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Background: In this new era of radioactive beam facilities, the discovery of novel modes of excitation in nuclei far
away from stability represents an area of intense research activity. In addition, some of these modes of excitation,
particularly the isoscalar monopole and isovector dipole resonances, appear to be sensitive to the uncertain density
dependence of the symmetry energy.

Purpose: It is the main goal of this paper to examine the emergence, evolution, and nature of both the soft and
giant isoscalar monopole modes as a function of neutron excess in three unstable Nickel isotopes: 56Ni, 68Ni, and
78Ni.

Methods: The distribution of isoscalar monopole strength is computed in a relativistic random-phase approx-
imation using several accurately calibrated effective interactions. In particular, a non-spectral Green’s function
approach is adopted that allows for an exact treatment of the continuum without any reliance on discretization.
The discretization of the continuum is neither required nor admitted.

Results: In the case of 56Ni, the lack of low-energy strength results in a direct correlation between the centroid
energy of the giant monopole resonance and the incompressibility coefficient of symmetric nuclear matter. In
contrast, the large neutron excess in both 68Ni and 78Ni generates a significant, yet relatively featureless, amount
of low-energy strength that is driven by transitions into the continuum. Moreover, the evolution of monopole
strength with neutron excess displays sensitivity to the density dependence of the symmetry energy.

Conclusions: It is suggested that future measurements of the distribution of isoscalar monopole strength at
radioactive beam facilities using a very long chain of both stable and unstable isotopes could place important
constraints on the equation of state of neutron-rich matter and ultimately on the properties of neutron stars.
However, given the nature of the low-energy monopole excitations, a proper treatment of the continuum is
absolutely essential.
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I. INTRODUCTION

Fundamental new discoveries at radioactive beam facilities all over the world have led to a paradigm shift in nuclear
structure. Core concepts that have endured the test of time, such as the traditional magic numbers, are being
revisited and revised. This newly discovered fragility of magic numbers only becomes apparent far away from the
line of stability. Thus, exotic neutron-rich nuclei have opened a new window into the elusive isovector sector of the
nuclear energy density functional (EDF). Moreover, some of these discoveries are providing meaningful constraints
on the behavior of neutron-rich matter, whose equation of state (EOS) is essential for the understanding of complex
astrophysical objects such as core-collapse supernovae and neutron stars. Such advances in terrestrial laboratories
together with the advent of powerful land- and spaced-based telescopes operating at a variety of wavelengths have
created a unique and special synergy between nuclear physics and astrophysics.

A ground-state observable that is highly sensitive to the EOS of neutron-rich matter—particularly to the density
dependence of the symmetry energy—is the the neutron-skin thickness of 208Pb. Indeed, despite the enormous
difference in scales, an accurate measurement of the neutron skin of 208Pb may provide vital insights into the structure
of neutron stars [1–11]. The Lead Radius Experiment (“PREX”) at the Jefferson Laboratory has provided the first
model-independent evidence in favor of a neutron-rich skin in 208Pb [12, 13]. This pioneering experiment—that will
soon be upgraded to achieve the originally proposed precision—measures a parity-violating asymmetry in elastic
electron scattering. Such a purely electroweak measurement is a sensitive probe of neutron densities that is free from
large and uncontrolled strong-interaction uncertainties. Moreover, PREX may serve as an anchor to calibrate future
hadronic measurements of neutron skins of exotic nuclei at rare isotope facilities.

Whereas the ground-state properties of exotic nuclei are of great value in constraining the nuclear EDF, elucidating
the full complexity of the nuclear dynamics requires a comprehensive study of the response of the nuclear ground
state to a variety of probes. Indeed, nuclear resonances offer a unique view of the nucleus that is often inaccessible
through any other means [14]. In this new era of radioactive beam facilities the study of novel modes of excitation
in exotic nuclei is a rapidly evolving area that holds great promise for new discoveries [15]. Although interesting
in their own right, giant and pygmy resonances are also enormously valuable in providing stringent constraints on
the equation of state of asymmetric matter [16]. In particular, the electric dipole polarizability α

D
has been shown

to be highly sensitive to the density dependence of the symmetry energy [17–20]. This realization, in combination
with a landmark measurement of α

D
in 208Pb at the Research Center for Nuclear Physics [21, 22], suggests that a

comprehensive program of experimental measurements of α
D

on a variety of nuclei will place important constraints
on the isovector sector of the nuclear EDF.

Although primarily sensitive to the incompressibility coefficient of symmetric nuclear matter, the isoscalar giant
monopole resonance—particularly in heavy nuclei with a significant neutron excess—is also sensitive to the density
dependence of the symmetry energy because it probes the incompressibility of neutron-rich matter [23]. Unfortunately,
this sensitivity is hindered by the relatively small neutron excess of the stable nuclei measured up to date. Hence,
measuring the isotopic dependence of the isoscalar giant monopole resonance (ISGMR) for both stable and unstable
nuclei is highly desirable. Thus, the recent report of a measurement of the isoscalar monopole response of the unstable
neutron-rich 68Ni isotope by Vandebrouck and collaborators represents an important milestone [24].

