Peripheral nucleon-nucleon scattering at fifth order of chiral perturbation theory

D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk

Phys. Rev. C 91, 014002 — Published 6 January 2015
DOI: 10.1103/PhysRevC.91.014002
Peripheral nucleon-nucleon scattering at fifth order of chiral perturbation theory

D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk

1Grupo de Física Nuclear, IUFFyM, Universidad de Salamanca, E-37008 Salamanca, Spain
2Physik Department T39, Technische Universität München, D-85747 Garching, Germany
3Department of Physics, University of Idaho, Moscow, Idaho 83844, USA

(Dated: November 20, 2014)

We present the two- and three-pion exchange contributions to the nucleon-nucleon interaction which occur at next-to-next-to-next-to-leading order (N4LO, fifth order) of chiral effective field theory, and calculate nucleon-nucleon scattering in peripheral partial waves with \(L \geq 3 \) using low-energy constants that were extracted from \(\pi N \) analysis at fourth order. While the net three-pion exchange contribution is moderate, the two-pion exchanges turn out to be sizeable and prevalently repulsive, thus, compensating the excessive attraction characteristic for NNLO and N3LO. As a result, the N4LO predictions for the phase shifts of peripheral partial waves are in very good agreement with the data (with the only exception of the \(^1F_3 \) wave). We also discuss the issue of the order-by-order convergence of the chiral expansion for the NN interaction.

PACS numbers: 13.75.Cs, 21.30.-x, 12.39.Fe, 11.10.Gh

Keywords: nucleon-nucleon scattering, chiral perturbation theory, chiral effective field theory

I. INTRODUCTION

During the past three decades, it has been demonstrated that chiral effective field theory (chiral EFT) represents a powerful tool to deal with hadronic interactions at low energy in a systematic and model-independent way (see Refs. [1, 2] for recent reviews). The systematics is provided by a low-energy expansion arranged in terms of powers of the soft scale over the hard scale, \((Q/\Lambda_{\chi})^\nu\), where \(Q \) is generic for an external momentum (nucleon three-momentum or pion four-momentum) or a pion mass, and \(\Lambda_{\chi} \approx 1 \) GeV the chiral symmetry breaking scale. The model-independent dynamics is created by pions interacting under the constraint of broken chiral symmetry which provides the link to low-energy QCD.

The early applications of chiral perturbation theory (ChPT) focused on systems like \(\pi \pi \) [3] and \(\pi N \) [4], where the Goldstone-boson character of the pion guarantees that a perturbative expansion exists. But the past 20 years have also seen great progress in applying ChPT to nuclear forces [1, 2, 5–17]. About a decade ago, the nucleon-nucleon (\(NN \)) interaction up to fourth order (next-to-next-to-next-to-leading order, N3LO) was derived [7, 9, 10, 12, 13, 15] and quantitative NN potentials were developed [16, 17]. These N3LO NN potentials complemented by chiral three-nucleon forces (3NFs) have been applied in calculations of few-nucleon reactions, the structure of light- and medium-mass nuclei, and nuclear and neutron matter—with, in general, a good deal of success. However, some problems continue to exist that seem to defy any solution. The most prominent one is the so-called ‘A\(_p\) puzzle’ of nucleon-deuteron scattering, which requires the inclusion of three-nucleon forces (3NFs) [18]. While the chiral 3NF at NNLO slightly improves the predictions for low-energy \(N − d \) scattering [19], inclusion of the N3LO 3NF deteriorates the predictions [20]. Based upon general arguments, the N3LO 3NF is presumed weak, which is why one would not expect the solution of any substantial problems, anyhow. When working in the framework of an expansion, then, the obvious way to proceed is to turn to the next order, which is N4LO (or fifth order). Some 3NF topologies at N4LO have already been worked out [21, 22], and it has been shown that, at this order, all 22 possible isospin-spin-momentum 3NF structures appear. Moreover, the contributions are moderate to sizeable. What makes the fifth order even more interesting is the fact that, at this order, a new set of 3NF contact interactions appears, which has recently been derived by the Pisa group [23]. 3NF contact terms are attractive from the point of view of the practitioner, because they are typically simple (as compared to loop contributions) and their coefficients are essentially free. Thus, at N4LO, the A\(_p\) puzzle may be solved in a trivial way through 3NF (contact) interactions. Due to the great diversity of structures offered at N4LO, one can also expect that other persistent nuclear structure problems may finally find their solution at N4LO.

* Electronic address: entem@usal.es
† Electronic address: nkaiser@ph.tum.de
‡ Electronic address: machleid@uidaho.edu
A principle of all EFTs is that, for reliable predictions, it is necessary that all terms included are evaluated at the order at which the calculation is conducted. Thus, if nuclear structure problems require for their solution the inclusion of 3NFs at \(N^4 \text{LO} \), then also the two-nucleon force involved in the calculation has to be of order \(N^4 \text{LO} \). This is one reason for the investigation of the \(NN \) interaction at \(N^4 \text{LO} \) presented in this paper. Besides this, there are also some more specific issues that motivate a study of this kind. From calculations of the \(NN \) interaction at \(N^3 \text{LO} \) [7] and \(N^3 \text{LO} \) [15], it is well known that there is a problem with excessive attraction, particularly when for the \(c_i \) low-energy constants (LECs) of the dimension-two \(\pi N \) Lagrangian the values are applied that are obtained from \(\pi N \) analysis. It is important to know if this problem is finally solved when going beyond \(N^3 \text{LO} \). Last not least, also the convergence of the chiral expansion of the \(NN \) interaction is of general interest.

This paper is organized as follows: In Sec. II, we derive the two- and three-pion exchange contributions at fifth order. The predictions for \(NN \) scattering in peripheral partial waves are shown in Sec. III, and Sec. IV concludes the paper. In the Appendices, we summarize the detailed mathematical expressions that define the lower orders of the chiral \(NN \) potential. This is necessary, because in this study we perform the power counting (of relativistic 1/\(M_N \)-corrections) differently as compared to our earlier work. Since we present also phase shift predictions for the lower orders, the unambiguous definition of each order is necessary to avoid confusion.

