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We present the two- and three-pion exchange contributions to the nucleon-nucleon interaction
which occur at next-to-next-to-next-to-next-to-leading order (N4LO, fifth order) of chiral effective
field theory, and calculate nucleon-nucleon scattering in peripheral partial waves with L ≥ 3 using
low-energy constants that were extracted from πN analysis at fourth order. While the net three-pion
exchange contribution is moderate, the two-pion exchanges turn out to be sizeable and prevailingly
repulsive, thus, compensating the excessive attraction characteristic for NNLO and N3LO. As a
result, the N4LO predictions for the phase shifts of peripheral partial waves are in very good agree-
ment with the data (with the only exception of the 1F3 wave). We also discuss the issue of the
order-by-order convergence of the chiral expansion for the NN interaction.
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I. INTRODUCTION

During the past three decades, it has been demonstrated that chiral effective field theory (chiral EFT) represents
a powerful tool to deal with hadronic interactions at low energy in a systematic and model-independent way (see
Refs. [1, 2] for recent reviews). The systematics is provided by a low-energy expansion arranged in terms of powers of
the soft scale over the hard scale, (Q/Λχ)ν , where Q is generic for an external momentum (nucleon three-momentum
or pion four-momentum) or a pion mass, and Λχ ≈ 1 GeV the chiral symmetry breaking scale. The model-independent
dynamics is created by pions interacting under the constraint of broken chiral symmetry which provides the link to
low-energy QCD.

The early applications of chiral perturbation theory (ChPT) focused on systems like ππ [3] and πN [4], where the
Goldstone-boson character of the pion guarantees that a perturbative expansion exists. But the past 20 years have
also seen great progress in applying ChPT to nuclear forces [1, 2, 5–17]. About a decade ago, the nucleon-nucleon
(NN) interaction up to fourth order (next-to-next-to-next-to-leading order, N3LO) was derived [7, 9, 10, 12, 13, 15]
and quantitative NN potentials were developed [16, 17].

These N3LO NN potentials complemented by chiral three-nucleon forces (3NFs) have been applied in calculations
of few-nucleon reactions, the structure of light- and medium-mass nuclei, and nuclear and neutron matter—with,
in general, a good deal of success. However, some problems continue to exist that seem to defy any solution. The
most prominent one is the so-called ‘Ay puzzle’ of nucleon-deuteron scattering, which requires the inclusion of three-
nucleon forces (3NFs) [18]. While the chiral 3NF at NNLO slightly improves the predictions for low-energy N − d
scattering [19], inclusion of the N3LO 3NF deteriorates the predictions [20]. Based upon general arguments, the N3LO
3NF is presumed weak, which is why one would not expect the solution of any substantial problems, anyhow. When
working in the framework of an expansion, then, the obvious way to proceed is to turn to the next order, which is
N4LO (or fifth order). Some 3NF topologies at N4LO have already been worked out [21, 22], and it has been shown
that, at this order, all 22 possible isospin-spin-momentum 3NF structures appear. Moreover, the contributions are
moderate to sizeable. What makes the fifth order even more interesting is the fact that, at this order, a new set
of 3NF contact interactions appears, which has recently been derived by the Pisa group [23]. 3NF contact terms
are attractive from the point of view of the practitioner, because they are typically simple (as compared to loop
contributions) and their coefficients are essentially free. Thus, at N4LO, the Ay puzzle may be solved in a trivial way
through 3NF (contact) interactions. Due to the great diversity of structures offered at N4LO, one can also expect
that other persistent nuclear structure problems may finally find their solution at N4LO.
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A principle of all EFTs is that, for reliable predictions, it is necessary that all terms included are evaluated at the
order at which the calculation is conducted. Thus, if nuclear structure problems require for their solution the inclusion
of 3NFs at N4LO, then also the two-nucleon force involved in the calculation has to be of order N4LO. This is one
reason for the investigation of the NN interaction at N4LO presented in this paper. Besides this, there are also some
more specific issues that motivate a study of this kind. From calculations of the NN interaction at NNLO [7] and
N3LO [15], it is wellknown that there is a problem with excessive attraction, particularly, when for the ci low-energy
constants (LECs) of the dimension-two πN Lagrangian the values are applied that are obtained from πN analysis. It
is important to know if this problem is finally solved when going beyond N3LO. Last not least, also the convergence
of the chiral expansion of the NN interaction is of general interest.

This paper is organized as follows: In Sec. II, we derive the two- and three-pion exchange contributions at fifth
order. The predictions for NN scattering in peripheral partial waves are shown in Sec. III, and Sec. IV concludes
the paper. In the Appendices, we summarize the detailed mathematical expressions that define the lower orders of
the chiral NN potential. This is necessary, because in this study we perform the power counting (of relativistic
1/MN -corrections) differently as compared to our earlier work. Since we present also phase shift predictions for the
lower orders, the unambiguous definition of each order is necessary to avoid confusion.