Pioneering experiments at GSI Helmholtzzentrum für Schwerionenforschung have already measured the distribution
of isovector dipole strength in 68Ni [25, 26]. These experiments have provided important insights into the emergence
of low-energy dipole strength in exotic nuclei and have also been used to constrain critical parameters of the EOS,
primarily the slope of the symmetry energy at saturation density [18, 27]. In particular, the identification of the electric
dipole polarizabilty as a strong isovector indicator by Reinhard and Nazarewicz [17, 28] has provided an observable
whose precise experimental determination could reduce theoretical uncertainties in the EOS. Given that the electric
dipole polarizability is proportional to the inverse energy weighted sum, the soft dipole mode (the so-called “Pygmy”
dipole resonance) plays a predominant role. Indeed, in the particular case of 68Ni, the soft dipole mode appears to
exhaust as much as 25% of the total dipole polarizability [18]. Thus, the soft dipole mode has generated considerable
excitement as both a novel mode of excitation in exotic nuclei and as a possible constraint on the EOS [27, 29–33];
for a recent comprehensive review on the Pygmy Dipole Resonance see Ref. [34].

However, it is essential to note that the origin of the distribution of low-energy strength in the isoscalar monopole
and isovector dipole response is radically different. These differences are now underscored in the context of the random-
phase approximation (RPA) framework that is used in most self-consistent calculations of the strength distribution.
Any RPA calculation starts by generating a variety of ground-state properties that include single-particle energies,
the corresponding single-particle orbitals, and the resulting mean-field potentials. With this information at hand, one
constructs the uncorrelated polarization propagator that consists of all particle-hole excitations with the spin and parity
of the excited state under consideration [35], i.e., 0+ for the monopole and 1− for the dipole. In the particular case of
the monopole response, this involves 2~ω excitations connecting a particle to a hole with identical quantum numbers
(e.g., 2s1/2→ 3s1/2). Thus, stable nuclei with strongly-bound orbitals display little (or no) uncorrelated low-energy
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monopole strength. This is in contrast with dipole excitations that involve 1~ω excitations and thus particle and hole
states that could be relatively close in energy (e.g., 2p1/2→ 3s1/2). Once the uncorrelated polarization propagator is
obtained, the RPA response emerges from the mixing of all relevant particle-hole excitation via a residual interaction
that must be consistent with the one used to generate the ground state. For isoscalar modes, the residual particle-hole
interaction is attractive and yields a collective response that consists largely of a single fragment—the giant monopole
resonance—that exhausts most of the monopole strength. Although the isovector residual interaction is repulsive,
thereby leading to a hardening and quenching of the response, for stable nuclei the final outcome is similar, namely, a
giant dipole resonance that exhausts most of the classical energy weighted sum rule. However, as the nucleus becomes
neutron-rich, the isovector interaction that played a relatively minor role in the ground-state properties of nuclei with
a small neutron excess, generates a significantly repulsive contribution to the neutron mean-field potential. This leads
to weakly bound neutron orbitals that in some cases may be close to the continuum. Even so, in the case of the
dipole response there may be several discrete excitations in which both the particle and the hole remain bound. In
principle, these soft excitations can be coherently mixed by the residual interaction and ultimately generate a fairly
well developed soft (pygmy) dipole resonance.

However, the 2~ω character of the monopole excitations necessarily implies that all low-energy excitations must
involve transitions into the continuum. Thus, a correct interpretation of the experimental results obtained by Vande-
brouck and collaborators [24] requires a proper treatment of the continuum. In particular, the suggestion of a novel
soft monopole mode—largely motivated by RPA predictions that use a discretized continuum—may be premature.
Indeed, it now appears that the prediction of low-energy monopole peaks that are well separated from the main giant
resonance in the neutron-rich Ni-isotopes [36, 37] may be an artifact of the discretization [38]. In a recent analysis
based on Skyrme-RPA calculations that do not involve discretizing the continuum, Hamamoto and Sagawa conclude
that “it is very unlikely to have some isoscalar monopole peaks with the width of the order of 1 MeV below the ex-
citation energy of 20 MeV in 68Ni” [38]. In this contribution I report relativistic RPA calculations of the distribution
of isoscalar monopole strength with an exact treatment of the continuum for 56Ni, 68Ni, and 78Ni. These results are
in full agreement with the conclusions by Hamamoto and Sagawa.

The paper has been organized as follows. In Sec. II a brief description of the relativistic RPA formalism used in
this work is presented, paying special attention to the treatment of the continuum. One then proceeds in Sec. III to
display predictions for the distribution of isoscalar monopole strength in the isospin symmetric 56Ni nucleus as well as
in the neutron-rich isotopes 68Ni and 78Ni. Again, special attention is paid to the role of the continuum in dictating
the shape of the low-energy strength. Finally, Sec. IV contains a summary of the main results.

