analyzed
in the framework of covariant density functional theory. We concentrate on single-particle and
pairing properties as potential sources of these uncertainties. The major source of these uncertainties
can be traced back to the differences in the underlying single-particle structure of the various
covariant energy density functionals (CEDF). It is found that the uncertainties in the description
of single-particle energies at the two-neutron drip line are dominated by those existing already in
known nuclei. Only approximately one third of these uncertainties are due to the uncertainties in the
isovector channel of CEDF’s. Thus, improving the CEDF description of single-particle energies in
known nuclei will also reduce the uncertainties in the prediction of the position of two-neutron drip
line. The predictions of pairing properties in neutron rich nuclei depend on the CEDF. Although
pairing properties affect moderately the position of the two-neutron drip line they represent only a
secondary source for the uncertainties in the definition of the position of the two-neutron drip line.

PACS numbers: 21.10.Pc, 21.10.Jz, 27.40.+z, 27.60.+j, 27.70.+q, 27.80.+w, 27.90.+b

I. INTRODUCTION

The analysis of theoretical uncertainties in the predic-
tion of the position of the two-neutron and two-proton
drip-lines has recently attracted great interest [1–3] be-
cause of the possibility to estimate the number of nuclei
which may exist in nature. Fig. 1 shows an example of the
nuclear landscape and related theoretical uncertainties in
the definition of the position of the two-proton and two-
neutron drip lines which emerge from an analysis per-
formed in the framework of covariant density functional
theory (CDFT) [4, 5] using four state-of-the-art covari-
ant energy density functionals (CEDF’s). The detailed
comparison of these results with the ones obtained in
non-relativistic density functional theories (DFT’s) and
in the microscopic+macroscopic model has already been
presented in Refs. [2, 3]. The theoretical uncertainties
for the two-neutron drip line obtained in non-relativistic
and relativistic frameworks are comparable.
One can see that the largest uncertainties exist in the

position of the two-neutron drip line. Inevitably, the
question about possible sources of these uncertainties
emerges. Several sources have been proposed but they
have not been investigated in detail. For example, the
uncertainties in the position of the two-neutron drip line
were related to existing uncertainties in the definition
of isovector properties of the energy density functionals
(EDF’s) in Ref. [1]. Indeed, the isovector properties of
an EDF impact the depth of the nucleonic potential with
respect to the continuum, and, thus, may affect the loca-
tion of two-neutron drip line. However, an inaccurate re-
production of the depth of the nucleonic potential exists
in modern EDF’s also in known nuclei (see the discus-
sion in Sect. IVC of Ref. [7]). Thus, they alone cannot
explain the observed features. Moreover, the observed
differences in the prediction of the position of the two-

neutron drip line cannot be explained by the underlying
nuclear matter properties of the EDF’s [3].

Note that throughout this manuscript (as in Refs. [1–
3]) the position of two-neutron drip line is specified via
the two-neutron separation energy S2n = B(Z,N − 2)−
B(Z,N), the amount of energy needed to remove two
neutrons. Here B(Z,N) stands for the binding energy of
a nucleus with Z protons and N neutrons. If the separa-
tion energy is positive, the nucleus is stable against two-
neutron emission; conversely, if the separation energy is
negative, the nucleus is unstable. The two-neutron drip
line is reached when S2n ≤ 0.

Fig. 1 clearly illustrates that for medium and heavy
mass nuclei extreme extrapolations are necessary to reach
the two-neutron drip line. This figure also suggests that
only light nuclei with Z ≤ 28 and medium mass nuclei
with Z ∼ 38 may be experimentally studied in the vicin-
ity of the two-neutron drip line with future facilities such
as FRIB, RIKEN, GANIL, or FAIR.

In Ref. [2] it has been suggested that the position of
the two-neutron drip line depends also sensitively on the
underlying shell structure and the accuracy of the de-
scription of the single-particle energies. Indeed, the shell
structure effects are clearly visible in the fact that for
some values of the proton number Z there is basically no
(or only very little) dependence of the predicted location
of the two-neutron drip line on the EDF (see Fig. 1 in
the present paper and Refs. [1–3]). However, no detailed
study of this aspect of the problem has been performed
so far.

Another interesting question is the impact of pairing
and its strength on the position of the two-neutron drip
line. It has been found that they play an important role
in the region of the drip line [8, 9]. Virtual neutrons
pairs can be scattered to the continuum. This leads in
some cases to enhanced pairing correlations and to an
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FIG. 1. (Color online) The nuclear landscape as provided by state-of-the-art CDFT calculations. The uncertainties in the
location of the two-proton and two-neutron drip lines are shown by violet shaded areas. They are defined by the extremes of
the predictions of the corresponding drip lines obtained with the different functionals. The uncertainties (the range of nuclei)
in the location of the neutron chemical potential λn = −2.0 MeV are shown by the blue shaded area. Experimentally known
stable and radioactive nuclei (including proton emitters) are shown by black and green squares, respectively. The green solid
line shows the limits of the nuclear chart (defined as fission yield greater than 10−6) which may be achieved with dedicated
existence measurements at FRIB [6]. Red solid circles show the nuclei near the neutron drip line for which the single-particle
properties are studied in Sect. V. The figure is partially based on the results presented in Fig. 4 of Ref. [2].

increasing of the binding.

The effective pairing interaction is treated in DFT in a
phenomenological way with its strength fixed by a fit to
experimental observables such as odd-even mass stagger-
ings [3, 10] or moments of inertia in rotating nuclei [11].
While in light nuclei the comparison with experiment in
the vicinity of two-neutron drip line will be possible in
future, the situation is different in medium and heavy
mass nuclei for which the neutron drip line is located
far away from existing or future experimental data. As
a consequence, it will be impossible to verify whether
the model calculations reproduce correctly the changes
in pairing with increasing isospin in the experimentally
unknown region of the nuclear landscape. Thus, theo-
retical uncertainties in the definition of pairing in such
nuclei and their impact on the position of two-neutron
drip line have to be estimated.

The main goal of the current manuscript is to inves-
tigate the impact of pairing correlations and the under-
lying shell structure on the position of the two-neutron
drip line and to outline the approaches which will allow
in future to decrease theoretical uncertainties in the def-
inition of two-neutron drip lines.

We would like to emphasize that we discuss only sys-

tematic uncertainties and do not consider statistical er-

rors which can be calculated from a statistical analysis
during the fit [12]. Note that the number of employed co-
variant energy density functionals is rather limited and
that they do not form a statistically independent ensem-

ble because they are based on very similar terms in the
CDFT Lagrangian [3]. Thus, these systematic theoreti-
cal uncertainties are only a crude approximation to the
systematic theoretical errors discussed in Ref. [12].
The manuscript is organized as follows. The global

behavior of pairing properties obtained in relativistic
Hartree-Bogoliubov (RHB) calculations with four differ-
ent CEDF’s and their dependence on the specific CEDF
is analysed in Sect. II. The impact of pairing on the po-
sition of two-neutron drip line is discussed in Sect. III.
Sect. IV outlines the parts of the nuclear chart in which
the coupling with the continuum will (or will not) affect
future experimental data obtained with the next genera-
tion of experimental facilities such as FRIB. The role of
the shell structure and the influence of the uncertainties
in the single-particle energies on the two-neutron drip
line and the uncertainties in its definition are discussed
in Sect. V. Finally, Sect. VI summarizes the results of
our work and gives conclusions.