II. PION-EXCHANGE CONTRIBUTIONS TO THE \(NN \) POTENTIAL

The various pion-exchange contributions to the \(NN \) potential may be analyzed according to the number of pions being exchanged between the two nucleons:

\[
V = V_{1\pi} + V_{2\pi} + V_{3\pi} + \ldots ,
\]

where the meaning of the subscripts is obvious and the ellipsis represents 4\(\pi \) and higher pion exchanges. For each of the above terms, we have a low-momentum expansion:

\[
\begin{align*}
V_{1\pi} &= V_{1\pi}^{(0)} + V_{1\pi}^{(2)} + V_{1\pi}^{(3)} + V_{1\pi}^{(4)} + V_{1\pi}^{(5)} + \ldots \\
V_{2\pi} &= V_{2\pi}^{(2)} + V_{2\pi}^{(3)} + V_{2\pi}^{(4)} + V_{2\pi}^{(5)} + \ldots \\
V_{3\pi} &= V_{3\pi}^{(4)} + V_{3\pi}^{(5)} + \ldots ,
\end{align*}
\]

where the superscript denotes the order \(\nu \) of the expansion, which for an irreducible two-nucleon diagram is given by

\[
\nu = 2L + \sum_i (d_i + n_i/2 - 2)
\]

with \(L \) the number of loops, \(d_i \) the number of derivatives or pion-mass insertions, and \(n_i \) the number of nucleon fields (nucleon legs) involved in vertex \(i \). The sum runs over all vertices contained in the diagram under consideration.

Order by order, the \(NN \) potential builds up as follows:

\[
\begin{align*}
V_{\text{LO}} &\equiv V^{(0)} = V_{1\pi}^{(0)} \\
V_{\text{NLO}} &\equiv V^{(2)} = V_{1\pi}^{(2)} + V_{2\pi}^{(2)} \\
V_{\text{NNLO}} &\equiv V^{(3)} = V_{1\pi}^{(3)} + V_{2\pi}^{(3)} \\
V_{\text{NNNLO}} &\equiv V^{(4)} = V_{1\pi}^{(4)} + V_{2\pi}^{(4)} + V_{3\pi}^{(4)} \\
V_{\text{NNNNLO}} &\equiv V^{(5)} = V_{1\pi}^{(5)} + V_{2\pi}^{(5)} + V_{3\pi}^{(5)}
\end{align*}
\]

where LO stands for leading order, NLO for next-to-leading order, etc..

In past work [6–10, 12–17], the \(NN \) interaction has been developed up to \(N^3 \text{LO} \). To make this paper self-contained and, because we perform the power counting for relativistic corrections differently as compared to our previous work, we summarize, order by order, the contributions up to \(N^3 \text{LO} \) in the Appendices. In this way, all orders, which we are talking about in this paper, are unambiguously defined.

The novel feature of this paper are the contributions to the \(NN \) potential at \(N^4 \text{LO} \), which we will present now.

The results will be stated in terms of contributions to the momentum-space \(NN \) amplitudes in the center-of-mass system (CMS), which arise from the following general decomposition:

\[
V(\vec{p}', \bar{\vec{p}}) = V_C + \tau_1 \cdot \tau_2 W_C \\
+ \left[V_S + \tau_1 \cdot \tau_2 W_S \right] \vec{\sigma}_1 \cdot \vec{\sigma}_2 \\
+ \left[V_{LS} + \tau_1 \cdot \tau_2 W_{LS} \right] \left(-i \vec{S} \cdot (\vec{q} \times \vec{k})\right) \\
+ \left[V_T + \tau_1 \cdot \tau_2 W_T \right] \vec{\sigma}_1 \cdot \vec{q} \vec{\sigma}_2 \cdot \vec{q} \\
+ \left[V_{\sigma L} + \tau_1 \cdot \tau_2 W_{\sigma L} \right] \vec{\sigma}_1 \cdot (\vec{q} \times \vec{k}) \vec{\sigma}_2 \cdot (\vec{q} \times \vec{k}),
\]

(2.10)
where \vec{p}' and \vec{p} denote the final and initial nucleon momenta in the CMS, respectively. Moreover, $\bar{q} = \vec{p}' - \vec{p}$ is the momentum transfer, $\vec{k} = (\vec{p}' + \vec{p})/2$ the average momentum, and $\vec{S} = (\vec{\sigma}_1 + \vec{\sigma}_2)/2$ the total spin, with $\vec{\sigma}_{1,2}$ the spin and isospin operators, of nucleon 1 and 2, respectively. For on-shell scattering, V_b and W_α ($\alpha = C, S, LS, T, \sigma L$) can be expressed as functions of $q = |\bar{q}|$ and $p = |\vec{p}'| = |\vec{p}|$, only. Note that the one-pion exchange contribution in Eq. (2.2) is of the form $W_T^{\text{1π}} = -(g_{\pi N}/2M_N)^2(m_\pi^2 + q^2)^{-1}$ with physical values of the coupling constant $g_{\pi N}$ and nucleon and pion masses M_N and m_π. This expression fixes at the same time our sign-convention for $V(\vec{p}', \vec{p})$.

We will state two-loop contributions in terms of their spectral functions, from which the momentum-space amplitudes $V_\alpha(q)$ and $W_\alpha(q)$ are obtained via the subtracted dispersion integrals:

$$V_{C,S}(q) = -\frac{2q^6}{\pi} \int_{nm_\pi}^\Lambda d\mu \frac{\text{Im} V_{C,S}(i\mu)}{\mu^6(\mu^2 + q^2)},$$

$$V_T(q) = \frac{2q^4}{\pi} \int_{nm_\pi}^\Lambda d\mu \frac{\text{Im} V_T(i\mu)}{\mu^4(\mu^2 + q^2)},$$

(2.11)

and similarly for $W_{C,S,T}$. Clearly, $n = 2$ for two-pion exchange and $n = 3$ for three-pion exchange. For $\Lambda \to \infty$ the above dispersion integrals yield the results of dimensional regularization, while for finite $\Lambda \geq nm_\pi$ we have what has become known as spectral-function regularization (SFR) [27]. The purpose of the finite scale Λ is to constrain the imaginary parts to the low-momentum region where chiral effective field theory is applicable.

A. Two-pion exchange contributions at N4LO

The 2π-exchange contributions that occur at N4LO are displayed graphically in Fig. 1. We present now the corresponding analytical expressions separately for each class.