II. FORMALISM

In this section a brief review is provided of both the formalism required to compute the isoscalar monopole response
and the physics that this mode is sensitive to. In the case of the response, special emphasis is placed on the importance
of a proper treatment of the continuum. Moreover, although it is well known that the nuclear “breathing” mode
probes the incompressibility coefficient of symmetric nuclear matter [14, 39, 40], it is underscored that the monopole
response of nuclei with a significant neutron excess is also sensitive to the poorly constrained density dependence of
the symmetry energy.

A. Isoscalar Monopole Response

The formalism underlying the calculation of the relativistic mean-field ground state and the corresponding linear
response has been reviewed extensively in earlier publications [16, 41, 42]. Although a full review of the formalism is
no longer necessary, I nevertheless highlight those points that are of relevance to the present work, specifically the
impact of the continuum on the distribution of low-energy isoscalar monopole strength.

In the relativistic mean-field (RMF) approach pioneered by Serot and Walecka [43, 44] the basic constituents of the
effective theory are protons and neutrons interacting via the exchange of various mesons and the photon. In addition
to these conventional Yukawa terms, the model is supplemented by a variety of nonlinear meson coupling terms that
are critical to improve the quality of the model [1, 45, 46]. In the RMF approximation, the nucleons satisfy a Dirac
equation in the presence of strong scalar and vector potentials that are generated by the meson fields. In turn, the
mesons and the photon satisfy classical Klein-Gordon equations with the relevant nuclear densities acting as source
term. Due to this close interdependence, the equations of motion must be solved self-consistently until convergence
is attained [47]. The self-consistent procedure culminates with the determination of single-particle energies and Dirac
wave-functions, ground-state densities, and meson fields.
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With such information at hand, one may proceed to compute the linear response of the mean-field ground state to
a weak external perturbation. In the language of many-body theory, this requires the evaluation of the polarization
propagator [35, 48]. The polarization propagator—which is a function of both the energy and momentum transfer
to the nucleus—contains all dynamical information relevant to the excitation spectrum of the system. Indeed, the
polarization propagator is an analytic function of the energy transfer except for simple poles located at the excitation
energies of the system and with the residues at the pole corresponding to the transition form factor. The first step in
the calculation of the isoscalar monopole response is the construction of the uncorrelated (or mean-field) polarization
propagator that is given by the following expression:

Πab(x,y;ω) =
∑

0<n<F

Un(x)γ0τaGF

(
x,y; +ω+E(+)

n

)
γ0τb Un(y)

+
∑

0<n<F

Un(y)γ0τbGF

(
y,x;−ω+E(+)

n

)
γ0τa Un(x) , (1)

where E
(+)
n and Un(x) are the single-particle energies and Dirac wave-functions obtained from the self-consistent

determination of the mean-field ground state, γ0 = diag(1, 1,−1,−1) is the zeroth component of the Dirac matrices,
τ0 is the identity matrix in isospin space, and τ3 = diag(1,−1) is the third isospin matrix. Note that the sum is
restricted to positive-energy states below the Fermi level. Central to the calculation of the polarization propagator
Πab is the single-nucleon propagator G(x,y;ω). The nucleon mean-field propagator differs from its free-space value
in two important ways. First, the propagating nucleon interacts with the average mean-field potential generated by
the nuclear medium. Second, at finite density the presence of a filled Fermi sea modifies the analytic structure of the
free propagator [44] (see also Fig.1 in Ref. [16]). This suggests the following decomposition of the nucleon propagator:

G(x,y;ω) = GF (x,y;ω) +GD(x,y;ω) . (2)

The “Feynman” part of the propagator GF admits a spectral decomposition that makes its content particularly simple
and illuminating. In terms of the mean-field solutions to the Dirac equation it is given by

GF (x,y;ω) =
∑
n

(
Un(x)Un(y)

ω − E(+)
n + iη

+
Vn(x)V n(y)

ω + E
(−)
n − iη

)
, (3)

where now E
(−)
n and Vn(x) represent single-particle energies and Dirac wave-functions associated with the negative-

energy part of the spectrum; recall that in the relativistic formalism the positive energy part of the spectrum by itself
is not complete. Note that the sum is now unrestricted, as it involves bound and continuum states of both positive
and negative energy. In turn, the “density” part of the propagator GD corrects GF for the presence of a filled Fermi
sea. Formally, one effects this correction by shifting the position of the singularity (i.e., simple pole) of every occupied
nucleon state from below to above the real axis [16, 42]. This yields

GD(x,y;ω) = 2πi
∑
n<F

δ
(
ω − E(+)

n

)
Un(x)Un(y). (4)

In this manner, the uncorrelated polarization propagator displayed in Eq.(1), and depicted graphically by the thin blue
“bubble” in Fig.1, involves a product of two such nucleon propagators that accounts for all particle-hole excitations.
However, it is important to underline that consistency with the mean-field approximation adopted here demands that
vacuum polarization, namely, the divergent bubble diagram resulting from the product of two Feynman propagators
GF , be neglected.