II. PION-EXCHANGE CONTRIBUTIONS TO THE NN POTENTIAL

The various pion-exchange contributions to the NN potential may be analyzed according to the number of pions
being exchanged between the two nucleons:

V = V1π + V2π + V3π + . . . , (2.1)

where the meaning of the subscripts is obvious and the ellipsis represents 4π and higher pion exchanges. For each of
the above terms, we have a low-momentum expansion:

V1π = V
(0)
1π + V

(2)
1π + V

(3)
1π + V

(4)
1π + V

(5)
1π + . . . (2.2)

V2π = V
(2)
2π + V

(3)
2π + V

(4)
2π + V

(5)
2π + . . . (2.3)

V3π = V
(4)
3π + V

(5)
3π + . . . , (2.4)

where the superscript denotes the order ν of the expansion, which for an irreducible two-nucleon diagram is given by
ν = 2L+

∑
i(di + ni/2− 2) with L the number of loops, di is the number of derivatives or pion-mass insertions, and

ni the number of nucleon fields (nucleon legs) involved in vertex i. The sum runs over all vertices contained in the
diagram under consideration.

Order by order, the NN potential builds up as follows:

VLO ≡ V (0) = V
(0)
1π (2.5)

VNLO ≡ V (2) = VLO + V
(2)
1π + V

(2)
2π (2.6)

VNNLO ≡ V (3) = VNLO + V
(3)
1π + V

(3)
2π (2.7)

VN3LO ≡ V (4) = VNNLO + V
(4)
1π + V

(4)
2π + V

(4)
3π (2.8)

VN4LO ≡ V (5) = VN3LO + V
(5)
1π + V

(5)
2π + V

(5)
3π (2.9)

where LO stands for leading order, NLO for next-to-leading order, etc..
In past work [6–10, 12–17], the NN interaction has been developed up to N3LO. To make this paper selfcontained

and, because we perform the power counting for relativistic corrections differently as compared to our previous work,
we summarize, order by order, the contributions up to N3LO in the Appendices. In this way, all orders, which we are
talking about in this paper, are unambiguously defined.

The novel feature of this paper are the contributions to the NN potential at N4LO, which we will present now.
The results will be stated in terms of contributions to the momentum-space NN amplitudes in the center-of-mass

system (CMS), which arise from the following general decomposition:

V (~p ′, ~p) = VC + τ1 · τ2WC

+ [VS + τ1 · τ2WS ] ~σ1 · ~σ2

+ [VLS + τ1 · τ2WLS ]
(
−i~S · (~q × ~k)

)
+ [VT + τ1 · τ2WT ] ~σ1 · ~q ~σ2 · ~q
+ [VσL + τ1 · τ2WσL ] ~σ1 · (~q × ~k ) ~σ2 · (~q × ~k ) , (2.10)



3

where ~p ′ and ~p denote the final and initial nucleon momenta in the CMS, respectively. Moreover, ~q = ~p ′ − ~p is the

momentum transfer, ~k = (~p ′+~p)/2 the average momentum, and ~S = (~σ1 +~σ2)/2 the total spin, with ~σ1,2 and τ1,2 the
spin and isospin operators, of nucleon 1 and 2, respectively. For on-shell scattering, Vα and Wα (α = C, S, LS, T, σL)
can be expressed as functions of q = |~q | and p = |~p ′| = |~p |, only. Note that the one-pion exchange contribution in

Eq. (2.2) is of the form W
(1π)
T = −(gπN/2MN )2(m2

π + q2)−1 with physical values of the coupling constant gπN and
nucleon and pion masses MN and mπ. This expression fixes at the same time our sign-convention for V (~p ′, ~p).

We will state two-loop contributions in terms of their spectral functions, from which the momentum-space ampli-
tudes Vα(q) and Wα(q) are obtained via the subtracted dispersion integrals:

VC,S(q) = −2q6

π

∫ Λ̃

nmπ

dµ
ImVC,S(iµ)

µ5(µ2 + q2)
,

VT (q) =
2q4

π

∫ Λ̃

nmπ

dµ
ImVT (iµ)

µ3(µ2 + q2)
, (2.11)

and similarly for WC,S,T . Clearly, n = 2 for two-pion exchange and n = 3 for three-pion exchange. For Λ̃ → ∞ the

above dispersion integrals yield the results of dimensional regularization, while for finite Λ̃ ≥ nmπ we have what has
become known as spectral-function regularization (SFR) [27]. The purpose of the finite scale Λ̃ is to constrain the
imaginary parts to the low-momentum region where chiral effective field theory is applicable.

A. Two-pion exchange contributions at N4LO

The 2π-exchange contributions that occur at N4LO are displayed graphically in Fig. 1. We present now the
corresponding analytical expressions separately for each class.