1. Spectral functions for class (a)

The N4LO 2π-exchange two-loop contributions of class (a) are shown in Fig. 1(a). For this class the spectral functions are obtained by integrating the product of the leading one-loop πN amplitude and the chiral $\pi\pi NN$ vertex proportional to c_i over the Lorentz-invariant 2π-phase space. In the $\pi\pi$ center-of-mass frame this integral can be expressed as an angular integral $\int_0^\pi dx [12]$. The results for the non-vanishing spectral functions read:

$$\text{Im} V_C = -\frac{m_\pi^2}{(4\pi)^{5/2}} \left\{ g_A^2 \sqrt{u^2 - 4} \left[5 - 2u^2 - \frac{2}{u^2} \right] \left[24c_1 + c_2(u^2 - 4) + 6c_3(u^2 - 2) \right] \ln \frac{u + 2}{u - 2} + \frac{8}{u} \left[3(4c_1 + c_3(u^2 - 2))(4g_A^4u^2 - 10g_A^4 + 1) + c_2(6g_A^4u^2 - 10g_A^4 - 3) \right] B(u) + \sqrt{u^2 - 4} \left[3(2 - u^2)(4c_1 + c_3(u^2 - 2)) + c_2(7u^2 - 6 - u^4) + \frac{4g_A^4}{u}(2u^2 - 1) \right] \times \left[4(6c_1 - c_2 - 3c_3) + (c_2 + 6c_3)u^2 \right] + 4g_A^4 \left(\frac{32}{u + 2}(2c_1 + c_3) + \frac{64}{3u}(6c_1 + c_2 - 3c_3) + 14c_3 - 5c_2 - 92c_1 + \frac{8u}{3}(18c_5 - 5c_2) + \frac{u^2}{6}(36c_1 + 13c_2 - 156c_3) \right) \right\},$$

$$\text{Im} W_S = \mu^2 \text{Im} W_T = \frac{c_1 g_A^2 m_\pi^2}{(4\pi)^{5/2}} \left\{ 8g_A^2 u(5 - u^2)B(u) + \frac{1}{3}(u^2 - 4)^{5/2} \ln \frac{u + 2}{u - 2} + \frac{u}{3} \sqrt{u^2 - 4} \left[g_A^2(30u - u^3 - 64) - 4u^2 + 16 \right] \right\},$$

(2.12)

(2.13)

with the dimensionless variable $u = \mu/m_\pi > 2$ and the logarithmic function

$$B(u) = \ln \frac{u + \sqrt{u^2 - 4}}{2}.$$

(2.14)
FIG. 1: Two-pion-exchange contributions at N^4LO. (a) The leading one-loop πN amplitude is folded with the chiral ππNN vertices proportional to c_i. (b) The one-loop πN amplitude proportional to c_i is folded with the leading order chiral πN amplitude. (c) Relativistic corrections of NNLO diagrams. Solid lines represent nucleons and dashed lines pions. Small dots, large solid dots, solid squares, and triangles denote vertices of index d_i + n_i/2 − 2 = 0, 1, 2, and 3, respectively. Open circles are relativistic 1/M_N corrections.

2. Spectral functions for class (b)

The N^4LO 2π-exchange two-loop contributions of class (b) are displayed in Fig. 1(b). For this class, the product of the one-loop πN amplitude proportional to c_i (see Ref. [21] for details) and the leading order chiral πN amplitude
is integrated over the 2π-phase space. We obtain:

\[
\text{Im}V_S = \mu^2 \text{Im}V_T = \frac{g_A^5 m_\pi^5}{(4f_\pi)^6\pi^2} \left\{ \sqrt{u^2 - 4} \left(u^3 - 30u + 64 \right) + 24(u^2 - 5)B(u) \right\}, \tag{2.15}
\]

\[
\text{Im}W_S = \mu^2 \text{Im}W_T = \frac{g_A^5 m_\pi^5}{(4f_\pi)^6\pi^2} (4 - u^2) \left\{ \frac{c_4}{3} \left[\sqrt{u^2 - 4} (2u^2 - 8)B(u) + 4u^2 + 9g_A^2 \right] \right\}, \tag{2.16}
\]

\[
\text{Im}V_C = \frac{g_A^5 m_\pi^5}{(4f_\pi)^6\pi^2} (u^2 - 2) \left\{ \frac{1}{u^2 - 2} \left[2\sqrt{u^2 - 4} \left(24c_1 + c_2(u^2 - 4) + 6c_3(u^2 - 2) \right) \right] B(u) + u \left[c_2 \left(8 - \frac{5u^2}{3} \right) + 6c_3(2 - u^2) - 24c_1 \right] + \frac{3g_A^2 m_\pi^5}{(2f_\pi)^4u}(2 - u^2)^3 \bar{e}_{14} \right\}, \tag{2.17}
\]

\[
\text{Im}W_C = -\frac{c_4 g_A^5 m_\pi^5}{(4f_\pi)^6\pi^2} \left\{ \frac{1}{64} \left[g_A^4(6u^4 - 30u^2 + 35) + g_A^2(6u^2 - 8) + 3 \right] B(u) - \frac{c_4 g_A^2 m_\pi^5}{(4f_\pi)^6\pi^2} \left\{ \frac{2}{9} \sqrt{u^2 - 4} \left[3(7u^2 - 6u - u^4) + 4g_A^2 \left(\frac{32}{u} - 12 - 20u + 7u^2 - u^4 \right) \right] \right. \right. \right.
\]

\[
+ g_A^4 \left(\frac{114 - 512}{u} + 368u - 169u^2 + 7u^4 + \frac{192}{u^2 + 2} \right) \left. \right\} + \frac{16}{3u} \left[g_A^4(6u^4 - 30u^2 + 35) + g_A^2(6u^2 - 8) - 3 \right] B(u) \right\}
\]

\[
- \frac{c_4 g_A^2 m_\pi^5}{(4f_\pi)^6\pi^2} \left\{ \frac{2}{9} \sqrt{u^2 - 4} \left[30 - \frac{128}{u} + 80u - 13u^2 - 2u^4 + g_A^2 \left(\frac{512}{u} - 114 - 368u \right) + 16u^2 - 7u^4 - \frac{192}{u^2 + 2} \right) \right. \r

Consistent with the calculation of the πN amplitude in Ref. [21], we applied relations between LECs, such that only \bar{e}_{14} and \bar{e}_{17} remain in the final result.