Although the spectral decomposition of the single-nucleon propagator is highly illuminating, its use in the calculation
of the polarization propagator introduces certain artificial features—such as an energy cutoff and the discretization
of the continuum—that may produce unreliable results. To avoid any reliance on artificial cutoffs and truncations, it
is convenient to compute the nucleon propagator non-spectrally by solving exactly for the relevant Green’s function.
That is, (

ωγ0 + iγ ·∇−M−ΣMF(x)
)
GF (x,y;ω) = δ(x− y) , (5)

where γ = (γ1, γ2, γ3) are Dirac gamma matrices and ΣMF is the same exact mean-field potential obtained from the
self-consistent solution of the ground-state problem. Note that it is only by ensuring that both the bound single-
particle wave functions Un and the nucleon propagator GF “move” under the influence of the same mean-field potential
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that the conservation of the vector current can be ensured [42]. Moreover, the nonspectral approach has the enormous
advantage that both the positive- and negative-energy continua are treated exactly.

Having generated the mean-field polarization propagator, one proceeds to build coherence into the nuclear response
by mixing all particle-hole excitations of the same spin and parity. Such a procedure is implemented by iterating
the uncorrelated polarization propagator to all orders. The resulting RPA response often displays strong collective
behavior that manifests itself in the appearance of one “giant resonance” that exhausts most of the classical sum
rule [14]. Besides its enormous impact on building the observed collectivity of certain nuclear modes, RPA correlations
embody the correct self-consistent response of the mean-field ground state [49–51]. In particular, in a seminal paper on
vibrational states in nuclei, Thouless showed how spurious states—such as those associated with a uniform translation
of the center-of-mass—separate out cleanly from the physical modes by shifting the spurious strength to zero excitation
energy [49]. In the context of the relativistic formalism, Dawson and Furnstahl generalized Thouless’ result by placing
particular emphasis on the role of the negative-energy states in the quest for consistency [50].

By introducing the Fourier transform of the mean-field polarization propagator,

Πab(q,q
′;ω)=

∫
d3x d3y e−i(q·x−q

′·y) Πab(x,y;ω) , (6)

one can obtain Dyson’s equation for the RPA polarization whose solution encapsulates the collective response of the
mean-field ground state. That is,

ΠRPA
ab (q,q′;ω) = Πab(q,q

′;ω) +

∫
d3k

(2π)3
d3k′

(2π)3
Πac(q,k;ω)Vcd(k,k

′;ω)ΠRPA
db (k′,q′;ω) , (7)

where Vcd(k,k
′;ω) is the residual particle-hole interaction. The diagrammatic representation of the RPA equations

is displayed in Fig. 1. It is worth repeating that the consistent linear response of the system requires that both the
mean-field potential ΣMF and the residual particle hole interaction Vab be consistent with the interaction used to
generate the mean-field ground state.

= +

= +RPA RPA00 V
FIG. 1. (Color online) Diagrammatic representation of the RPA (or Dyson’s) equations. The ring diagram with the thick
black lines represents the fully correlated RPA polarization while the one depicted with the thin blue lines is the uncorrelated
mean-field polarization. The residual interaction denoted with the red wavy line must be identical to the one used to generate
the mean-field ground state.

Finally, the distribution of isoscalar monopole strength may be obtained by taking the imaginary part of the
polarization propagator projected into the correct (Jπ=0+, T =0) channel. That is,

S(q, ω;E0)=− 1

π
Im
(

ΠRPA
00 (q,q;ω)

)
. (8)

In the long wavelength limit, the distribution of isoscalar monopole strength R(ω;E0) reduces to the following
expression:

R(ω;E0) = lim
q→0

(
36

q4

)
S(q, ω;E0) . (9)

In turn, moments of the distribution are defined as suitable energy weighted sums, namely,

mn(E0) ≡
∫ ∞
0

ωnR(ω;E0) dω . (10)

Widely used in the literature are the energy weighted m1, the energy unweighted m0, and the inverse energy weighted
m−1 sums [14].
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B. Incompressibility of Neutron-Rich Matter

The saturation of infinite nuclear matter, namely, the existence of an equilibrium density, is a hallmark of the
complex and rich nuclear dynamics. Given that the pressure vanishes at the equilibrium density, the small density
fluctuations around saturation are described entirely by the incompressibility coefficient of symmetric nuclear matter
K0. Although K0 can not be measured directly in the laboratory, it can be tightly constrained from the strength
distribution of the isoscalar monopole resonance. Indeed, using a sum-rule approach and assuming that all the strength
is concentrated in one collective peak, the energy of the isoscalar giant monopole resonance (ISGMR) may be written
as follows [14, 52]:

EGMR =

√
~2KA

M〈r2〉
, (11)

where M is the nucleon mass, 〈r2〉 the mean-square nuclear radius, and KA the finite-nucleus incompressibility
coefficient. It is important to note that although highly suggestive, modern theoretical approaches do not rely on the
above expression to infer the value of K0. Rather, the same energy density functional is used to predict both K0 and
the distribution of isoscalar monopole strength.