1. Spectral functions for class (a)

The N4LO 2π-exchange two-loop contributions of class (a) are shown in Fig. 1(a). For this class the spectral
functions are obtained by integrating the product of the leading one-loop πN amplitude and the chiral ππNN vertex
proportional to ci over the Lorentz-invariant 2π-phase space. In the ππ center-of-mass frame this integral can be

expressed as an angular integral
∫ 1

−1
dx [12]. The results for the non-vanishing spectral functions read:

ImVC = − m5
π

(4fπ)6π2

{
g2
A

√
u2 − 4

(
5− 2u2 − 2

u2

)[
24c1 + c2(u2 − 4) + 6c3(u2 − 2)

]
ln
u+ 2

u− 2

+
8

u

[
3
(
4c1 + c3(u2 − 2)

)
(4g4

Au
2 − 10g4

A + 1) + c2(6g4
Au

2 − 10g4
A − 3)

]
B(u)

+
√
u2 − 4

[
3(2− u2)

(
4c1 + c3(u2 − 2)

)
+ c2(7u2 − 6− u4) +

4g2
A

u
(2u2 − 1)

×
[
4(6c1 − c2 − 3c3) + (c2 + 6c3)u2

]
+ 4g4

A

(
32

u+ 2
(2c1 + c3) +

64

3u
(6c1 + c2 − 3c3)

+14c3 − 5c2 − 92c1 +
8u

3
(18c3 − 5c2) +

u2

6
(36c1 + 13c2 − 156c3) +

u4

6
(2c2 + 9c3)

)]}
, (2.12)

ImWS = µ2 ImWT =
c4 g

2
Am

5
π

(4fπ)6π2

{
8g2
Au(5− u2)B(u) +

1

3
(u2 − 4)5/2 ln

u+ 2

u− 2

+
u

3

√
u2 − 4

[
g2
A(30u− u3 − 64)− 4u2 + 16

]}
, (2.13)

with the dimensionless variable u = µ/mπ > 2 and the logarithmic function

B(u) = ln
u+
√
u2 − 4

2
. (2.14)
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(c)

= + + +

+ + + . . .

= + + +

+ + + +

+ + + + . . .

FIG. 1: Two-pion-exchange contributions at N4LO. (a) The leading one-loop πN amplitude is folded with the chiral ππNN
vertices proportional to ci. (b) The one-loop πN amplitude proportional to ci is folded with the leading order chiral πN
amplitude. (c) Relativistic corrections of NNLO diagrams. Solid lines represent nucleons and dashed lines pions. Small dots,
large solid dots, solid squares, and triangles denote vertices of index di + ni/2 − 2 = 0, 1, 2, and 3, respectively. Open circles
are relativistic 1/MN corrections.

2. Spectral functions for class (b)

The N4LO 2π-exchange two-loop contributions of class (b) are displayed in Fig. 1(b). For this class, the product
of the one-loop πN amplitude proportional to ci (see Ref. [21] for details) and the leading order chiral πN amplitude
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is integrated over the 2π-phase space. We obtain:

ImVS = µ2 ImVT =
g4
Am

5
π(c3 − c4)u

(4fπ)6π2

{√
u2 − 4 (u3 − 30u+ 64) + 24(u2 − 5)B(u)

}
, (2.15)

ImWS = µ2 ImWT =
g2
Am

5
π

(4fπ)6π2
(4− u2)

{
c4
3

[√
u2 − 4 (2u2 − 8)B(u)

+4u(2 + 9g2
A)− 5u3

3

]
+ 2ē17(8πfπ)2(u3 − 2u)

}
, (2.16)

ImVC =
g2
Am

5
π

(4fπ)6π2
(u2 − 2)

(
1

u2
− 2

){
2
√
u2 − 4

[
24c1 + c2(u2 − 4) + 6c3(u2 − 2)

]
B(u)

+u

[
c2

(
8− 5u2

3

)
+ 6c3(2− u2)− 24c1

]}
+

3g2
Am

5
π

(2fπ)4u
(2− u2)3 ē14 , (2.17)

ImWC = − c1m
5
π

(2fπ)6π2

{
3g2
A + 1

8

√
u2 − 4 (2− u2) +

(
3g2
A + 1

u
− 2g2

A u

)
B(u)

}
− c2m

5
π

(2fπ)6π2

{
1

96

√
u2 − 4

[
7u2 − 6− u4 + g2

A(5u2 − 6− 2u4)
]

+
1

4u
(g2
Au

2 − 1− g2
A)B(u)

}
− c3m

5
π

(4fπ)6π2

{
2

9

√
u2 − 4

[
3(7u2 − 6− u4) + 4g2

A

(
32

u
− 12− 20u+ 7u2 − u4

)
+g4

A

(
114− 512

u
+ 368u− 169u2 + 7u4 +

192

u+ 2

)]
+

16

3u

[
g4
A(6u4 − 30u2 + 35) + g2

A(6u2 − 8)− 3
]
B(u)

}

− c4g
2
Am

5
π

(4fπ)6π2

{
2

9

√
u2 − 4

[
30− 128

u
+ 80u− 13u2 − 2u4 + g2

A

(
512

u
− 114− 368u

+169u2 − 7u4 − 192

u+ 2

)]
+

16

3u

[
5− 3u2 + g2

A(30u2 − 35− 6u4)
]
B(u)

}
. (2.18)

Consistent with the calculation of the πN amplitude in Ref. [21], we applied relations between LECs, such that only
ē14 and ē17 remain in the final result.