II. PAIRING PROPERTIES: A GLOBAL VIEW

A. Pairing indicators

In investigations based on relativistic or non-
relativistic density functional theory it is not a trivial
task to deduce from the self-consistent solutions of the
Hartree-Bogoliubov or Hartree-Fock-Bogoliubov equa-
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FIG. 2. (Color online) Neutron pairing energies Epairing obtained in the RHB calculations with the indicated CEDF’s.
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tions the size of the pairing correlations and to char-
acterize it by one number. Apart from the trivial case
of monopole pairing, where the pairing field is a mul-
tiple of unity, in calculations based on a more realistic
particle-particle force the pairing field has a complicated
structure. In calculation in a configuration space it is a
complicated matrix with many diagonal and off-diagonal
matrix elements ∆nn′ and in r-space it is in general a
non-local function ∆(r, r′). Only for effective interac-
tions of zero range this reduces to a local function ∆(r).
In practice two measures for the size of pairing corre-

lations have been used, namely, the pairing gap ∆, which
represents the order parameter for the phase transition
from a normal fluid to a superfluid, and the pairing en-
ergy Epairing, the expectation value of the effective pair-
ing force in the nuclear ground state. Of course, both
quantities have to be given for neutrons and protons sep-
arately and they will be discussed in detail in the present
section.
In addition, pairing correlations also reveal themselves

through the position of the chemical potentials for neu-
trons and protons and their evolution with particle num-
ber. These quantities are extremely important for the
precise definition of the positions of the neutron and pro-
ton drip lines and the regions of the nuclear chart where
the coupling with the continuum may become important.
They will be discussed in Sect. IV.
At present, as discussed in Ref. [3] several definitions of

the pairing gap ∆ exist. However, the analysis presented
in Sect. IV of this manuscript clearly indicates that in
even-even nuclei the ∆uv values

∆uv =

∑

k ukvk∆k
∑

k ukvk
(1)

provide the best agreement with the pairing indicators
deduced from odd-even mass staggerings. Here the values
∆k are the diagonal matrix elements of the pairing field in
the canonical basis [13] and the BCS occupation numbers
u2
k and v2k are calculated from the usual BCS expression

u2
k

v2k

}

=
1

2

(

1±
ǫk − λ

√

(ǫk − λ)2 +∆2
k

)

(2)

where ǫk = hkk are the diagonal matrix elements of the
mean field hamiltonian in the canonical basis. The pair-
ing gap ∆uv averages the matrix elements ∆k in Eq. (1)
with the weights ukvk; these are the quantities concen-
trated around the Fermi surface.
An alternative measure of the size of pairing correla-

tions in theoretical calculations is the so-called pairing
energy Epairing. In Hartree-(Fock)-Bogoliubov calcula-
tions it is defined as

Epairing = −
1

2
Tr(∆κ) = −

∑

k>0

∆kukvk. (3)

Note that this is not an experimentally accessible quan-
tity. For zero range pairing forces it has in addition the

unpleasant property that it diverges with the energy cut-
off, i.e. with the size of the pairing window. This can also
be seen for the case of a monopole pairing force [13]

V pp = GS†S, with S† =
∑

k>0

a†ka
†

k̄
, (4)

where the gap parameter

∆ = G〈S†〉, (5)

is the product of the strength G of the force and the
expectation value of the pair operator S†

〈S†〉 =
∑

k>0

ukvk. (6)

In this case the ∆uv = ∆ is finite, because for fixed size
of the pairing window it is adjusted to experimental odd-
even mass differences. However, 〈S†〉 diverges and G
vanishes with an increasing pairing window. As a conse-
quence the pairing energy

Epairing = −G〈S†〉〈S〉 = −
1

G
∆2. (7)

diverges with increasing pairing window too. The same
is true for zero range pairing forces.
From these considerations it is evident, that zero range

pairing forces are reliable only in the regions where exper-
imental gap parameters are available. Their predictive
power for the regions far away from these regions might
be considerably reduced (see also Ref. [14], where it has
been shown that the heights of fission barriers depend in
the case of zero range forces on the pairing window).

B. Pairing force

In order to avoid the uncertainties connected with the
definition of the size of the pairing window, we use in all
the RHB calculations discussed in this manuscript the
separable pairing interaction of finite range introduced
by Tian et al [15]. Its matrix elements in r-space have
the form

V (r1, r2, r
′
1, r

′
2) =

= −f Gδ(R−R
′ )P (r)P (r′)

1

2
(1− P σ) (8)

with R = (r1 + r2)/2 and r = r1 − r2 being the center
of mass and relative coordinates. The form factor P (r)
is of Gaussian shape

P (r) =
1

(4πa2)3/2
e−r2/4a2

(9)

The two parameters G = 738 fm3 and a = 0.636 fm of
this interaction are the same for protons and neutrons
and have been derived in Ref. [15] by a mapping of the
1S0 pairing gap of infinite nuclear matter to that of the
Gogny force D1S [16].
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FIG. 3. (Color online) Neutron pairing gaps ∆uv and pairing energies Epairing of the Yb nuclei located between the two-proton
and two-neutron drip-lines obtained in the axial RHB calculations with the indicated CEDF’s. The shaded yellow area indicates
experimentally known nuclei. The ’DD-PC1(scaled)’ curves show the results of the calculations in which the pairing strength
is increased by 3.5%.

The scaling factor f in Eq. (8) is determined by a fine
tuning of the pairing strength in a comparison between
experimental moments of inertia and those obtained in
cranked RHB calculations with the CEDF NL3* (see Ref.
[3] for details). It is fixed at f = 1.0 in the Z ≥ 88
actinides and superheavy nuclei, at f = 1.075 in the 56 ≤
Z ≤ 76 and at f = 1.12 in the Z ≤ 44 nuclei. Between
these regions, i.e. for 44 ≤ Z ≤ 56 and for 76 ≤ Z ≤ 88,
the scaling factor f gradually changes with Z in a linear
interpolation. The weak dependence of the scaling factor
f on the CEDF has been seen in the studies of pairing
and rotational properties in the actinides in Refs. [11, 17]
and pairing gaps in spherical nuclei in Ref. [3]. Thus, the
same scaling factor f as defined above for the CEDF
NL3* is used in the calculations with DD-PC1, DD-ME2
and DD-MEδ. Considering the global character of this
study, this is a reasonable choice.

C. Other details of the numerical calculations

In the present manuscript, the RHB framework is used
for a systematic studies of ground state properties of
all even-even nuclei from the proton- to neutron drip
line. We consider only axial and parity-conserving in-
trinsic states and solve the RHB-equations in an axially
deformed oscillator basis [18–20]. The truncation of the
basis is performed in such a way that all states belonging

to the shells up to NF = 20 fermionic shells and NB = 20
bosonic shells are taken into account. As tested in a
number of calculations with NF = 26 and NB = 26 for
heavy neutron-rich nuclei, this truncation scheme pro-
vides sufficient numerical accuracy. For each nucleus the
potential energy curve is obtained in a large deformation
range from β2 = −0.4 up to β2 = 1.0 by means of a
constraint on the quadrupole moment Q20. Then, the
correct ground state configuration and its energy are de-
fined; this procedure is especially important for the cases
of shape coexistence.