3. Relativistic corrections

This group consists of diagrams with one vertex proportional to c_4 and one $1/M_N$ correction. A few representative graphs are shown in Fig. 1(c). Since in this investigation we count $Q/M_N \sim (Q/A)_\pi^2$, these relativistic corrections are formally of order N^4LO. The result for this group of diagrams read in our sign-convention [12]:

\[
V_C = \frac{g_A^4 L(\bar{A}; q)}{32\pi^2 M_N f_\pi^2} \left[6(3c_1 - c_2)q^4 + 4(3c_3 - c_2 - 6c_1)q^2 m_\pi^2 + 6(2c_3 - c_2)m_\pi^2 - 24(2c_1 + c_3)m_\pi^2 w^2 \right], \tag{2.19}
\]

\[
W_C = -\frac{c_4}{192\pi^2 M_N f_\pi^2} \left[g_A^2(8m_\pi^2 + 5q^2 + w^2)q^2 L(\bar{A}; q) \right], \tag{2.20}
\]

\[
W_T = -\frac{1}{q^2} W_S = \frac{c_4}{192\pi^2 M_N f_\pi^2} \left[w^2 - g_A^2(16m_\pi^2 + 7q^2) \right] L(\bar{A}; q), \tag{2.21}
\]

\[
V_{LS} = \frac{c_4 g_A^2}{8\pi^2 M_N f_\pi^2} w^2 L(\bar{A}; q), \tag{2.22}
\]

\[
W_{LS} = -\frac{c_4}{48\pi^2 M_N f_\pi^2} \left[g_A^2(8m_\pi^2 + 5q^2 + w^2) \right] L(\bar{A}; q), \tag{2.23}
\]
where the (regularized) logarithmic loop function is given by:

\[L(\tilde{\Lambda}; q) = \frac{w}{2q} \ln \frac{\tilde{\Lambda}^2(2m_\pi^2 + q^2) - 2m_\pi^2q^2 + \tilde{\Lambda}\sqrt{\tilde{\Lambda}^2 - 4m_\pi^2 q w}}{2m_\pi^2(\tilde{\Lambda}^2 + q^2)} \] (2.24)

with \(w = \sqrt{4m_\pi^2 + q^2} \). Note that

\[\lim_{\tilde{\Lambda} \to \infty} L(\tilde{\Lambda}; q) = \frac{w}{q} \ln \frac{w + q}{2m_\pi}, \] (2.25)

is the logarithmic loop function of dimensional regularization.

B. Three-pion exchange contributions at N^4LO

The 3\(\pi \)-exchange of order N^4LO is shown in Fig. 2. The spectral functions for these diagrams have been calculated in Ref. [11]. We use here the classification scheme introduced in that reference and note that class XI vanishes. Moreover, we find that the class X and part of class XIV make only negligible contributions. Thus, we include in our calculations only class XII and XIII, and the \(V_S \) contribution of class XIV. In Ref. [11] the spectral functions were presented in terms of an integral over the invariant mass of a pion pair. We have solved these integrals analytically and obtain the following spectral functions for the non-negligible cases:

\[
\begin{align*}
\text{Im } V^{(\text{XII})}_S &= -\frac{g^2 c_4 m^5}{(4f_\pi)^9 \pi^2 u^3} \left\{ \frac{y}{12} (u - 1)(100u^3 - 27 - 50u - 151u^2 + 185u^4 - 14u^5 - 7u^6) \\
&\quad + 4D(u) (2 + 10u^2 - 9u^4) \right\}, \\
\text{Im } V^{(\text{XII})}_T &= \frac{1}{\mu^2} \text{Im } V^{(\text{XII})}_S - \frac{g^2 c_4 m^3}{(4f_\pi)^9 \pi^2 u^3} \left\{ \frac{y}{6} (u - 1)(u^6 + 2u^5 - 39u^4 - 12u^3 + 65u^2 - 50u - 27) \\
&\quad + 8D(u) (3u^4 - 10u^2 + 2) \right\}, \\
\text{Im } W^{(\text{XII})}_S &= -\frac{g^2 m^5}{(4f_\pi)^9 \pi^2 u^3} \left\{ \frac{y}{12} (u - 1) \left[\frac{4c_1 u}{3} (u^3 + 2u^2 - u + 4) + \frac{c_2}{72} (u^6 + 2u^5 - 39u^4 - 12u^3 + 65u^2 - 50u - 27) \right] \\
&\quad + \frac{c_3}{12} \left[u^6 + 2u^5 - 31u^4 + 4u^3 + 57u^2 - 18u - 27 \right] \\
&\quad + \frac{c_4}{72} \left[7u^6 + 14u^5 - 185u^4 - 100u^3 + 151u^2 + 50u + 27 \right] \right\} + D(u) \left[16c_1 (4u^2 - 1 - u^4) + \frac{2c_2}{3} (2 - 10u^2 + 3u^4) + 4c_3 u^2 (u^2 - 2) + \frac{2c_4}{3} (9u^4 - 10u^2 - 2) \right] \right\}. \end{align*}
\] (2.28)
\[\text{Im } W^{(XII)}_T = \frac{1}{\mu^2} \text{Im } W^{(XII)}_S - \frac{g_A^2 m^3_\pi}{(4\pi)^6 \sigma^2 u^5} \left\{ y(u - 1) \left[\frac{16c_1 u}{3} (2 + u - 2u^2 - u^3)
ight. \\
+ \frac{c_2}{36} \left(73u^4 - 6u^5 - 3u^6 + 44u^3 - 43u^2 - 50u - 27 \right) \\
+ \frac{c_3}{2} \left(19u^4 - 2u^5 - 6u^6 + 4u^3 - 9u^2 - 6u - 9 \right) \\
+ \frac{c_4}{36} \left(39u^4 - 2u^5 - u^6 + 12u^3 - 65u^2 + 50u + 27 \right) \\
\left. + 4 D(u) \left[8c_1(u^4 - 1) + c_2 \left(\frac{2}{3} - u^4 \right) - 2c_3u^4 + \frac{c_4}{3} \left(10u^2 - 2 - 3u^4 \right) \right] \right\}, \quad (2.29) \]