3. Relativistic corrections

This group consists of diagrams with one vertex proportional to ci and one 1/MN correction. A few representative
graphs are shown in Fig. 1(c). Since in this investigation we count Q/MN ∼ (Q/Λχ)2, these relativistic corrections
are formally of order N4LO. The result for this group of diagrams read in our sign-convention [12]:

VC =
g2
A L(Λ̃; q)

32π2MNf4
π

[
(6c3 − c2)q4 + 4(3c3 − c2 − 6c1)q2m2

π + 6(2c3 − c2)m4
π − 24(2c1 + c3)m6

πw
−2
]
,

(2.19)

WC = − c4
192π2MNf4

π

[
g2
A(8m2

π + 5q2) + w2
]
q2 L(Λ̃; q) , (2.20)

WT = − 1

q2
WS =

c4
192π2MNf4

π

[
w2 − g2

A(16m2
π + 7q2)

]
L(Λ̃; q) , (2.21)

VLS =
c2 g

2
A

8π2MNf4
π

w2L(Λ̃; q) , (2.22)

WLS = − c4
48π2MNf4

π

[
g2
A(8m2

π + 5q2) + w2
]
L(Λ̃; q) , (2.23)
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Class X Class XI

Class XII Class XIII Class XIV

FIG. 2: Three-pion exchange contributions at N4LO. The classification scheme of Ref. [11] is used. Notation as in Fig. 1.

where the (regularized) logarithmic loop function is given by:

L(Λ̃; q) =
w

2q
ln

Λ̃2(2m2
π + q2)− 2m2

πq
2 + Λ̃

√
Λ̃2 − 4m2

π q w

2m2
π(Λ̃2 + q2)

(2.24)

with w =
√

4m2
π + q2. Note that

lim
Λ̃→∞

L(Λ̃; q) =
w

q
ln
w + q

2mπ
, (2.25)

is the logarithmic loop function of dimensional regularization.

B. Three-pion exchange contributions at N4LO

The 3π-exchange of order N4LO is shown in Fig. 2. The spectral functions for these diagrams have been calculated
in Ref. [11]. We use here the classification scheme introduced in that reference and note that class XI vanishes.
Moreover, we find that the class X and part of class XIV make only negligible contributions. Thus, we include in our
calculations only class XII and XIII, and the VS contribution of class XIV. In Ref. [11] the spectral functions were
presented in terms of an integral over the invariant mass of a pion pair. We have solved these integrals analytically
and obtain the following spectral functions for the non-negligible cases:

ImV
(XII)
S = − g2

Ac4m
5
π

(4fπ)6π2u3

[
y

12
(u− 1)(100u3 − 27− 50u− 151u2 + 185u4 − 14u5 − 7u6)

+4D(u) (2 + 10u2 − 9u4)

]
, (2.26)

ImV
(XII)
T =

1

µ2
ImV

(XII)
S − g2

Ac4m
3
π

(4fπ)6π2u5

[
y

6
(u− 1)(u6 + 2u5 − 39u4 − 12u3 + 65u2 − 50u− 27)

+8D(u) (3u4 − 10u2 + 2)

]
, (2.27)

ImW
(XII)
S = − g2

Am
5
π

(4fπ)6π2u3

{
y (u− 1)

[
4c1u

3

(
u3 + 2u2 − u+ 4

)
+
c2
72

(
u6 + 2u5 − 39u4 − 12u3 + 65u2 − 50u− 27

)
+
c3
12

(
u6 + 2u5 − 31u4 + 4u3 + 57u2 − 18u− 27

)
+
c4
72

(
7u6 + 14u5 − 185u4 − 100u3 + 151u2 + 50u+ 27

)]
+D(u)

[
16c1(4u2 − 1− u4) +

2c2
3

(
2− 10u2 + 3u4

)
+ 4c3u

2(u2 − 2) +
2c4
3

(
9u4 − 10u2 − 2

)]}
,(2.28)
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ImW
(XII)
T =

1

µ2
ImW

(XII)
S − g2

Am
3
π

(4fπ)6π2u5

{
y (u− 1)

[
16c1u

3

(
2 + u− 2u2 − u3

)
+
c2
36

(
73u4 − 6u5 − 3u6 + 44u3 − 43u2 − 50u− 27

)
+
c3
2

(
19u4 − 2u5 − u6 + 4u3 − 9u2 − 6u− 9

)
+
c4
36

(
39u4 − 2u5 − u6 + 12u3 − 65u2 + 50u+ 27

)]
+4D(u)

[
8c1(u4 − 1) + c2

(
2

3
− u4

)
− 2c3u

4 +
c4
3

(
10u2 − 2− 3u4

)]}
, (2.29)

ImW
(XIII)
C = − g4

Ac4m
5
π

(4fπ)6π2

[
8y

3
(u− 1)(u− 4− 2u2 − u3) + 32D(u)

(
u3 − 4u+

1

u

)]
, (2.30)

ImV
(XIII)
S = − g4

Ac4m
5
π

(4fπ)6π2u3

[
y

24
(u− 1)(37u6 + 74u5 − 251u4 − 268u3 + 349u2 − 58u− 135)

+2D(u) (39u4 − 2− 52u2 − 6u6)

]
, (2.31)

ImV
(XIII)
T =

1

µ2
ImV

(XIII)
S − g4

Ac4m
3
π

(4fπ)6π2u5

[
y

12
(u− 1)(5u6 + 10u5 − 3u4 − 252u3 − 443u2 − 58u− 135)

+4D(u) (3u4 + 22u2 − 2)

]
, (2.32)