The absolute majority of nuclei are known to be axi-
ally and reflection symmetric in their ground states [21].
The global calculations performed in the RHB frame-
work with allowance of reflection symmetric (octupole
deformed) shapes and with DD-PC1 CEDF confirm these
results and clearly show that octupole deformation does
not affect the ground states of the nuclei located in the
vicinity of two-neutron drip line [22]. Similar results are
expected for other CEDF’s. At present, triaxial RHB [23]
calculations are too time-consuming to be undertaken on
a global scale. However, even if triaxial deformation is
present in some nuclei in the vicinity of two-neutron drip
line, its presence will not affect the conclusions obtained
in the present manuscript.
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D. Global pairing properties

Fig. 2 compares neutron pairing energies Epairing ob-
tained with four CEDF’s. In the region of known nuclei
these energies are, in general, quite comparable. They
are very similar in the RHB calculations with the three
CEDF’s DD-ME2, DD-MEδ, and DD-PC1 CEDF’s with
density dependent coupling constants and slightly higher
(in absolute values) in the ones with the CEDF NL3*.
However, on approaching the two-neutron drip line, sub-
stantial differences develop between the pairing energies
in the RHB calculations with these four CEDF’s. For
DD-PC1 and DD-MEδ the largest increase of neutron
pairing energies is seen near the two-neutron drip line be-
tween N = 50 and N = 126, for other nuclei in the vicin-
ity of two-neutron drip line this increase is more modest.
These increases in neutron pairing energy on approaching
two-neutron drip line become more pronounced in DD-
ME2 (as compared with DD-PC1 and DD-MEδ) and they
are especially pronounced in NL3*. For the later CEDF,
the absolute values of neutron pairing energies are by
factor of 3-4 higher near the two-neutron drip line than
those in known nuclei (Fig. 2). This difference reduces
to a factor 2 for the DD-ME2 CEDF and becomes even
smaller for the DD-MEδ and DD-PC1 CEDF’s (Fig. 2).
In this context we have to keep in mind, that the param-
eter set NL3* has no density dependence in the isovector
channel. Therefore, as discussed in detail in Ref. [3] the
symmetry energy and the slope of the symmetry energy
at saturation is considerably larger in this case than in
the other three cases.

In Fig. 3 we compare for four CEDF’s the evolution
of the neutron pairing gaps ∆uv and pairing energies
Epairing as a function of the neutron number in the chain
of the Yb isotopes with Z = 70. One can see that in
the RHB calculations with the three density dependent
sets DD-MEδ, DD-ME2 and DD-PC1 the pairing gaps
∆uv in neutron-rich N ≥ 126 nuclei have on average the
same magnitude as pairing gaps in known nuclei (Fig.
3a). However, the absolute pairing energies are larger
by a factor of about 2 in neutron-rich nuclei as com-
pared with the ones in known nuclei. Note that both
∆uv and Epairing are more or less constant in neutron-
rich nuclei in the RHB calculations with DD-PC1 and
DD-MEδ. On the contrary, a slight increase of the abso-
lute values of these quantities is observed with increasing
isospin in DD-ME2.

The situation is different for the CEDF NL3*. Its pair-
ing correlations are only slightly stronger in known nuclei
as compared with the density dependent CEDF’s. How-
ever, more pronounced differences are seen when the re-
sults in neutron-rich nuclei are compared with the ones in
known nuclei. The pairing gaps ∆uv are on average 25%
larger in neutron-rich nuclei as compared with known
ones and, in addition, they gradually increase with neu-
tron number. The absolute values of the pairing ener-
gies rapidly increase with neutron number in neutron-rich
N ≥ 126 nuclei; near two-proton drip line these energies

are larger by a factor of 4 than average pairing energies
in known nuclei.
Considering the existing differences in the ∆uv and

Epairing values obtained in the calculations with different
CEDF’s in known nuclei (curves in shaded area of Fig. 3),
it is important to understand to which extent the mini-
mization of these differences will also remove the differ-
ences in these quantities in neutron-rich nuclei. In order
to address this question, the calculations with the DD-
PC1 CEDF have been performed with a pairing strength
increased by 3.5%. In the region of known nuclei, the ∆uv

values obtained in these calculations are on average the
same as the ones obtained in the calculations with NL3*
CEDF (Fig. 3a). The pairing energies are also similar
in both calculations (Fig. 3b). However, in the region
of experimentally known nuclei the isospin dependences
of the quantities ∆uv and Epairing are slightly different
in these calculations with NL3* and DD-PC1 CEDF’s.
These differences increase with isospin; they are espe-
cially pronounced near the two-neutron drip line. This
effect may be related to different density dependence of
these two CEDF’s in the isovector channel.
The strong dependence of the predictions for neutron

pairing on the underlying functional is also seen in the
fact that Skyrme DFT calculations for the spherical nu-
clei with large proton gaps [24] show the reduction of
neutron pairing towards the neutron drip line, which,
however, is overcast by strong shell effects. This anal-
ysis is based on the ∆lcs pairing gaps (for definition see
Ref. [25] and Sect. IV of Ref. [3]) in even-even nuclei.
However, it was found in Ref. [3] that the ∆uv pairing
gaps used in the present calculations reproduce the ex-
perimental odd-even mass staggerings in a considerably
better way than the ∆lcs pairing gaps.

E. Comments on pairing uncertainties

These results have some unpleasant consequences.
First, even a careful fitting of the pairing force in known
nuclei to experimental odd-even mass staggerings will not
necessary lead to a pairing force with a reliable predic-
tive power towards the two-neutron drip line. Indeed, the
∆uv and Epairing values obtained in the calculations with
the CEDF’s NL3* and DD-PC1 (with a scaled pairing
strength) differ by ∼ 30% and ∼ 100% in neutron-rich
nuclei, respectively, despite the fact that they are more
or less similar in known nuclei. Second, since the form
of pairing force is the same in both calculations, the ob-
served differences in the quantities ∆uv and Epairing have
to be traced back to the underlying shell structure and
its evolution with neutron number. As discussed in detail
in Sect. V, this is the property most poorly constrained
in modern DFT’s.
Note that in Ref. [3], the selection of scaling factors f

for separable pairing has been guided by the comparison
of experimental data with different calculations based on
the CEDF NL3*. The same scaling factors f were used
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here also in the calculations with DD-PC1, DD-ME2 and
DD-MEδ. The spread in the calculated values ∆uv val-
ues in known nuclei indicates that the scaling factors f
used in Ref. [3] are reasonable to a within few % (see also
Sec. IV in Ref. [3] and Fig. 3 in the present paper). The
weak dependence of the scaling factor f on the CEDF
has already been seen in the studies of pairing and rota-
tional properties in the actinides [11, 17]. Considering
the global character of the study in Ref. [3], this is a rea-
sonable choice. Definitely there are also some nuclei in
which the choice of the scaling factors f is not optimal.
Fig. 3 shows also some very promising facts. The

predictions for pairing in nuclei with large neutron ex-
cess, i.e. far from the experimentally accessible region
are very similar for the three density dependent param-
eter sets DD-ME2, DD-MEδ and DD-PC1. In particu-
lar, the results for DD-MEδ and DD-PC1 are very close.
Apart from the fact that both sets are relativistic func-
tionals these two sets are rather different: DD-MEδ has
a finite range meson exchange and DD-PC1 has zero
range, DD-MEδ has been fitted to spherical nuclei and
DD-PC1 to deformed nuclei. Both of them, however,
are adjusted carefully to ab initio calculations of nu-
clear matter, DD-PC1 to the non-relativistic variational
calculations of the Urbana group [26] and DD-MEδ to
the non-relativistic Brueckner-Hartree-Fock calculations
of the Catania group [27] as well as to the relativis-
tic Brueckner-Hartree-Fock calculations of the Tübingen
group [28]. Besides these ab initio inputs the set DD-MEδ
uses only four free parameters fitted to finite nuclei. It
is also seen that the parameter set DD-ME2 shows for
large neutron excess slight deviations from the other two
density dependent sets. This might be connected with
the fact, that this CEDF has no ab initio input and that
the proper isospin dependence is more difficult do deduce
from present experimental data in nuclei located mostly
in the vicinity of the valley of beta-stability.