\[\text{Im } W^{(XIII)}_C = - \frac{g_A^2 c_A m^5_\pi}{(4\pi)^6 \sigma^2 u^3} \left[\frac{8y}{3} (u - 1)(u - 4 - 2u^2 - u^3) + 32 D(u) \left(u^3 - 4u + \frac{1}{u} \right) \right], \quad (2.30) \]

\[\text{Im } V^{(XIII)}_S = - \frac{g_A^2 c_A m^5_\pi}{(4\pi)^6 \sigma^2 u^3} \left[\frac{y}{24} (u - 1)(37u^6 + 74u^5 - 251u^4 - 268u^3 + 349u^2 - 58u - 135) \\
+ 2 D(u) \left(39u^4 - 2 - 52u^2 - 6u^6 \right) \right], \quad (2.31) \]

\[\text{Im } V^{(XIII)}_T = \frac{1}{\mu^2} \text{Im } V^{(XIII)}_S - \frac{g_A^2 c_A m^3_\pi}{(4\pi)^6 \sigma^2 u^3} \left[\frac{y}{12} (u - 1)(5u^6 + 10u^5 - 3u^4 - 252u^3 - 443u^2 - 58u - 135) \\
+ 4 D(u) \left(3u^4 + 22u^2 - 2 \right) \right], \quad (2.32) \]

\[\text{Im } W^{(XIII)}_S = - \frac{g_A^2 m^5_\pi}{(4\pi)^6 \sigma^2 u^3} \left\{ y(u - 1) \left[2c_1 u(5u^3 + 10u^2 - 5u - 4) \\
+ \frac{c_2}{48} \left(135 + 58u - 277u^2 - 36u^3 + 147u^4 - 10u^5 - 5u^6 \right) \\
+ \frac{c_3}{8} \left(7u^6 + 14u^5 - 145u^4 - 20u^3 + 111u^2 + 18u + 27 \right) \\
+ \frac{c_4}{6} \left(44u^3 + 37u^4 - 7u^6 - 3u^2 - 5u^2 - 18u + 27 \right) \\
\right] + D(u) \left[24c_1(1 + 4u^2 - 3u^4) + c_2(2 + 2u^2 - 3u^4) + 6c_3u^2(3u^2 - 2) + 8c_4u^2(u^4 - 5u^2 + 5) \right] \right\}, \quad (2.33) \]

\[\text{Im } W^{(XIII)}_T = \frac{1}{\mu^2} \text{Im } W^{(XIII)}_S - \frac{g_A^2 m^3_\pi}{(4\pi)^6 \sigma^2 u^3} \left\{ y(u - 1) \left[4c_1 u(5u^3 + 10u^2 + 7u - 4) \\
+ \frac{c_2}{24} \left(135 + 58u + 227u^2 + 204u^3 + 27u^4 - 10u^5 - 5u^6 \right) \\
+ \frac{c_3}{4} \left(27 + 18u - 9u^2 - 68u^3 - 121u^4 + 14u^5 + 7u^6 \right) \\
+ c_4(4u^3 + 19u^4 - 2u^5 - u^6 - 9u^2 - 6u - 9) \right] \\
\right] + 2 D(u) \left[24c_1(1 - 3u^4) + c_2(2 - 10u^2 - 3u^4) + 6c_3u^2(3u^2 + 2) - 8c_4u^4 \right] \right\}, \quad (2.34) \]

\[\text{Im } V^{(XIV)}_S = - \frac{g_A^2 c_A m^5_\pi}{(4\pi)^6 \sigma^2 u^3} \left[\frac{y}{24} (u - 1)(637u^2 - 58u - 135 + 116u^3 - 491u^4 - 22u^5 - 11u^6) \\
+ 2 D(u) \left(6u^6 - 9u^4 + 8u^2 - 2 \right) \right], \quad (2.35) \]

where \(y = \sqrt{(u - 3)(u + 1)} \) and \(D(u) = \ln[(u - 1 + y)/2] \) with \(u = \mu/m_\pi > 3 \).
III. PERTURBATIVE NN SCATTERING IN PERIPHERAL PARTIAL WAVES

Nucleon-nucleon scattering in peripheral partial waves is of special interest—for several reasons. First, these partial waves probe the long- and intermediate-range of the nuclear force. Due to the centrifugal barrier, there is only small sensitivity to short-range contributions and, in fact, the contact terms up to and including order N^3LO make no contributions for orbital angular momenta $L \geq 3$. Thus, for F and higher waves and energies below the pion-production threshold, we have a window in which the NN interaction is governed by chiral symmetry alone (chiral one- and multi-pion exchanges), and we can conduct a relatively clean test of how well the theory works. Using values for the LECs from πN analysis, the NN predictions are even parameter free. Moreover, the smallness of the phase shifts in peripheral partial waves suggests that the calculation can be done perturbatively. This avoids the complications and possible model-dependence (e.g., cutoff dependence) that the non-perturbative treatment of the Lippmann-Schwinger equation, necessary for low partial waves, is beset with. A thorough investigation of this kind at N^3LO was conducted in Ref. [15]. Here, we will work at N^4LO.

The perturbative K-matrix for np scattering is calculated as follows:

$$ K(p', \bar{p}) = V_1^{(np)}(p', \bar{p}) + V_2^{(np)}(p', \bar{p}) + V(p', \bar{p}) $$ \hspace{1cm} (3.1)

with $V_1^{(np)}(p', \bar{p})$ as in Eq. (A2), and $V_2^{(np)}(p', \bar{p})$ representing the once iterated one-pion exchange (1PE) given by

$$ V_2^{(np)}(p', \bar{p}) = \mathcal{P} \int d^4p'' \frac{M_N^2}{E_{p''}} V_1^{(np)}(p'', \bar{p}) V_1^{(np)}(p', \bar{p}) $$ \hspace{1cm} (3.2)

where \mathcal{P} denotes the principal value integral and $E_{p''} = \sqrt{M_N^2 + p''^2}$. A calculation at LO includes only the first term on the right hand side of Eq. (3.1), $V_1^{(np)}(p', \bar{p})$, while calculations at NLO or higher order also include the second term on the right hand side, $V_2^{(np)}(p', \bar{p})$. At N^3LO and beyond, the twice iterated 1PE should be included, too. However, we found that the difference between the once iterated 1PE and the infinitely iterated 1PE is so small that it could not be identified on the scale of our phase shift figures. For that reason, we omit iterations of 1PE beyond what is contained in $V_2^{(np)}(p', \bar{p})$.