ImW
(XIII)
S = − g4

Am
5
π

(4fπ)6π2u3

{
y (u− 1)

[
2c1u(5u3 + 10u2 − 5u− 4)

+
c2
48

(
135 + 58u− 277u2 − 36u3 + 147u4 − 10u5 − 5u6

)
+
c3
8

(
7u6 + 14u5 − 145u4 − 20u3 + 111u2 + 18u+ 27

)
+
c4
6

(
44u3 + 37u4 − 14u5 − 7u6 − 3u2 − 18u− 27

)]
+D(u)

[
24c1(1 + 4u2 − 3u4) + c2(2 + 2u2 − 3u4) + 6c3u

2(3u2 − 2) + 8c4u
2(u4 − 5u2 + 5)

]}
,

(2.33)

ImW
(XIII)
T =

1

µ2
ImW

(XIII)
S − g4

Am
3
π

(4fπ)6π2u5

{
y (u− 1)

[
4c1u(5u3 + 10u2 + 7u− 4)

+
c2
24

(
135 + 58u+ 227u2 + 204u3 + 27u4 − 10u5 − 5u6

)
+
c3
4

(
27 + 18u− 9u2 − 68u3 − 121u4 + 14u5 + 7u6

)
+c4(4u3 + 19u4 − 2u5 − u6 − 9u2 − 6u− 9)

]
+2D(u)

[
24c1(1− 3u4) + c2(2− 10u2 − 3u4) + 6c3u

2(3u2 + 2)− 8c4u
4

]}
, (2.34)

ImV
(XIV)
S = − g4

Ac4m
5
π

(4fπ)6π2u3

[
y

24
(u− 1)(637u2 − 58u− 135 + 116u3 − 491u4 − 22u5 − 11u6)

+2D(u) (6u6 − 9u4 + 8u2 − 2)

]
, (2.35)

where y =
√

(u− 3)(u+ 1) and D(u) = ln[(u− 1 + y)/2] with u = µ/mπ > 3.
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III. PERTURBATIVE NN SCATTERING IN PERIPHERAL PARTIAL WAVES

Nucleon-nucleon scattering in peripheral partial waves is of special interest—for several reasons. First, these partial
waves probe the long- and intermediate-range of the nuclear force. Due to the centrifugal barrier, there is only
small sensitivity to short-range contributions and, in fact, the contact terms up to and including order N3LO make
no contributions for orbital angular momenta L ≥ 3. Thus, for F and higher waves and energies below the pion-
production threshold, we have a window in which the NN interaction is governed by chiral symmetry alone (chiral
one- and multi-pion exchanges), and we can conduct a relatively clean test of how well the theory works. Using
values for the LECs from πN analysis, the NN predictions are even parameter free. Moreover, the smallness of the
phase shifts in peripheral partial waves suggests that the calculation can be done perturbatively. This avoids the
complications and possible model-dependence (e.g., cutoff dependence) that the non-perturbative treatment of the
Lippmann-Schwinger equation, necessary for low partial waves, is beset with. A thorough investigation of this kind
at N3LO was conducted in Ref. [15]. Here, we will work at N4LO.

The perturbative K-matrix for np scattering is calculated as follows:

K(~p ′, ~p) = V
(np)
1π (~p ′, ~p) + V

(np)
2π,it (~p ′, ~p) + V (~p ′, ~p) (3.1)

with V
(np)
1π (~p ′, ~p) as in Eq. (A2), and V

(np)
2π,it (~p ′, ~p) representing the once iterated one-pion exchange (1PE) given by

V
(np)
2π,it (~p ′, ~p) = P

∫
d3p′′

M2
N

Ep′′

V
(np)
1π (~p ′, ~p ′′)V

(np)
1π (~p ′′, ~p)

p2 − p′′2
, (3.2)

where P denotes the principal value integral and Ep′′ =
√
M2
N + p′′2. A calculation at LO includes only the first term

on the right hand side of Eq. (3.1), V
(np)
1π (~p ′, ~p), while calculations at NLO or higher order also include the second

term on the right hand side, V
(np)
2π,it (~p ′, ~p). At N3LO and beyond, the twice iterated 1PE should be included, too.

However, we found that the difference between the once iterated 1PE and the infinitely iterated 1PE is so small that
it could not be identified on the scale of our phase shift figures. For that reason, we omit iterations of 1PE beyond

what is contained in V
(np)
2π,it (~p ′, ~p).

Finally, the third term on the r.h.s. of Eq. (3.1), V (~p ′, ~p), stands for the irreducible multi-pion exchange contri-
butions that occur at the order at which the calculation is conducted. In multi-pion exchanges, we use the average
pion mass mπ = 138.039 MeV and, thus, neglect the charge-dependence due to pion-mass splitting in irreducible
multi-pion diagrams. The charge-dependence that emerges from irreducible 2π exchange was investigated in Ref. [28]
and found to be negligible for partial waves with L ≥ 3.