III. THE IMPACT OF PAIRING PROPERTIES

ON THE POSITION OF TWO-NEUTRON DRIP

LINE

A. The example of the Rn isotopes

Having in mind that there are differences in the pre-
dicted size of pairing correlations for nuclei with large
neutron excess, it is important to understand how they
affect the physical observables of interest, in particular
the position of the two-neutron drip line. To address this
question we analyze the chain of the Rn isotopes with
Z = 86. The calculations of Refs. [2, 3] show that the
two-neutron drip line is located in this case at N = 206
for NL3* and at N = 184 for DD-ME2, DD-MEδ, and
DD-PC1 (see Table IV in Ref. [3]).
First, we perform RHB calculations with the set NL3*

and with a pairing strength decreased by 8% as compared
to the one used in Ref. [3]. This brings the calculated
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potential λn (panel (a)), neutron quadrupole deformation β2

(panel (c)), neutron pairing gap ∆uv (panel (b)) and neutron
pairing energy Epairing (panel (d)) as a function of the neu-
tron number N in the Rn isotopes with N ≥ 184 obtained
in RHB calculations with the CEDF NL3*. Only the results
for bound nuclei are shown. The results of the calculations
for two values of the strength of the pairing force (Eq. (8))
are presented. The calculational scheme labelled “A” corre-
sponds to the pairing force with the scaling factor f defined
in Sect. II B. The calculational scheme “B” uses a pairing
strength reduced by 8% as compared with the scheme “A”.

pairing energies near the two-neutron drip line close to
those obtained in the calculations with DD-ME2, DD-
MEδ, and DD-PC1 (compare Figs. 2 and 4d). This de-
crease of pairing strength has a significant impact on the
Rn isotopes near the two-neutron drip line and the posi-
tion of the two-neutron drip line. Indeed, the Rn isotopes
with N = 186, 188, 190, 202, 204 and 206, which are
bound for the original pairing strength (scheme “A”), be-
come unbound for decreased pairing (scheme “B”). Thus,
the position of two-neutron drip line located at N = 206
is single-valued in calculational scheme A. On the con-
trary, in the calculational scheme B the creation of the
peninsula of stability at N = 192 − 200 leads to pri-
mary (at N = 184) and secondary (at N = 200) two-
neutron drip lines. In addition, the deformations of the
N = 192 − 200 isotopes become larger in calculational
scheme B (Figs. 4c). This reflects the well known fact
that pairing typically tries to reduce the nuclear defor-
mation.
However, the situation is more complicated. Larger

pairing correlations do not necessarily shift the neutron
drip line to larger neutron numbers. When we increase,
for instance, in the RHB calculations with DD-ME2 and
DD-PC1 the pairing strength by 8%, bringing the calcu-
lated pairing energies closer to those for NL3*, this does
not affect the position of the two-neutron drip line for
the chain of Rn isotopes in these CEDF’s because of the
details of the underlying shell structure.
The possible impact of pairing correlations on the po-

sition of the two-neutron drip line can be understood by
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FIG. 5. (Color online) The bound nuclei in the range 82 ≤ Z ≤ 104 found in RHB calculations with the CEDF’s NL3* and
DD-ME2. In both panels, green solid squares show the bound nuclei obtained in Ref. [3]. Red (orange) solid circles in the top
(bottom) panel show the bound nuclei obtained in RHB calculations with NL3* (DD-ME2) with a pairing strength decreased
(increased) by 8%. For comparison, in the bottom panel the last bound nucleus for each isotope chain obtained in Ref. [3] with
the set NL3* is shown by a solid black diamond for 86 ≤ Z ≤ 102; the results for Z = 82, 84, and 104 are identical for NL3*
and DD-ME2. In all calculational schemes the nuclei with N ≤ 184 are bound and the ones with N > 258 are unbound.

the following arguments: The nucleus becomes unbound
when the two-neutron separation energy becomes nega-
tive. In the majority of the cases (see discussion in Sect.
III B) it takes place when the neutron chemical poten-
tial λn becomes positive. In nuclei close to two-neutron
drip line pairing correlations scatter neutron pairs from
negative energy bound states into positive energy un-
bound states. As a consequence, the actual position of
the neutron chemical potential depends on the energies
of the involved levels, their degeneracy and the strength
of pairing correlations. In the extreme limit of no pair-
ing, λn is equal to the negative energy of last occupied
state. For example, this takes place in the Rn isotope
with N = 184 (Fig. 4a and b). Note that the situation
in nuclei with large shell gaps is very close to this limit

since these gaps strongly quench pairing correlations [29].
For a realistic pairing and for a typical shell structure of
nuclei close to the drip line (see, for example, Fig. 6) the
neutron chemical potential will be close to the zero en-
ergy (Fig. 4a). The increase of neutron number above
N = 190 triggers the development of deformation (Fig.
4c) which activates a new mechanism. Now the degen-
eracy of states goes down from 2j + 1 to 2 and intruder
orbitals from above the gap and extruder orbitals from
below the gap start to close the spherical N = 184 gap;
this mechanism is active in the vicinity of any spherical
shell gap and clearly seen in the Nilsson diagram (see,
for example, Fig. 15 in Ref. [11]). This mechanism com-
bined with the gradual increase of the deformation and
neutron number allows to keep the neutron chemical po-



9

tential in the vicinity of zero energy for an extended range
of neutron numbers (Fig. 4a). However, increasing pair-
ing correlations produce additional binding and can shift
in some cases the neutron chemical potential below zero
energy thus making the nucleus bound. The opposite can
happen for decreasing pairing correlations.

B. The numerical comparison of two definitions of

bound and unbound nuclei and the positions of

two-neutron drip line.

Occasionally, in the literature the position of the two-
neutron drip line is defined via the neutron chemical po-
tential λn = dE/dN as a point (nucleus) of the transition
from negative λn (“bound” nuclei) to positive λn (“un-
bound” nuclei) values. This definition depends on the
employed pairing model. In addition, it presents a linear
approximation in a Taylor expansion and therefore it ig-
nores non-linear effects like shape changes on going from
the (Z,N − 2) to the (Z,N) nucleus and their contribu-
tion to S2n. However, this definition leads in approxi-
mately two thirds of the cases to the same two-neutron
drip line as obtained in the definition of the two-neutron
drip line via the separation energies. In the remaining
one third of the cases, it leads to a two-neutron drip line
which is two neutrons short of the two-neutron drip line
defined via the separation energies; the nucleus which is
unbound (as defined via the chemical potential) has in
most of the cases a low positive value of λn ≤ 0.05 MeV.
Only in two cases, the difference of the positions of two-
neutron drip line, defined via the separation energies and
the chemical potential, reaches four neutrons. These re-
sults were obtained from the calculations of Refs. [2, 3]
by analysing the two-neutron drip line positions of 60
isotopic chains for 4 different CEDF’s.
It is also important to mention that in the Rn iso-

topes discussed in the previous subsection, both defini-
tions (via the chemical potential and via the two-neutron
separation energies) give the same bound and unbound
nuclei, and, thus, the same primary and secondary two-
neutron drip lines. This clearly allows to trace back the
distinction between bound and unbound nuclei (and thus
the position of two-neutron drip line) to the underlying
single-particle structure and the properties of the pairing
interaction which together define the position of chemical
potential (see Sect. VD below).