Besides providing vital information on the equation of state of symmetric nuclear matter, the ISGMR of nuclei with
a large neutron excess could shed light on the density dependence of the symmetry energy. Indeed, to the extent that
the ISGMR probes the incompressibility of infinite nuclear matter, the monopole response of nuclei with a significant
neutron excess should be sensitive to the incompressibility coefficient of neutron-rich matter [23]. To quantify the
sensitivity of the symmetry energy to the ISGMR, it is convenient to introduce the energy per particle of asymmetric
nuclear matter at zero temperature as follows:

E/A(ρ, α)−M ≡ E(ρ, α) = ESNM(ρ) + α2S(ρ) +O(α4) , (12)

where ρ = ρn+ρp is the total (neutron plus proton) baryon density, ESNM is the energy per particle of symmetric
nuclear matter, S is the symmetry energy, and α=(ρn−ρp)/ρ represents the neutron-proton asymmetry. If one now
expands the energy per particle around saturation density (ρ0) one obtains

E(ρ, α) =
(
ε0 +

1

2
K0x

2 +
1

6
Q0x

3 + . . .
)

+ α2
(
J + Lx+

1

2
Ksymx

2 +
1

6
Qsymx

3 + . . .
)
, (13)

where x=(ρ−ρ0)/3ρ0 describes the deviation of the density from its value at saturation. Here ε0, K0, and Q0 denote
the binding energy per nucleon, curvature (i.e., incompressibility), and skewness parameter of symmetric nuclear
matter; J , Ksym, and Qsym represent the corresponding quantities for the symmetry energy. Note, however, that
unlike symmetric nuclear matter, the symmetry pressure—or equivalently the slope of the symmetry energy L—does
not vanish. This suggests that whereas symmetric nuclear matter (α≡0) saturates at ρ0, the presence of L modifies
the saturation properties of asymmetric matter. Indeed, the following analytic expressions (correct to second order
in α) summarize the saturation properties of asymmetric nuclear matter [23]:

ρ0(α) = ρ0 + ρτα
2 = ρ0

(
1− 3

L

K0
α2

)
, (14a)

ε0(α) = ε0 + ετα
2 = ε0 + Jα2 , (14b)

K0(α) = K0 +Kτα
2 = K0 +

(
Ksym − 6L− Q0

K0
L
)
α2 . (14c)

Note that on very general grounds—both theoretical from the dynamics of pure neutron matter [53–59] and a variety
of correlation studies [60–63], as well as experimental from a measurement of the neutron-rich skin in 208Pb [12, 13],
the value of the slope of the symmetry energy L has been constrained to be positive. As a result, Eq. (14a) indicates
that neutron-rich matter saturates at lower densities. Moreover, although slightly more uncertain, the correction
term to the incompressibility coefficient (Kτ ) appears also to be negative, as it is dominated by the slope of the
symmetry energy [16, 23]; see the large factor of 6 in front of L in Eq. (14c). This suggests that measurements of the
isotopic dependence of the giant monopole resonance—that should include unstable nuclei with a very large neutron
excess—could place significant constraints on the density dependence of the symmetry energy. Important first steps
in this direction have been already taken by Garg and collaborators [64–66]. In the present paper the focus is shifted
to the unstable neutron-rich isotopes 68Ni and 78Ni, with neutron-proton asymmetries of α68 = 0.18 and α78 = 0.28,
respectively.
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III. RESULTS

Having provided the necessary framework to compute the distribution of isoscalar monopole strength and having
discussed the physics that this mode is sensitive to, predictions are now displayed for three relativistic mean-field
models: (a) NL3 [67, 68], FSUGold [69], and IUFSU [70]. Whereas both NL3 and FSUGold are accurately-calibrated
interactions, IUFSU involves a fine tuning of FSUGold in response to an interpretation of x-ray observations of
neutron stars that suggest that FSUGold predicts stellar radii that are too large and a maximum stellar mass that is
too small [71]. Model parameters (i.e., coupling constants and meson masses) for these three sets of interactions have
been listed in Table I of Ref. [70].

Earlier attempts aimed at connecting the energies of the GMR to the incompressibility coefficient K0 relied heavily
on dangerous extrapolations from the properties of finite nuclei to those of infinite nuclear matter [39, 40]. However,
as a result of the much stricter standards imposed on the field today, predictions for a variety of bulk properties of
infinite nuclear matter as well as the distribution of isoscalar monopole strength may now be provided without any
recourse to semi-empirical mass formulas. In Table I predictions are listed for a variety of bulk properties of infinite
nuclear matter at saturation density ρ0 as defined in Eq. (13). In particular, ε0, K0, and Q0 represent the binding
energy per nucleon, the incompressibility coefficient, and skewness parameter of symmetric nuclear matter, while J ,
L, and Ksym represent the energy, slope, and curvature of the symmetry energy. From these quantities, one can then
obtain the asymmetric contribution to the incompressibility coefficient Kτ , as per Eq. (14c). Finally, K56, K68, and
K78 represent the incompressibility coefficient of neutron-rich matter having the same neutron excess as 56Ni(α=0),
68Ni(α=0.18), and 78Ni(α=0.28), respectively. Note that although the NL3 prediction for K0 is significantly larger
than for the other two models, the differences disappear almost entirely in the case of K78; i.e., by the time the
neutron-proton asymmetry has grown up to α= 0.28. This is due to the very stiff symmetry energy of NL3 which,
in turn, provides a large correction to K0, i.e., Kτ ≈−6L≈−700 MeV. Thus, the isotopic dependence of the ISGMR
can help elucidate the density dependence of the symmetry energy—provided the isotopic chain includes exotic nuclei
with very large neutron-proton asymmetries.