Throughout this paper, we use

MN =
2MpMn

Mp +Mn
= 938.9182 MeV. (3.3)

Based upon relativistic kinematics, the CMS on-shell momentum p is related to the kinetic energy of the incident
neutron in the laboratory system (“Lab. Energy”), Tlab, by

p2 =
M2
pTlab(Tlab + 2Mn)

(Mp +Mn)2 + 2TlabMp
, (3.4)

with Mp = 938.2720 MeV and Mn = 939.5653 MeV the proton and neutron masses, respectively.
The K-matrix, Eq. (3.1), is decomposed into partial waves following Ref. [29] and phase shifts are then calculated

via

tan δL(Tlab) = − M2
Np

16π2Ep
pKL(p, p) . (3.5)

For more details concerning the evaluation of phase shifts, including the case of coupled partial waves, see Ref. [30]
or the appendix of [31]. All phase shifts shown in this paper are in terms of Stapp conventions [32].

We calculate phase shifts for partial waves with L ≥ 3 and Tlab ≤ 300 MeV. To establish a link between πN and
NN and to check the consistency of the πN and NN systems, we use the πN LECs determined in Ref. [21] in a
calculation of πN scattering at fourth order applying the same power counting scheme as in the present work. To be
specific, we use the set of LECs denoted by ‘KH’ in Ref. [21]. The values are:
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FIG. 3: Effect of individual fifth-order contributions on the neutron-proton phase shifts of some selected peripheral partial
waves. The individual contributions are added up successively in the order given in parenthesis next to each curve. Curve (1)
is N3LO and curve (5) is the complete N4LO. The filled and open circles represent the results from the Nijmegan multi-energy
np phase-shift analysis [33] and the VPI/GWU single-energy np analysis SM99 [34], respectively.

c1 = −0.75 GeV−1, c2 = 3.49 GeV−1, c3 = −4.77 GeV−1, c4 = 3.34 GeV−1;

d̄1 + d̄2 = 6.21 GeV−2, d̄3 = −6.83 GeV−2, d̄5 = 0.78 GeV−2, d̄14 − d̄15 = −12.02 GeV−2;

ē14 = 1.52 GeV−3, ē17 = −0.37 GeV−3.

Moreover, we absorb the Goldberger-Treiman discrepancy into an effective value for gA, namely, gA = 1.29.
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Finally, the physical value of the pion-decay constant is fπ = 92.4 MeV.
As shown in Figs. 1 and 2 and derived in Sec. II, the fifth order consists of several contributions. We will now

demonstrate how the individual fifth-order contributions impact NN phase shifts in peripheral waves. For this
purpose, we display in Fig. 3 phase shifts for six important peripheral partial waves, namely, 1F3, 3F2, 3F3, 3F4, 1G4,
and 3G5. In each frame, the following curves are shown:

(1) N3LO.

(2) The previous curve plus the ci/MN corrections (denoted by ‘c/M’), Fig. 1(c) and Sec. II A 3.

(3) The previous curve plus the N4LO 2π-exchange (2PE) two-loop contributions of class (a), Fig. 1(a) and Sec. II A 1.

(4) The previous curve plus the N4LO 2PE two-loop contributions of class (b), Fig. 1(b) and Sec. II A 2.

(5) The previous curve plus the N4LO 3π-exchange (3PE) contributions, Fig. 2 and Sec. II B.

In summary, the various curves add up successively the individual N4LO contributions in the order indicated in the
curve labels. The last curve in this series, curve (5), is the full N4LO result. In these calculations, a SFR cutoff

Λ̃ = 1.5 GeV is applied [cf. Eq. (2.11)].
From Fig. 3, we make the following observations. In triplet F -waves, the ci/MN corrections as well as the 2PE

two-loops, class (a) and (b), are all repulsive and of about the same strength. As a consequence, the problem of the
excessive attraction, that N3LO is beset with, is overcome. A similar trend is seen in 1G4. An exception is 1F3, where
the class (b) contribution is attractive leading to phase shifts above the data for energies higher than 150 MeV.

Now turning to the N4LO 3PE contributions [curve (5) in Fig. 3]: they are substantially smaller than the 2PE
two-loop ones, in all peripheral partial waves. This can be interpreted as an indication of convergence with regard
to the number of pions being exchanged between two nucleons—a trend that is very welcome. Further, note that
the total 3PE contribution is a very comprehensive one, cf. Fig. 2. It is the sum of ten terms (cf. Sec. II B) which,
individually, can be fairly large. However, destructive interference between them leads to the small net result.

For all F and G waves (except 1F3), the final N4LO result is in excellent agreement with the empirical phase shifts.
Notice that this includes also 3G5, which posed persistent problems at N3LO [15].

On a historical note, we mention that in the construction of the Stony Brook [35, 36] and Paris [37, 38] NN
potentials, which both include a 2PE contribution based upon dispersion theory, the dispersion integral, Eq. (2.11),

is cutoff at µ2 = 50m2
π, which is equivalent to a SFR cutoff Λ̃ =

√
50mπ ∼ 1 GeV. Not accidentally, this agrees well

with the common assumption of Λχ ∼ 1 GeV and, thus, sets the scale for an appropriate choice of Λ̃. Consistent with

this, Λ̃ = 1.5 GeV was used for the results presented in Fig. 3. It is, however, also of interest to know how predictions
change with variations of Λ̃ within a reasonable range. We have, therefore, varied Λ̃ between 0.7 and 1.5 GeV and
show the predictions for all F and G waves in Figs. 4 and 5, respectively, in terms of shaded (colored) bands. It is
seen that, at N3LO, the variations of the predictions are very large and always too attractive while, at N4LO, the
variations are small and the predictions are close to the data or right on the data. Figs. 4 and 5 also include the lower
orders (as defined in the Appendices) such that a comparison of the relative size of the order-by-order contributions
is possible. We observe that there is not much of a convergence, since obviously the magnitudes of the NNLO, N3LO,
and N4LO contributions are about the same. Potentially, this is characteristic for just these three orders and changes
beyond N4LO. But only an explicit calculation at N5LO can settle this issue.