C. Two-neutron drip line for the Z = 84− 104 nuclei

In order to address the impact of the pairing strength
on the position of the two-neutron drip line in a more
global way, the two-neutron drip lines for the Z =
82 − 104 isotope chains have been studied in a similar
fashion as for the Rn isotopes above. This means that the
pairing strength in the RHB calculations with NL3* (DD-
ME2) has been decreased (increased) by 8% as compared

with the one employed in Ref. [3] and the results for the
two-neutron drip lines with the original and the modified
strength of the pairing have been compared. These two
functionals were selected because of two reasons. First,
among the four CEDF’s used in Ref. [2, 3], the CEDF’s
NL3* and DD-ME2 lead to the most neutron-rich and
neutron-poor two-neutron drip lines in the Z = 82− 104
range, respectively. Second, as shown in Figs. 6c and d,
considerable similarities are seen for the neutron-single
particle spectra in these two CEDF’s.
Fig. 5 shows the results of such a comparison. One

can see that the change of the pairing strength has an
impact on the two-neutron drip line. With few excep-
tions, stronger pairing leads to the two-neutron drip line
located at larger neutron number N . However, the shift
of the drip line is quite modest for most of the val-
ues of Z. On the other hand, the peninsulas in the
nuclear landscape, the physics of which has been dis-
cussed in detail in Sect. IV of Ref. [3] and in Ref. [2],
appear more frequently in the calculations with weaker
pairing. The gaps in isotope chains, leading to such
peninsulas, are present at (Z = 92, N = 186− 192) and
(Z = 104, N = 236 − 240) in the calculations with DD-
ME2 (Fig. 5b) and at (Z = 86, N = 186 − 190) and
(Z = 88, N = 186 − 190) in the calculations with NL3*
(Fig. 5a). Although the pairing has an effect on the po-
sition of the two-neutron drip line, the comparison of the
results obtained with the DD-ME2 and NL3* CEDF’s in
Fig. 5 suggests that its impact is only secondary to the
one which is coming from the underlying shell structure
of the functional discussed in Sect. V.

IV. LIMITS FOR THE COUPLING WITH THE

CONTINUUM

Another interesting question is which future experi-
mental data in neutron-rich nuclei will be at least mod-
erately affected by the coupling with the continuum. If
the Fermi energy is close to the continuum limit the pair-
ing interaction causes a substantial scattering of the pairs
from discrete single-particle levels below the Fermi sur-
face to the levels in the continuum. Of course, with the
present method to solve the RHB-equations by an expan-
sion in a discrete set of oscillators the details of this cou-
pling, as for instance the occurrence of halo phenomena
[30, 31], cannot be described properly because oscillator
wave functions are of Gaussian shape and decay rather
rapidly for large radial distances. However, for the ma-
jority of nuclei with well localized and sharply dropping
density distributions at the nuclear surface, oscillator ex-
pansions have turned out to provide a very successful
description of the gross properties of the coupling to the
continuum. In particular, the ground states of nuclei
with a Fermi level well separated from the continuum
(by at least the size of neutron pairing gap) are very
well described by oscillator expansions. For medium and
heavy mass nuclei the pairing gap at the Fermi surface is
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FIG. 6. (Color online) Neutron single-particle states at spherical shape in the nuclei 114Ge, 180Xe, 266Pb, and 366Hs determined
with the indicated CEDF’s in calculations without pairing. Solid and dashed connecting lines are used for positive and negative
parity states. Spherical gaps are indicated; all the states below these gaps are occupied in the ground state configurations.

smaller than 2 MeV and the coupling to the continuum is
strongly reduced in such cases. Thus, in order to have a
qualitative measure for the importance of the coupling to
the continuum, the value of neutron chemical potential
λn = −2.0 MeV can be used as a safe limit for which a
measurable effect of the coupling to the continuum can
be expected.

We therefore compare in Fig. 1 the position of neu-
tron chemical potential λn = −2.0 MeV (with its theo-
retical uncertainties shown by blue shaded area) with a
possible extension (green solid line) of the experimentally
known part of the nuclear landscape by means of the new
facilities for rare isotope beams (as for instance FRIB,
RIKEN, GANIL or FAIR). The nuclear landscape of Fig.
1 as well as neutron chemical potential are obtained with
four state-of-the-art CEDF’s (NL3*, DD-ME2, DD-PC1
and DD-MEδ) [2]. Considering the discussion above, Fig.
1 suggests that in future experiments the region of nu-
clei with measurable coupling with the continuum is re-
stricted to Z ≤ 50. For higher Z nuclei, future experi-
mental data on neutron-rich nuclei can be safely treated
without accounting of the coupling with the continuum.

V. SHELL STRUCTURE AND

SINGLE-PARTICLE ENERGIES AT THE

TWO-NEUTRON DRIP LINE.

A. Single-particle shell structure for dripline nuclei

at neutron shell closures

It was suggested in Ref. [2] that the position of the two-
neutron drip line sensitively depends on the underlying
shell structure and that the uncertainties of the theoret-
ical predictions of the neutron drip-line depend on the
accuracy of the description of the single-particle ener-
gies. Indeed, the shell structure effects are clearly visible
in the fact that for some combinations of Z and N there
is basically no (or very little) dependence of the predicted
location of the two-neutron drip line on the EDF [2, 3]
(see Fig. 1 of the present paper and Refs. [1–3]). Such a
weak (or vanishing) dependence, seen in all model calcu-
lations, is especially pronounced at the spherical neutron
shell closures with N = 126 and 184 around the pro-
ton numbers Z = 54 and 80, respectively. In addition,
a similar situation is seen in the CDFT calculations at
N = 258 and Z ∼ 110 (Fig. 1).



11

Although it has been pointed out in Ref. [2] that these
features are due to the large neutron shell gaps at the
magic neutron numbers, these gaps and their dependence
on the CEDF have not been explored in detail. In or-
der to fill this gap in our knowledge, we will perform
a detailed investigation of the shell structure of nuclei
in the areas where the spread in the predictions for the
position of two-neutron drip line is either non-existent
or very small. These are the nuclei 114

32Ge82,
180
54Xe126,

266
82Pb184, and

366
108Hs258 and their location in the nuclear

chart is shown in Fig. 1. The neutron single-particle or-
bitals active in the vicinity of the Fermi level of these
nuclei are shown in Fig. 6. In order to create a more
representative statistical ensemble, the calculations have
been performed with 10 CEDF’s. Amongst those are first
the CEDF’s NL3* [32], DD-ME2 [33], DD-MEδ [34] and
DD-PC1 [35] used earlier in Ref. [3] for a global study
of the performance of the state-of-the-art CEDF’s. For
these CEDF’s, the two-neutron drip lines are defined in
model calculations up to Z = 120 in Refs. [2, 3]. Only
these four CEDF’s were used in the definition of theoret-
ical uncertainties in the position of two-neutron drip line
shown in Fig. 1. In addition, we employ now the CEDF’s
NL3 [36], NL1 [37], FSUGold [38], PC-F1 [39], PC-PK1
[40], and TM1 [41] in a study of the shell structure. Note,
that two-neutron drip lines have not been studied with
these six CEDF’s so far.
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FIG. 7. (Color online) Neutron shell gaps ∆Egap for the nu-
clei under study. The average (among ten used CEDF’s) size
of the shell gap is shown by a solid circle. Thin and thick
vertical lines are used to show the spread of the sizes of the
calculated shell gaps; the top and bottom of these lines cor-
responds to the largest and smallest shell gaps amongst the
considered set of CEDF’s. Thin lines show this spread for all
employed CEDF’s, while thick lines are used for the subset of
four CEDF’s (NL3*, DD-ME2, DD-MEδ and DD-PC1). Neu-
tron numbers corresponding to the shell gaps are indicated.