Model ρ0 ε0 K0 Q0 J L Ksym Kτ K56 K68 K78

NL3 0.148 −16.24 271.5 209.5 37.29 118.2 100.9 −699.4 271.5 249.8 215.9
FSU 0.148 −16.30 230.0 −522.7 32.59 60.5 −51.3 −276.9 230.0 221.4 208.0
IUFSU 0.155 −16.40 231.3 −291.1 31.30 47.2 28.5 −195.3 231.3 225.3 215.8

TABLE I. Bulk parameters characterizing the behavior of infinite nuclear matter at saturation density as defined in Eqs. (13)
and (14c). Note that K56, K68, and K78 represent the incompressibility coefficient of asymmetric matter with the same neutron
excess as 56Ni, 68Ni, and 78Ni, respectively. All quantities are given in MeV except for ρ0 which is given in fm−3.

Given that the self-consistent calculation of ground-state properties is the necessary first step in the development
of the RPA response, listed in Table II are the predictions of all three models for the binding energy per nucleon,
root-mean-square charge and neutron radii, and neutron-skin thickness of 56Ni, 68Ni, and 78Ni. As far as one can
tell, experimental values exist only for the binding energies [72]. Relative to experiment (experimental results not
shown) the largest deviation in the binding energy is obtained in the case of IUFSU: 1.7% for 56Ni, 0.3% for 68Ni, and
1.5% for 78Ni. For the charge radii, where experimental measurements are not yet available, the spread among the
predictions amounts to less than half a percent for all three isotopes. However, as a result of the large uncertainty in
the value of the slope of the symmetry energy L, a marked discrepancy is observed in the predictions for the neutron
radius and neutron-skin thickness of both neutron-rich nuclei. In the case of 78Ni, the difference between the stiffest
(NL3) and softest (IUFSU) models is about 0.13 fm. In particular, note that NL3 predicts a very thick neutron skin
of R78

skin =0.416 fm.

56Ni 68Ni 78Ni

Model B/A Rch Rn Rskin B/A Rch Rn Rskin B/A Rch Rn Rskin

NL3 8.608 3.701 3.578 −0.049 8.688 3.855 4.045 0.261 8.239 3.934 4.281 0.416

FSU 8.526 3.707 3.581 −0.053 8.664 3.852 3.992 0.210 8.152 3.948 4.221 0.341

IUFSU 8.501 3.680 3.553 −0.053 8.652 3.842 3.949 0.178 8.108 3.930 4.153 0.292

TABLE II. Theoretical predictions for the binding energy per nucleon, charge radius, neutron radius, and neutron-skin thickness
of the three Nickel isotopes for NL3 [67, 68], FSUGold [69], and IUFSU [70]. Binding energies are given in MeV and radii in fm.
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FIG. 2. (Color online) (a) Single-particle spectrum for 68Ni as predicted by the relativistic FSUGold density functional.
The blue(red) lines denote occupied(empty) orbitals and the arrows are used to indicate discrete excitations into bound
states. (b) Distribution of isoscalar monopole strength for 68Ni as predicted by the relativistic FSUGold density functional.
Both uncorrelated (MFT) and correlated (RPA) responses are displayed; the arrows indicate some of the expected mean-field
transitions. Also shown is a Lorentzian fit to the giant RPA peak to clearly identify the excess strength at low energy.

Having solved the self-consistent mean-field equations, which yield single-particle energies and Dirac wave-functions
as well as the self-consistent scalar and vector mean-fields, one may now compute the distribution of isoscalar monopole
strength in a relativistic random-phase approximation [see Eq. (7) and Fig.1]. It is worth repeating that the distribution
of monopole strength involves a non-spectral solution of the nucleon propagator that is free from any discretization of
the continuum. However, in order to resolve discrete particle-hole excitations, namely, excitations in which both the
particle and the hole are bound, one must supply the excitation energy ω with a small imaginary part of η≡0.1 MeV.