IV. CONCLUSIONS

In this paper, we have calculated the one- and two-loop 2π-exchange (2PE) and two-loop 3π-exchange (3PE)
contributions to the NN interaction which occur at N4LO (fifth order) of the chiral low-momentum expansion. The
calculations are based upon heavy-baryon chiral perturbation theory using the most general fourth order Lagrangian
for pions and nucleons. We apply πN LECs, which were determined in an analysis of elastic pion-nucleon scattering to
fourth order using the same power counting scheme as in the present work. The spectral functions, which determine
the NN amplitudes via dispersion integrals, are regularized by a cutoff Λ̃ in the range 0.7 to 1.5 GeV (also known as

spectral-function regularization). Besides the cutoff Λ̃, our calculations do not involve any adjustable parameters.
From past work on NN scattering in chiral perturbation theory (see, e.g., Ref. [15]), it is wellknown that, at NNLO

and N3LO, chiral 2PE produces far too much attraction. The most important result of the present study is that the
N4LO 2PE contributions are prevailingly repulsive and, thus, compensate the excessive attraction of the lower orders.
As a consequence, the phase-shift predictions in F and G waves are in very good agreement with the data, with the
only exception of the 1F3 wave. The net 3PE contribution turns out to be moderate pointing towards convergence
in terms of the number of pions exchanged between two nucleons. On the other hand, the NNLO, N3LO, and N4LO
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FIG. 4: (Color online) Phase-shifts of neutron-proton scattering at various orders as denoted. The shaded (colored) bands

show the variation of the predictions when the SFR cutoff Λ̃ is changed over the range 0.7 to 1.5 GeV. The filled and open
circles represent the results from the Nijmegan multi-energy np phase-shift analysis [33] and the VPI/GWU single-energy np
analysis SM99 [34], respectively.
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FIG. 5: (Color online) Same as Fig. 4, but for G-waves.



13

LO
(Q/Λχ)0

NLO
(Q/Λχ)2

NNLO
(Q/Λχ)3

FIG. 6: LO, NLO, and NNLO contributions to the NN interaction. Notation as in Fig. 1.

contributions are all about of the same magnitude raising some concern about the convergence of the chiral expansion
of the NN amplitude. To obtain more insight into this issue, future investigations at N5LO may be necessary.
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Appendix A: Leading order

At leading order, there is only the 1π-exchange contribution, cf. Fig. 6. The charge-independent 1π-exchange is
given by

V
(CI)
1π (~p ′, ~p) = − g2

A

4f2
π

τ1 · τ2
~σ1 · ~q ~σ2 · ~q
q2 +m2

π

. (A1)

Higher order corrections to the 1π-exchange are taken care of by mass and coupling constant renormalizations gA/fπ →
gπN/MN . Note also that, on shell, there are no relativistic corrections. Thus, we apply 1π-exchange in the form
Eq. (A1) through all orders.

In this paper, we are specifically calculating neutron-proton (np) scattering and take the charge-dependence of the
1π-exchange into account. Thus, the 1π-exchange potential that we actually apply reads

V
(np)
1π (~p ′, ~p) = −V1π(mπ0) + (−1)I+1 2V1π(mπ±) , (A2)

where I = 0, 1 denotes the total isospin of the two-nucleon system and

V1π(mπ) ≡ − g2
A

4f2
π

~σ1 · ~q ~σ2 · ~q
q2 +m2

π

. (A3)

We use mπ0 = 134.9766 MeV and mπ± = 139.5702 MeV. Formally speaking, the charge-dependence of the 1PE
exchange is of order NLO [1], but we include it already at leading order to make the comparison with the np phase
shifts more meaningful.
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Appendix B: Next-to-leading order

The NN diagrams that occur at NLO (cf. Fig. 6) contribute in the following way [7]:

WC =
L(Λ̃; q)

384π2f4
π

[
4m2

π(1 + 4g2
A − 5g4

A) + q2(1 + 10g2
A − 23g4

A)− 48g4
Am

4
π

w2

]
, (B1)

VT = − 1

q2
VS = − 3g4

A

64π2f4
π

L(Λ̃; q) . (B2)

Appendix C: Next-to-next-to-leading order

The NNLO contribution (lower row of Fig. 6) is given by [7]:

VC =
3g2
A

16πf4
π

[
2m2

π(c3 − 2c1) + c3q
2
]

(2m2
π + q2)A(Λ̃; q) , (C1)

WT = − 1

q2
WS = − g2

A

32πf4
π

c4w
2A(Λ̃; q) . (C2)

The loop function that appears in the above expressions, regularized by spectral-function cut-off Λ̃, is

A(Λ̃; q) =
1

2q
arctan

q(Λ̃− 2mπ)

q2 + 2Λ̃mπ

. (C3)

Note that

lim
Λ̃→∞

A(Λ̃; q) =
1

2q
arctan

q

2mπ
(C4)

yields the loop function used in dimensional regularization.