The results of the calculations with all these CEDF’s
clearly show the presence of large neutron shell gaps at
N = 126 in 180Xe, at N = 184 in 266Pb and at N = 258
in 366Hs and a smaller N = 82 gap in 114Ge (see Fig.
6). The average sizes of these gaps and the spreads in
their predictions are summarized in Fig. 7. The gaps

at N = 126 and 184 are around 4 MeV and they are
the largest amongst these four gaps. The gap at N =
258 is the smallest and it is slightly larger than 2 MeV.
Neutron pairing is typically quenched at these gaps (see
Fig. 2). Definitely, the substantial size of the gap and the
quenching of neutron pairing lead to a decrease of the
uncertainties in the prediction of the two-neutron drip
lines. Indeed, the largest uncertainties in the position of
two-neutron drip line exist around 114Ge (Fig. 1), where
the neutron N = 82 shell gap is the smallest among the
above discussed nuclei. It is interesting that the spreads
in the prediction of the size of these gaps decrease with
the increase of the neutron number.
These gaps are also compared with the calculated gaps

in the doubly magic nuclei 56Ni, 100Sn, 132Sn and 208Pb
(Fig. 7). The experimentally known gaps of these nuclei
are reasonably well described in the relativistic calcula-
tions with particle-vibration coupling of Ref. [7, 42] with
the CEDF NL3*. The general trend of the decrease of the
size of the neutron gaps with neutron number is clearly
visible. However, the N = 126 gap in 180Xe and the
N = 184 gap in 266Pb are only by one MeV smaller than
the N = 126 gap in doubly magic 208Pb. It is also im-
portant to mention that for the nuclei with N = 82 and
N = 126 the spread of theoretical predictions with re-
spect to the size of the gap only slightly increases on going
from known nuclei towards nuclei in the vicinity of two-
neutron drip line. On the contrary, this spread decreases
appreciably for the nuclei 266Pb and 366Hs as compared
with lighter nuclei (Fig. 7). These results clearly suggest
that the pronounced shell structure at the well known
major shells still survives in the nuclei close to the two-
neutron drip line (see also an early investigation in this
direction in Ref. [43]).

B. Further indicators for the two-neutron shell gap

This is also illustrated in Fig. 8 where the quantity
δ2n(Z,N) defined as

δ2n(Z,N) = S2n(Z,N)− S2n(Z,N + 2) = (10)

= −B(Z,N − 2) + 2B(Z,N)−B(Z,N + 2).

is shown for the four CEDF’s whose global performance
has been studied in Ref. [3]. Here B(N,Z) is the bind-
ing energy. The quantity δ2n(Z,N), being related to
the second derivative of the binding energy as a func-
tion of nucleon number, is a more sensitive indicator of
the local decrease in the single-particle density associated
with a shell gap than the two-nucleon separation energy
S2n(Z,N).
In the literature, the quantity δ2n(Z,N) is frequently

called as two-neutron shell gap. However, as discussed
in detail in Ref. [17], many factors (such as deforma-
tion changes and pairing) beyond the size of the single
particle shell gap ∆Egap shown in Fig. 7 contribute to
δ2n(Z,N). For example, for some (Z,N) values in Fig.
8, δ2n(Z,N) becomes negative because of deformation
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changes. Since by definition the shell gap has to be
positive, it is clear that the quantity δ2n(Z,N) cannot
serve as an explicit measure of the size of the shell gap.
However, the variations (but not their absolute values) of
δ2n(Z,N) and ∆Egap with particle number agree rather
well [17]. Thus δ2n(Z,N) is still a useful quantity to see
where pronounced shell gaps are located.
The quantities δ2n(Z,N) for N = 50, which are quite

large for the known nuclei (Fig. 8), decrease substantially
on approaching the two-neutron drip line (at Z = 22, 24
for DD-ME2, DD-MEδ and DD-PC1 and at Z = 20− 28
for NL3*). This is a reason why theoretical uncertainties
in the definition of the position of two-neutron drip line
are relatively large at N = 50 (see Fig. 1 and Refs. [2, 3]).
Fig. 8b, c and d show that pronounced shell gaps exist
at N = 82 and 126 in the CEDF’s DD-ME2, DD-MEδ,
and DD-PC1 for a large range of proton numbers Z up to
two-neutron drip line. However, on approaching the two-
neutron drip line the N = 82 shell gap becomes smaller
as compared with known nuclei for NL3* (Figs. 8a and
Fig. 6a). This again leads to a relative large theoretical
uncertainty in the definition of two-neutron drip line at
N = 82 (see Fig. 1 and Refs. [2, 3]). The corresponding
uncertainty is relatively small for N = 126 (see Fig. 1
and Refs. [2, 3]); this is due to minor differences in the
size of this gap in all four CEDF’s (Fig. 6b). Since the
shell gap for N = 184 is pronounced in all CEDF’s near
the two-neutron drip line (Fig. 8) there is no uncertainty
in the definition of two-neutron drip line at this neutron
number (see Fig. 1 and Refs. [2, 3]).

C. Other factors affecting the position of the

two-neutron drip line

On going away from the four nuclei 114Ge, 180Xe,
266Pb, and 366Hs discussed above, other additional fac-
tors affect the position of the two-neutron drip line.
First, there is a close correlation between the nuclear

deformation at the neutron-drip line and the uncertain-
ties in the prediction of this line [2, 3]. The regions of
large uncertainties corresponds to transitional and de-
formed nuclei. This is caused by the changes in the dis-
tribution of the single-particle states induced by defor-
mation. The spherical nuclei under discussion are char-
acterized by large shell gaps and a clustering of highly
degenerate single-particle states around them. Deforma-
tion removes this high degeneracy of the single-particle
states and leads to a more equal distribution of the single-
particle states with energy.
Second, the large density of the neutron single-particle

states close to the neutron continuum leads to a small
slope of the two-neutron separation energies S2n as a
function of neutron number in the vicinity of the two-
neutron drip line for medium and heavy mass nuclei (see
Fig. 12 in Ref. [3]). As discussed in details in Sec. VIII
of Ref. [3] this translates (i) into much larger uncertain-
ties in the definition of the position of the two-neutron

drip line as compared with the two-proton drip line and
(ii) into a stronger dependence of the predictions for the
position of the two-neutron drip line on the accuracy of
the description of the single-particle energies.
Third and most important, the position of two-neutron

drip line sensitively depends on the positions and the dis-
tribution of single-particle states around the Fermi sur-
face, which means for nuclei close to the drip line around
the continuum limit. In particular, the orbitals with high
j-values, known as intruder or extruder orbitals play an
important role, because they usually drive deformation
and, therefore, cause a considerable reordering of the
single-particle spectrum. As a consequence, small differ-
ences in the single-particle spectra for the various density
functionals can cause considerable effects leading to large
differences in the predicted position of two-neutron drip
line.