Finally, the third term on the r.h.s. of Eq. (3.1), $V(p', \bar{p})$, stands for the irreducible multi-pion exchange contributions that occur at the order at which the calculation is conducted. In multi-pion exchanges, we use the average pion mass $m_\pi = 138.039$ MeV and, thus, neglect the charge-dependence due to pion-mass splitting in irreducible multi-pion diagrams. The charge-dependence that emerges from irreducible 2π exchange was investigated in Ref. [28] and found to be negligible for partial waves with $L \geq 3$.

Throughout this paper, we use

$$ M_N = \frac{2M_p M_n}{M_p + M_n} = 938.9182 \text{ MeV}. $$ \hspace{1cm} (3.3)

Based upon relativistic kinematics, the CMS on-shell momentum p is related to the kinetic energy of the incident neutron in the laboratory system (“Lab. Energy”), T_{lab}, by

$$ p^2 = \frac{M_p^2 T_{lab} (T_{lab} + 2M_n)}{(M_p + M_n)^2 + 2T_{lab} M_p}, $$ \hspace{1cm} (3.4)

with $M_p = 938.2720$ MeV and $M_n = 939.5653$ MeV the proton and neutron masses, respectively.

The K-matrix, Eq. (3.1), is decomposed into partial waves following Ref. [29] and phase shifts are then calculated via

$$ \tan \delta_L(T_{lab}) = -\frac{M_N^2}{16 \pi^2 E_p} \frac{p}{K_L(p, p)}. $$ \hspace{1cm} (3.5)

For more details concerning the evaluation of phase shifts, including the case of coupled partial waves, see Ref. [30] or the appendix of [31]. All phase shifts shown in this paper are in terms of Stapp conventions [32].

We calculate phase shifts for partial waves with $L \geq 3$ and $T_{lab} \leq 300$ MeV. To establish a link between πN and NN and to check the consistency of the πN and NN systems, we use the πN LECs determined in Ref. [21] in a calculation of πN scattering at fourth order applying the same power counting scheme as in the present work. To be specific, we use the set of LECs denoted by ‘KH’ in Ref. [21]. The values are:
FIG. 3: Effect of individual fifth-order contributions on the neutron-proton phase shifts of some selected peripheral partial waves. The individual contributions are added up successively in the order given in parenthesis next to each curve. Curve (1) is N3LO and curve (5) is the complete N4LO. The filled and open circles represent the results from the Nijmegan multi-energy np phase-shift analysis [33] and the VPI/GWU single-energy np analysis SM99 [34], respectively.

\[c_1 = -0.75 \text{ GeV}^{-1}, \quad c_2 = 3.49 \text{ GeV}^{-1}, \quad c_3 = -4.77 \text{ GeV}^{-1}, \quad c_4 = 3.34 \text{ GeV}^{-1}; \]
\[\bar{d}_1 + \bar{d}_2 = 6.21 \text{ GeV}^{-2}, \quad \bar{d}_3 = -6.83 \text{ GeV}^{-2}, \quad \bar{d}_5 = 0.78 \text{ GeV}^{-2}, \quad \bar{d}_{14} - \bar{d}_{15} = -12.02 \text{ GeV}^{-2}; \]
\[\bar{e}_{14} = 1.52 \text{ GeV}^{-3}, \quad \bar{e}_{17} = -0.37 \text{ GeV}^{-3}. \]

Moreover, we absorb the Goldberger-Treiman discrepancy into an effective value for \(g_A \), namely, \(g_A = 1.29 \).
Finally, the physical value of the pion-decay constant is $f_\pi = 92.4$ MeV.

As shown in Figs. 1 and 2 and derived in Sec. II, the fifth order consists of several contributions. We will now demonstrate how the individual fifth-order contributions impact NN phase shifts in peripheral waves. For this purpose, we display in Fig. 3 phase shifts for six important peripheral partial waves, namely, 1F_3, 3F_2, 3F_3, 3F_4, 1G_4, and 3G_5. In each frame, the following curves are shown:

1. $N^3\text{LO}$.

2. The previous curve plus the c_i/M_N corrections (denoted by ‘c/M’), Fig. 1(c) and Sec. II A 3.

3. The previous curve plus the $N^4\text{LO}$ 2π-exchange (2PE) two-loop contributions of class (a), Fig. 1(a) and Sec. II A 1.

4. The previous curve plus the $N^4\text{LO}$ 2PE two-loop contributions of class (b), Fig. 1(b) and Sec. II A 2.

5. The previous curve plus the $N^4\text{LO}$ 3π-exchange (3PE) contributions, Fig. 2 and Sec. II B.

In summary, the various curves add up successively the individual $N^4\text{LO}$ contributions in the order indicated in the curve labels. The last curve in this series, curve (5), is the full $N^4\text{LO}$ result. In these calculations, a SFR cutoff $\tilde{\Lambda} = 1.5$ GeV is applied [cf. Eq. (2.11)].

From Fig. 3, we make the following observations. In triplet F-waves, the c_i/M_N corrections as well as the 2PE two-loops, class (a) and (b), are all repulsive and of about the same strength. As a consequence, the problem of the excessive attraction, that $N^3\text{LO}$ is beset with, is overcome. A similar trend is seen in 1G_4. An exception is 1F_3, where the class (b) contribution is attractive leading to phase shifts above the data for energies higher than 150 MeV.

Now turning to the $N^4\text{LO}$ 3PE contributions [curve (5) in Fig. 3]: they are substantially smaller than the 2PE two-loop ones, in all peripheral partial waves. This can be interpreted as an indication of convergence with regard to the number of pions being exchanged between two nucleons—a trend that is very welcome. Further, note that the total 3PE contribution is a very comprehensive one, cf. Fig. 2. It is the sum of ten terms (cf. Sec. II B) which, individually, can be fairly large. However, destructive interference between them leads to the small net result.

For all F and G waves (except 1F_3), the final $N^4\text{LO}$ result is in excellent agreement with the empirical phase shifts. Notice that this includes also 3G_5, which posed persistent problems at $N^3\text{LO}$ [15].