In Fig. 2(a) FSUGold predictions are displayed for the single-particle spectrum of 68Ni, with the arrows used to
indicate four prominent discrete excitations. As required, these four discrete excitations are also clearly discernible in
the distribution of isoscalar monopole strength displayed in Fig. 2(b). Moreover, this uncorrelated (or MFT) response
shows a significant amount of fairly structureless strength from about 10 to 20 MeV followed by a series of sharp
peaks in the 20 to 35 MeV region. Note that most of the low-energy strength is generated by excitations from a
bound Dirac orbital into the continuum. As such, this component of the strength is insensitive to the choice of η (i.e.,
the small imaginary part of ω). In contrast, the sharp peaks at high-excitation energy represent 2~ω excitations that
could not be resolved without such a small imaginary part. Also note the presence of additional “discrete” peaks that
are not identified in Fig. 2(a). These extra peaks involve single-particle states at the edge of the continuum, such as
the 3s1/2 and 2d5/2 proton orbitals.

The attractive isoscalar component of the residual interaction is extremely efficient in mixing all individual particle-
hole excitations. This typically results in the development of a single collective peak that exhausts most of the energy
weighted sum (EWS) [14]. The appearance of a giant monopole resonance that carries most of the EWS is clearly
discernible in Fig. 2(b) (blue solid line). This large collective mode is sensitive to the incompressibility coefficient of
infinite nuclear and, at least for stable heavy nuclei, is accurately described by a Lorentzian function. However, in
the case of the exotic neutron-rich isotope 68Ni, a significant amount of non-collective excess strength is observed at
low energy. This fact is best illustrated by displaying (with a red solid line) a Lorentzian fit to the large collective
component. One attributes this difference to the low-energy excitations into the continuum. Note that the shape
of the strength distribution at low energies is extremely sensitive to the treatment of the continuum, so one must
exercise extreme care in drawing conclusions that rely on its discretization [38].

As just alluded, the nature of the low-energy strength is associated with excitations from valence states into
the continuum. As the neutron excess increases, the isovector interaction—which in the relativistic RMF model is
dominated by vector exchange—becomes repulsive for the neutrons and attractive for the protons. In the case of 68Ni,
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this results in a closely-spaced triplet of orbitals (1f 5/2, 2p3/2, and 2p1/2) with a binding energy of about 10 MeV that
hold the 12 extra neutrons relative to 56Ni [see Fig. 2(a)]. This suggests that the emergence of low-energy strength
should closely track the neutron excess.

To test this assertion, the distribution of isoscalar monopole strength is displayed in Fig. 3 for 56Ni, 68Ni, and 78Ni
as predicted by the RPA calculations. By including three models with different bulk parameters, one can test the
sensitivity of the strength distribution to the density dependence of the symmetry energy. Also listed in Table III
are various relevant moments of the distribution of strength that were obtained by integrating from ωmin = 0.5 MeV
to ωmax = 40 MeV; see Eq. (10). The lack of low-energy strength in 56Ni is clearly evident in Fig. 3(a). Low-energy
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FIG. 3. (Color online) Distribution of isoscalar monopole strength for (a) 56Ni, (b) 68Ni, and (c) 78Ni as predicted by relativistic
RPA calculations using NL3 [67, 68], FSUGold [69], and IUFSU [70].

excitations into the continuum that were driven by the neutrons occupying the 1f 5/2, 2p3/2, and 2p1/2 orbitals in
68Ni are absent in the case of 56Ni. Further, for a strength distribution dominated by a single collective peak that is
well approximated by a Lorentzian shape, resonance energies satisfy the following simple relations:

m1

m0
= ω0 and

√
m1

m−1
= ω0

√
1 +

Γ2
0

4ω2
0

≈ ω0 , (15)

where ω0 and Γ0 represent the resonance energy and width, respectively. As expected, these relations are well satisfied
for the case of 56Ni. However, with the appearance of significant low energy strength in 68Ni—and even more so in
78Ni—significant distortions to the simple Lorentzian shape emerge.

Given that the incompressibility coefficient for symmetric nuclear is largest for NL3, its prediction for the GMR
energy of 56Ni is almost one MeV larger than for IUFSU (see Table III). Remarkably, however, the predictions of all
three models for the distribution of strength in 78Ni are very similar to each other. This is consistent with the much
faster softening of the incompressibility coefficient of neutron-rich matter for NL3 than in the case of either FSUGold
or IUFSU; see the value of K78 in Table I. Thus, studying the isotopic dependence of the isoscalar monopole resonance
for chains containing very exotic nuclei may provide stringent constraints on the density dependence of the symmetry
energy [16].