D. A representative example of the Rn isotopes

To illustrate the factors discussed in the previous sub-
sections we consider the chain of Rn (Z = 86) iso-
topes calculated with the CEDF NL3* and a pairing
strength reduced by 8% (scheme B in the notation of
Sect. III A). Moreover, we focus on the underlying single-
particle structure and how its variation with particle
number leads to either bound or unbound nuclei; other
physical observables of this isotopic chain are discussed in
Sect. III A. The evolution of the neutron single-particle
states of these isotopes is shown as a function of neutron
number in Fig. 9
The N = 184 isotope is spherical in the ground state

and its chemical potential λn coincides with the energy
of the last occupied single-particle orbital since neutron
pairing collapses because of largeN = 184 shell gap. This
nucleus is bound. The addition of several (2, 4 and 6)
neutrons above this shell gap leading to the the isotopes
with N = 186, 188 and 190 restores the neutron pairing
but does not affect the shape of nucleus. However, for a
given strength of pairing the chemical potential becomes
positive and thus these three nuclei are unbound.
A further extension of this isotope chain to larger neu-

tron numbers is achieved by a gradual buildup of de-
formation. For this process to take place the deforma-
tion driving intruder orbitals with low Ω (Ω = jz being
the projection of the single-particle angular momentum j
on the symmetry axis) emerging from the high-j 2h11/2,
1j13/2 and 1k17/2 spherical orbitals (located above the
gap) have to be partially occupied. This indeed takes
place in the RHB calculations. Note that deformed levels
with low Ω emerging from a high-j orbitals come strongly
down with increasing prolate deformation (see, for exam-
ple, Fig. 15 in Ref. [11]). In the NL3* CEDF the energies
of the spherical single-particle orbitals, from which these
deformation driving intruder orbitals emerge, are such
that lowering of the low Ω orbitals due to deformation
triggers the chemical potential to become negative (Fig.
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FIG. 8. (Color online) Neutron δ2n(Z,N) quantities between two-proton and two-neutron drip lines obtained in RHB calcula-
tions with the indicated CEDF’s.
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9). Two factors, namely, the increase of neutron number
and the induced changes in single-particle structure due
to deformation affect the position of chemical potential.
Their delicate balance keeps the chemical potential neg-
ative up to N = 200 (Fig. 9). As a result, the deformed
isotopes withN = 192, 194, 196 and 198 are bound. How-
ever, a further increase of the neutron number leads to
unbound nuclei.

The mechanism presented above is active in the nuclei
with neutron numbers above N = 184 or N = 258 since
several resonant high-j orbitals are located relatively low
in energy with respect to the continuum limit (see Fig. 6c
and d). Note that, in general, the position of the Fermi
level depends both on the energies of occupied single-
particle states and on their occupation probabilities. As
a consequence, the energies of the single-particle states
below the shell gap, their occupation probabilities and
their evolution with deformation are also important for
the exact definition of the position of the Fermi level.
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Note that only the results for four indicated CEDF’s are pre-
sented.

In that respect it is important to mention that in some
nuclei bound extruder orbitals could be as important as
unbound intruder resonant orbitals for the position of
two-neutron drip line. This is because the hole states
in deformed extruder orbitals with high Ω values emerg-
ing from spherical high-j orbital are as important for the
creation of deformation [44] and for the definition of the
position of the Fermi level as intruder orbitals with low
Ω discussed above. Pair scattering from bound to reso-
nant states creates partial holes in the extruder orbitals.
The energies of these orbitals increase fast with increas-
ing prolate deformation and this affects the position of
the Fermi level. In addition, they can become unbound
with increasing deformation. Such extruder orbitals are
probably not that important in nuclei with N above 184
or 258 since the relevant spherical high-j orbitals (1j15/2
below the N = 184 gap [Fig. 6c] and 1k17/2 and 2h11/2

below the N = 258 gap [Fig. 6d]) are located too deep
with respect to the relevant neutron shell gaps and the
continuum limit. On the contrary, such orbitals (1h11/2

in Fig. 6a and 1i13/2 in Fig. 6b) are important around
N = 126 and especially around N = 82 because of the
following reasons: (i) their positions define the size of the
gap, (ii) they are located not far away from the contin-
uum limit and (iii) they are reasonably well separated
from bound low- and medium-j orbitals.

The current analysis also allows to understand why
contrary to NL3* the chain of the Rn isotopes terminates
at N = 184 for the CEDF’s DD-ME2, DD-MEδ and DD-
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PC1. The evolution of the neutron single-particle spectra
as a function of neutron number in these CEDF’s is sim-
ilar to the one of Fig. 9. However, the neutron chemical
potential never becomes negative for N > 184 in these
three CEDF’s. The reason for that is clearly seen in Fig.
10 where the spherical spectra of 270Rn obtained with
these CEDF’s are compared with the ones obtained with
NL3*. Indeed, for DD-ME2, DD-MEδ and DD-PC1 the
single-particle orbitals (especially the high-j 2h11/2 [in
all three CEDF’s] and the 1j13/2 [in DD-ME2] spherical
orbitals from which low Ω deformation driving orbitals
emerge) are located higher in energy than for NL3*. Al-
though the shift of the single-particle energies with re-
spect of zero energy is not very large, it is sufficient to
shift the neutron chemical potential, which already fluc-
tuates for NL3* in the energy window ±0.17 MeV for
N = 186 − 202 (Fig. 9), into the positive energy range
for neutron numbers above N = 184 for all three density
dependent functionals.

E. Systematic uncertainties in the spherical shell

structure

This discussion clearly shows that one needs a high
predictive power for the energies of the single-particle
states, in particular, for the deformation driving high-j
intruder and extruder orbitals in order to make reliable
predictions for the location of the two-neutron drip line.
In Fig. 11 we summarize the theoretical uncertainties in
the description of the spherical single-particle energies
shown in Fig. 6. Here all the functionals are taken into
account and, therefore, these differences are substantial.
In most cases they exceed 1 MeV. However, there are
several states in each nucleus the energies of which de-
pend only weakly on the CEDF (Fig. 11). These are the
4s1/2, 3d5/2 and 3d3/2 states in 114Ge, 4p1/2 and 4p3/2
states in 180Xe, 5s1/2, 4d3/2 and 4d5/2 states in 266Pb

and 5s1/2, 6p3/2, 4d3/2 and 4d5/2 states in 366Hs. These
are low-j positive energy states. However, in general, the
spread of theoretical predictions for the energies of the
single-particle states increase with the increase of total
angular momentum of the state.
The spread of theoretical predictions for the single-

particle energies is smaller if we restrict our consideration
to the last generation of CEDF’s (such as NL3*, DD-ME,
DD-MEδ and DD-PC1) for which the global performance
and related theoretical uncertainties in the description of
physical observables have been extensively tested in Ref.
[3]. But, even for these CEDF’s the uncertainties in the
description of the energies of the single-particle states are
in the vicinity of 1 MeV for the majority of the states.
It is interesting to compare such theoretical uncertain-

ties in the region of two-neutron drip line with the ones
in doubly magic nuclei of known region of nuclear chart.
Theoretical uncertainties for later nuclei (56Ni, 100,132Sn
and 208Pb) are shown Fig. 12. One can see that for known
nuclei these theoretical uncertainties still remain substan-

tial. However, they are by approximately 35% smaller
than for the nuclei in the two-neutron drip line region.
Note that only in the case of the N = 126 shell gap nuclei
(180Xe in Fig. 11 and 208Pb in Fig. 12) the comparison is
straightforward. This is because the same group of the
single-particle states is located around the shell gap in
both nuclei.
Summarizing the results of these investigations we find

that for nuclei near the neutron drip line only approxi-
mately one third of the uncertainty in the description of
the single-particle energies comes from the uncertainties
of the isovector properties of the EDF’s. The remaining
two thirds of the uncertainties already exist in known nu-
clei close to the stability line. Thus, the improvement in
the description of single-particle energies in known nu-
clei will also reduce the uncertainties in the prediction
of the position of two-neutron drip line. However, such
improvement will not completely eliminate these uncer-
tainties.