Appendix D: Next-to-next-to-next-to-leading order

1. Football diagram at N3LO

The football diagram at N3LO, Fig. 7(a), generates [12]:

VC =
3

16π2f4
π

[(c2
6
w2 + c3(2m2

π + q2)− 4c1m
2
π

)2

+
c22
45
w4

]
L(Λ̃; q) , (D1)

WT = − 1

q2
WS =

c24
96π2f4

π

w2L(Λ̃; q) . (D2)
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(a)

(b)

(c)

= + + +

+ + + +

+ + + + . . .

FIG. 7: Two-pion exchange contributions at N3LO with (a) the N3LO football diagram, (b) the leading 2PE two-loop contri-
butions, and (c) the relativistic corrections of NLO diagrams. Notation as in Fig. 1.
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2. Leading two-loop contributions

The leading order 2π-exchange two-loop diagrams are shown in Fig. 7(b). In terms of spectral functions, the results
are [12]:

ImVC =
3g4
A(2m2

π − µ2)

πµ(4fπ)6

[
(m2

π − 2µ2)

(
2mπ +

2m2
π − µ2

2µ
ln
µ+ 2mπ

µ− 2mπ

)
+ 4g2

Amπ(2m2
π − µ2)

]
, (D3)

ImWC =
2κ

3µ(8πf2
π)3

∫ 1

0

dx
[
g2
A(µ2 − 2m2

π) + 2(1− g2
A)κ2x2

]
×

{
96π2f2

π

[
(2m2

π − µ2)(d̄1 + d̄2)− 2κ2x2d̄3 + 4m2
πd̄5

]
+
[
4m2

π(1 + 2g2
A)− µ2(1 + 5g2

A)
] κ
µ

ln
µ+ 2κ

2mπ
+
µ2

12
(5 + 13g2

A)− 2m2
π(1 + 2g2

A)

− 3κ2x2 + 6κx
√
m2
π + κ2x2 ln

κx+
√
m2
π + κ2x2

mπ

+g4
A

(
µ2 − 2κ2x2 − 2m2

π

) [5

6
+

m2
π

κ2x2
−
(

1 +
m2
π

κ2x2

)3/2

ln
κx+

√
m2
π + κ2x2

mπ

]}
, (D4)

ImVS = µ2 ImVT =
g2
Aµκ

3

8πf4
π

(
d̄15 − d̄14

)
+

2g6
Aµκ

3

(8πf2
π)3

∫ 1

0

dx(1− x2)

[
1

6
− m2

π

κ2x2
+

(
1 +

m2
π

κ2x2

)3/2

ln
κx+

√
m2
π + κ2x2

mπ

]
, (D5)

ImWS = µ2 ImWT (iµ) =
g4
A(4m2

π − µ2)

π(4fπ)6

[(
m2
π −

µ2

4

)
ln
µ+ 2mπ

µ− 2mπ
+ (1 + 2g2

A)µmπ

]
, (D6)

where κ =
√
µ2/4−m2

π.
The momentum space amplitudes Vα(q) and Wα(q) are obtained from the above expressions by means of the

dispersion integrals shown in Eq. (2.11).

3. Leading relativistic corrections

The relativistic corrections of the NLO diagrams, which are shown in Fig. 7(c), count as N3LO and are given by [1]:

VC =
3g4
A

128πf4
πMN

[
m5
π

2w2
+ (2m2

π + q2)(q2 −m2
π)A(Λ̃; q)

]
, (D7)

WC =
g2
A

64πf4
πMN

{
3g2
Am

5
π

2ω2
+
[
g2
A(3m2

π + 2q2)− 2m2
π − q2

]
(2m2

π − q2)A(Λ̃; q)

}
, (D8)

VT = − 1

q2
VS =

3g4
A

256πf4
πMN

(5m2
π + 2q2)A(Λ̃; q) , (D9)

WT = − 1

q2
WS =

g2
A

128πf4
πMN

[
g2
A(3m2

π + q2)− w2
]
A(Λ̃; q) , (D10)

VLS =
3g4
A

32πf4
πMN

(2m2
π + q2)A(Λ̃; q) , (D11)

WLS =
g2
A(1− g2

A)

32πf4
πMN

w2A(Λ̃; q) . (D12)
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4. Leading three-pion exchange contributions

The leading 3π-exchange contributions that occur at N3LO have been calculated in Refs. [9, 10] and are found to
be negligible. We, therefore, omit them.

[1] R. Machleidt and D. R. Entem, Phys. Rep. 503, 1 (2011).
[2] E. Epelbaum, H.-W. Hammer, and U.-G. Meißner, Rev. Mod. Phys. 81, 1773 (2009).
[3] J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984).
[4] J. Gasser, M. E. Sainio, and A. Švarc, Nucl. Phys. B307, 779 (1988).
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