On a historical note, we mention that in the construction of the Stony Brook [35, 36] and Paris [37, 38] NN potentials, which both include a 2PE contribution based upon dispersion theory, the dispersion integral, Eq. (2.11), is cutoff at $\mu^2 = 50 m^2_\pi$, which is equivalent to a SFR cutoff $\tilde{\Lambda} = \sqrt{50}m_\pi \sim 1$ GeV. Not accidentally, this agrees well with the common assumption of $\Lambda_\chi \sim 1$ GeV and, thus, sets the scale for an appropriate choice of $\tilde{\Lambda}$. Consistent with this, $\tilde{\Lambda} = 1.5$ GeV was used for the results presented in Fig. 3. It is, however, also of interest to know how predictions change with variations of $\tilde{\Lambda}$ within a reasonable range. We have, therefore, varied $\tilde{\Lambda}$ between 0.7 and 1.5 GeV and show the predictions for all F and G waves in Figs. 4 and 5, respectively, in terms of shaded (colored) bands. It is seen that, at $N^3\text{LO}$, the variations of the predictions are very large and always too attractive while, at $N^4\text{LO}$, the variations are small and the predictions are close to the data or right on the data. Figs. 4 and 5 also include the lower orders (as defined in the Appendices) such that a comparison of the relative size of the order-by-order contributions is possible. We observe that there is not much of a convergence, since obviously the magnitudes of the NNLO, $N^3\text{LO}$, and $N^4\text{LO}$ contributions are about the same. Potentially, this is characteristic for just these three orders and changes beyond $N^4\text{LO}$. But only an explicit calculation at $N^5\text{LO}$ can settle this issue.

IV. CONCLUSIONS

In this paper, we have calculated the one- and two-loop 2π-exchange (2PE) and two-loop 3π-exchange (3PE) contributions to the NN interaction which occur at $N^4\text{LO}$ (fifth order) of the chiral low-momentum expansion. The calculations are based upon heavy-baryon chiral perturbation theory using the most general fourth order Lagrangian for pions and nucleons. We apply πN LECs, which were determined in an analysis of elastic pion-nucleon scattering to fourth order using the same power counting scheme as in the present work. The spectral functions, which determine the NN amplitudes via dispersion integrals, are regularized by a cutoff $\tilde{\Lambda}$ in the range 0.7 to 1.5 GeV (also known as spectral-function regularization). Besides the cutoff $\tilde{\Lambda}$, our calculations do not involve any adjustable parameters.

From past work on NN scattering in chiral perturbation theory (see, e.g., Ref. [15]), it is wellknown that, at NNLO and $N^3\text{LO}$, chiral 2PE produces far too much attraction. The most important result of the present study is that the $N^4\text{LO}$ 2PE contributions are prevalingly repulsive and, thus, compensate the excessive attraction of the lower orders. As a consequence, the phase-shift predictions in F and G waves are in very good agreement with the data, with the only exception of the 1F_3 wave. The net 3PE contribution turns out to be moderate pointing towards convergence in terms of the number of pions exchanged between two nucleons. On the other hand, the NNLO, $N^3\text{LO}$, and $N^4\text{LO}$
FIG. 4: (Color online) Phase-shifts of neutron-proton scattering at various orders as denoted. The shaded (colored) bands show the variation of the predictions when the SFR cutoff $\tilde{\Lambda}$ is changed over the range 0.7 to 1.5 GeV. The filled and open circles represent the results from the Nijmegan multi-energy np phase-shift analysis [33] and the VPI/GWU single-energy np analysis SM99 [34], respectively.
FIG. 5: (Color online) Same as Fig. 4, but for G-waves.
contributions are all about of the same magnitude raising some concern about the convergence of the chiral expansion of the NN amplitude. To obtain more insight into this issue, future investigations at N^5LO may be necessary.

Acknowledgements

This work was supported in part by the U.S. Department of Energy under Grant No. DE-FG02-03ER41270 (R.M. and Y.N.), the Ministerio de Ciencia y Tecnología under Contract No. FPA2010-21750-C02-02 and the European Community-Research Infrastructure Integrating Activity “Study of Strongly Interacting Matter” (HadronPhysics3 Grant No. 283286) (D.R.E.), and by DFG and NSFC (CRC110) (N.K.).

Appendix A: Leading order

At leading order, there is only the 1π-exchange contribution, cf. Fig. 6. The charge-independent 1π-exchange is given by

$$V_{1\pi}^{(\text{CI})}(\vec{p}', \vec{p}) = -\frac{g_A^2}{4f_\pi^2} \tau_1 \cdot \tau_2 \frac{\vec{\sigma}_1 \cdot \vec{q} \cdot \vec{\sigma}_2 \cdot \vec{q}}{q^2 + m_\pi^2}. \quad (A1)$$

Higher order corrections to the 1π-exchange are taken care of by mass and coupling constant renormalizations $g_A/f_\pi \rightarrow g_{\pi N}/M_N$. Note also that, on shell, there are no relativistic corrections. Thus, we apply 1π-exchange in the form Eq. (A1) through all orders.

In this paper, we are specifically calculating neutron-proton (np) scattering and take the charge-dependence of the 1π-exchange into account. Thus, the 1π-exchange potential that we actually apply reads

$$V_{1\pi}^{(np)}(\vec{p}', \vec{p}) = -V_{1\pi}(m_{\pi^0}) + (-1)^I + 1 \cdot 2 V_{1\pi}(m_{\pi^\pm}), \quad (A2)$$

where $I = 0,1$ denotes the total isospin of the two-nucleon system and

$$V_{1\pi}(m_{\pi}) = -\frac{g_A^2}{4f_\pi^2} \frac{\vec{\sigma}_1 \cdot \vec{q} \cdot \vec{\sigma}_2 \cdot \vec{q}}{q^2 + m_\pi^2}. \quad (A3)$$

We use $m_{\pi^0} = 134.9766$ MeV and $m_{\pi^\pm} = 139.5702$ MeV. Formally speaking, the charge-dependence of the 1PE exchange is of order NLO [1], but we include it already at leading order to make the comparison with the np phase shifts more meaningful.
Appendix B: Next-to-leading order