VI. CONCLUSIONS

Covariant density functional theory has been applied
to an analysis of sources of uncertainties in the predic-
tions of the two-neutron drip line. The following conclu-
sions have been obtained:

• The differences in the underlying single-particle
structure of different covariant energy density func-
tionals represent the major source of uncertainty
in the prediction of the position of the two-neutron
drip line. In particular, this position depends on
the positions of high-j orbitals below the shell gap
and of high-j resonances in the continuum above
the shell gap. Both of them have a high degree of
degeneracy.

• The analysis of the present results strongly sug-
gests that the uncertainties in the description of
the single-particle energies at the two-neutron drip
line are dominated by those which already exist in
known nuclei. As a consequence, only an estimated
one third of the uncertainty in the description of
the single-particle energies at the two-neutron drip
line could be attributed to the uncertainties in the
isovector properties of EDF’s. This result strongly
suggests that the improvement in the DFT descrip-
tion of the energies of the single-particle states in
known nuclei will reduce the uncertainties in the
prediction of the position of two-neutron drip line.

• The uncertainties in the pairing properties near the
two-neutron drip line represent a secondary source
of uncertainty in the definition of two-neutron drip
line. The pairing properties in neutron rich nu-
clei depend substantially on the underlying CEDF,
even when these properties are similar in exper-
imentally known nuclei. For example, the pair-
ing energies increase drastically on approaching the
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FIG. 11. (Color online) The spreads ∆ǫi for the indicated neutron single-particle states in the nuclei 114Ge, 180Xe, 266Pb, and
366Hs at the two-neutron drip line. ∆ǫi = |ǫmax

i − ǫmin
i |, where ǫmax

i and ǫmin
i are the largest and smallest energies of a given

single-particle state obtained with the selected set of CEDF’s. The line-shaded area indicates the spreads when only the four
CEDF’s (namely, NL3*, DD-ME2, DD-MEδ and DD-PC1), used in the study of Ref. [3], are considered. The combination
of line-shaded and solid area shows the spreads obtained with all ten CEDF’s. The orbital angular momentum of the single-
particle state increases on going from the bottom to the top of the figure. To facilitate the discussion the neutron numbers of
the nuclei are shown. Based on the results presented in Fig. 6.

neutron drip line for NL3*. However, small or no
increase of pairing energies is seen for DD-MEδ and
for DD-PC1 in the vicinity of the neutron drip line.

These uncertainties in pairing properties translate
into some uncertainties in the position of two-
neutron drip line. However, they are substantially
smaller than the ones due to the underlying single-
particle structure.

During the last several years considerable progress has
been achieved in our understanding of the global perfor-
mance of state-of-the-art covariant energy density func-
tionals and the corresponding theoretical uncertainties.
Many physical observables related to the ground state
properties (binding energies, charge radii, deformations,

neutron skin thicknesses, the positions of drip lines etc
[3]) and the properties of excited states (moments of in-
ertia [11], the energies of (predominantly) single-particle
states [7, 42, 45], fission barriers [46, 47] etc) have been
studied either globally or at least systematically in a spe-
cific region of the nuclear chart. Theoretical uncertainties
for many physical observables have been defined.

A careful and systematic comparison of these results
with available experimental data clearly shows that in
many cases the discrepancies between theory and ex-
periment are caused by a non-optimal description of
the single-particle energies [48]. This is not surpris-
ing considering that the current generation of CEDF’s
has been fitted only to bulk and nuclear matter proper-
ties. As a consequence, density functional theory pro-
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FIG. 12. (Color online) The same as in Fig. 11 but for doubly-magic nuclei in experimentally known region of nuclear chart.

vides a less accurate description of the single-particle
energies as compared to microscopic+macroscopic mod-
els [44, 49, 50] with phenomenological potentials such as
Folded Yukawa, Woods-Saxon or Nilsson (see Ref. [45]
and references quoted therein) the parameters of which
are directly adjusted to experimental data on single-
particle energies. The existing discrepancies between
theory and experiment clearly indicate the need for an
improvement of the description of the single-particle en-
ergies in CDFT.

This probably cannot be achieved just by fitting the-
oretical single-particle energies to experimental data be-
cause many of the experimental single-particle states are
strongly fragmented by particle-vibrational coupling, in
particular in spherical nuclei [7, 42]. Therefore, the inclu-
sion of the single-particle information into the fitting pro-
tocols of CEDF’s is at the moment at its infancy [48, 51].
A reasonable procedure needs first a satisfying descrip-
tion of low-lying collective states in nuclei and their cou-
pling to the single-particle states. This is definitely diffi-

cult, in particular in deformed nuclei, but it also includes
a problem of self-consistency because the low-lying vi-
brations depend on the single-particle structure in the
neighborhood of the Fermi level [52]. In any case, such an
approach requires a systematic and comparative study of
the influence of tensor forces [51] and particle-vibrational
coupling [52]. Therefore, as illustrated, for example, in
Skyrme DFT [53, 54] there is a limit of accuracy for
the description of single particle energies which can be
achieved at the DFT level. So far, similar investigations
are missing in deformed nuclei.

Although the present investigation is restricted to co-
variant energy density functionals, it is reasonable to ex-
pect that its results are in many respects also applica-
ble to non-relativistic DFT’s. This is because similar
problems in the description of single-particle and pairing
properties exist also for the Skyrme and Gogny DFT’s
[10, 53–55].
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[49] P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki,

At. Data Nucl. Data Table 59, 185 (1995).
[50] K. Pomorski and J. Dudek, Phys. Rev. C 67, 044316

(2003).
[51] G. A. Lalazissis, S. Karatzikos, M. Serra, T. Otsuka, and

P. Ring, Phys. Rev. C 80, 041301 (2009).
[52] A. V. Afanasjev and E. Litvinova, nuclear theory archieve

- arXiv:1409.4855 (2014).
[53] M. Kortelainen, J. Dobaczewski, K. Mizuyama, and

J. Toivanen, Phys. Rev. C 77, 064307 (2008).



19

[54] M. Kortelainen, J. McDonnell, W. Nazarewicz, E. Olsen,
P.-G. Reinhard, J. Sarich, N. Schunck, S. M. Wild,
D. Davesne, J. Erler, and A. Pastore, Phys. Rev. C 89,
054314 (2014).

[55] M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev.
Mod. Phys. 75, 121 (2003).