IV. CONCLUSIONS

The unique and fascinating dynamics of exotic neutron-rich nuclei has lead to a paradigm shift in nuclear structure.
Besides providing insights into the limits of nuclear existence and the production of heavy elements in the cosmos, the
study of nuclei with large isospin asymmetries opens a window into the poorly known nuclear isovector interaction.
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Isotope Model m−1 (fm4/MeV) m0 (fm4) m1 (fm4MeV) m3 (fm4MeV3) m1/m0 (MeV)
√
m1/m−1 (MeV)

√
m3/m1 (MeV)

56Ni NL3 0.138 2.810 58.031 26130.3 20.650 20.498 21.220
FSU 0.147 2.933 59.487 25850.1 20.283 20.130 20.846

IUFSU 0.151 2.936 57.996 23763.5 19.752 19.622 20.242

68Ni NL3 0.239 4.389 83.876 33659.6 19.112 18.751 20.032
FSU 0.254 4.524 84.045 32020.2 18.577 18.202 19.519

IUFSU 0.248 4.433 82.080 30795.7 18.516 18.190 19.370

78Ni NL3 0.358 6.037 105.999 35838.9 17.559 17.199 18.388
FSU 0.363 6.049 105.532 35687.6 17.446 17.042 18.389

IUFSU 0.355 5.875 102.612 34849.4 17.466 17.002 18.429

TABLE III. Various moments of the isoscalar monopole strength distribution and corresponding energies for the three Nickel
isotopes considered in the text as predicted by NL3 [67, 68], FSUGold [69], and IUFSU [70]. All moments were computed by
integrating the distribution of strength from a minimum value of ωmin =0.5 MeV to a maximum value of ωmax =40 MeV. Note
that all the moments—but not their ratios—should be multiplied by a factor of 103. For example, the m0 moment of 68Ni as
predicted by FSU should be read as m0 =4.524×103 fm4.

In particular, large nuclei with a significant neutron excess develop a neutron-rich skin that is highly sensitive to the
density dependence of the symmetry energy and, consequently, to the nature of the isovector interaction. Moreover,
the electric dipole polarizability and the development of low energy pygmy strength in the isovector dipole response
display strong sensitivity to the isovector interaction. In the present contribution I have extended the study of the
soft dipole mode and its sensitivity to the isovector interaction to the isoscalar monopole response of three magic (or
semi-magic) Ni-isotopes—including the two very neutron-rich nuclei 68Ni and 78Ni.

The isotopic dependence of the isoscalar monopole resonance is of great interest because the softening of the mode
with increasing neutron excess is highly sensitive to the density dependence of the symmetry energy; see the expression
for Kτ in Eq. (14c). Although pioneering measurements of the isotopic dependence of the ISGMR in both Tin and
Cadmium have already been carried out, these measurements have been limited to the stable isotopes where the
neutron excess, while significant, is not yet sufficiently large. Yet, one is confident that in the new era of rare isotope
facilities these experimental studies will be extended much further.

Central to this work was also the study of the emergence of low-energy isoscalar monopole strength as a function of
neutron excess. In the case of the isovector dipole resonance, the appearance of low-energy pygmy strength was seen
to be strongly correlated to the development of a neutron-rich skin in the Sn-isotopes. And although the nature of the
pygmy dipole resonance is still under debate, primarily whether it is collective or not, the emergence of low-energy
strength as a result of a significant neutron excess is undeniable.

However, the nature of the isoscalar monopole strength at low energies appears to be significantly more complex.
To shed light on this problem, relativistic RPA calculations were carried out for the distribution of isoscalar monopole
strength in 56Ni, 68Ni, and 78Ni. In addition, one has used three RMF models with different assumptions on the
isovector interaction to test the reliability of the conclusions. Finally and most importantly, the RPA formalism
employed here is based on a non-spectral Green’s function approach where the continuum is treated on the same
footing as the bound states. This is in contrast to spectral calculations that must rely on a discretization of the
continuum.

To conclude, a summary of the most important results is now presented. No low energy monopole strength is
found in the symmetric 56Ni isotope. Rather, only one single collective giant resonance is identified with a centroid
energy located at m1/m0 = 20.65 MeV for NL3 (a model with an incompressibility coefficient of K0≈ 270 MeV) and
at 19.75 MeV for IUFSU (with K0 ≈ 230 MeV). However, in contrast to the case of 56Ni, a significant amount of
low-energy strength is observed in both neutron-rich isotopes 68Ni and 78Ni—especially in the case of the latter.
Such structureless strength is associated with the excitation of the extra 12 and 22 neutrons into the continuum. In
the absence of RPA correlations, the shape of the mean-field response consists of featureless strength from about 10
to 20 MeV followed by discrete particle-hole excitations in the 20 to 35 MeV region. Once the attractive residual
interaction is incorporated, the coherence among all particle-hole excitations gives rise to an RPA response that
is significantly softened and enhanced. This yields a smooth distribution of isoscalar monopole strength that in
addition to the giant resonance peak displays a significant amount of low-energy strength. However, unlike some of
the results obtained using a discretized continuum, no pronounced monopole states in the low-energy region that are
well separated from the giant monopole resonance are found [37]. Instead, the results found here support the recent
continuum calculations by Hamamoto and Sagawa that report a “broad shoulder” of low-energy monopole strength
and question the appearance of isoscalar monopole peaks below 20 MeV [38]. Given that a proper treatment of the
continuum is absolutely critical, the possible indication of a soft monopole mode in 68Ni located at an energy of
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12.9±1.9 MeV [24], and largely motivated by the predictions of Ref. [37], may need further verification and validation.
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