The NN diagrams that occur at NLO (cf. Fig. 6) contribute in the following way [7]:

\[W_C = \frac{L(\hat{\Lambda}; q)}{384\pi^2 f_\pi^4} \left[4m_\pi^2(1 + 4g_A^2 - 5g_A^4) + q^2(1 + 10g_A^2 - 23g_A^4) - \frac{48g_A^4 m_\pi^4}{w^2} \right], \]
\[V_T = -\frac{1}{q^2} V_S = -\frac{3g_A^4}{64\pi^2 f_\pi^4} L(\hat{\Lambda}; q). \]

Appendix C: Next-to-next-to-leading order

The NNLO contribution (lower row of Fig. 6) is given by [7]:

\[V_C = \frac{3g_A^2}{16\pi f_\pi^2} \left[2m_\pi^2(c_3 - 2c_1) + c_3 q^2 \right] (2m_\pi^2 + q^2) A(\hat{\Lambda}; q), \]
\[W_T = -\frac{1}{q^2} W_S = -\frac{g_A^4}{32\pi f_\pi^2} c_4 w^2 A(\hat{\Lambda}; q). \]

The loop function that appears in the above expressions, regularized by spectral-function cut-off \(\hat{\Lambda} \), is

\[A(\hat{\Lambda}; q) = \frac{1}{2q} \arctan \frac{q(\hat{\Lambda} - 2m_\pi)}{q^2 + 2\Lambda m_\pi}. \]

Note that

\[\lim_{\hat{\Lambda} \to \infty} A(\hat{\Lambda}; q) = \frac{1}{2q} \arctan \frac{q}{2m_\pi} \]

yields the loop function used in dimensional regularization.

Appendix D: Next-to-next-to-next-to-leading order

1. Football diagram at N^3LO

The football diagram at N^3LO, Fig. 7(a), generates [12]:

\[V_C = \frac{3}{16\pi^2 f_\pi^4} \left[\left(\frac{c_2}{6} w^2 + c_3 (2m_\pi^2 + q^2) - 4c_1 m_\pi^2 \right)^2 + \frac{c_2^2}{45} w^4 \right] L(\hat{\Lambda}; q), \]
\[W_T = -\frac{1}{q^2} W_S = \frac{c_4^2}{96\pi^2 f_\pi^4} w^2 L(\hat{\Lambda}; q). \]
FIG. 7: Two-pion exchange contributions at N^3LO with (a) the N^3LO football diagram, (b) the leading 2PE two-loop contributions, and (c) the relativistic corrections of NLO diagrams. Notation as in Fig. 1.
2. Leading two-loop contributions

The leading order 2π-exchange two-loop diagrams are shown in Fig. 7(b). In terms of spectral functions, the results are [12]:

$$\text{Im } V_C = \frac{3g_4^4(2m^2_\pi - \mu^2)}{\pi\mu(4\pi f_\pi^2)^6} \left[\left(m^2_\pi - 2\mu^2 \right) \left(2m_\pi + \frac{2m^2_\pi - \mu^2}{2\mu} \ln \frac{\mu + 2m_\pi}{\mu - 2m_\pi} \right) + 4g_4^2 m_\pi (2m^2_\pi - \mu^2) \right], \quad (D3)$$

$$\text{Im } W_C = \frac{2\kappa}{3\mu(8\pi f_\pi^2)^3} \int_0^1 dx \left[g_4^2 (\mu^2 - 2m^2_\pi) + 2(1 - g_4^2)\kappa^2 x^2 \right]$$

$$\times \left\{ 96\pi^2 f_\pi^2 ((2m^2_\pi - \mu^2)(d_1 + d_2) - 2\kappa^2 x^2 d_3 + 4m^2_\pi d_5) + [4m^2_\pi (1 + 2g_4^2) - \mu^2 (1 + 5g_4^2)] \frac{\kappa}{\mu} \ln \frac{\mu + 2\kappa}{2m_\pi} + \frac{\mu^2}{12} (5 + 13g_4^2) - 2m^2_\pi (1 + 2g_4^2) \right.$$

$$- 3\kappa^2 x^2 + 6\kappa x \sqrt{m^2_\pi + \kappa^2 x^2} \ln \frac{\kappa x + \sqrt{m^2_\pi + \kappa^2 x^2}}{m_\pi} \right\}, \quad (D4)$$

$$\text{Im } V_S = \mu^2 \text{Im } V_T = \frac{g_4^2 \mu^3}{8\pi f_\pi^4} (\bar{d}_{15} - \bar{d}_{14})$$

$$+ \frac{2g_4^6 \mu^3}{(8\pi f_\pi^2)^3} \int_0^1 dx (1 - x^2) \left[\frac{1}{6} - \frac{m^2_\pi}{\kappa^2 x^2} + \left(1 + \frac{m^2_\pi}{\kappa^2 x^2} \right)^{3/2} \ln \frac{\kappa x + \sqrt{m^2_\pi + \kappa^2 x^2}}{m_\pi} \right], \quad (D5)$$

$$\text{Im } W_S = \mu^2 \text{Im } W_T (i\mu) = \frac{g_4^2 (4m^2_\pi - \mu^2)}{\pi(4\pi f_\pi^2)^6} \left[\left(m^2_\pi - \frac{\mu^2}{4} \right) \ln \frac{\mu + 2m_\pi}{\mu - 2m_\pi} + (1 + 2g_4^2)\mu m_\pi \right], \quad (D6)$$

where $\kappa = \sqrt{\mu^2/4 - m^2_\pi}$. The momentum space amplitudes $V_\alpha(q)$ and $W_\alpha(q)$ are obtained from the above expressions by means of the dispersion integrals shown in Eq. (2.11).

3. Leading relativistic corrections

The relativistic corrections of the NLO diagrams, which are shown in Fig. 7(c), count as N3LO and are given by [1]:

$$V_C = \frac{3g_4^4}{128\pi f_\pi^2 M_N} \left[\frac{m^2_\pi}{2w^2} + (2m^2_\pi + q^2)(q^2 - m^2_\pi)A(\tilde{\Lambda}; q) \right], \quad (D7)$$

$$W_C = \frac{g_4^2}{64\pi f_\pi^2 M_N} \left\{ \frac{3g_4^2 m^2_\pi}{2w^2} + \left[g_4^2 (3m^2_\pi + 2q^2) - 2m^2_\pi - q^2 \right] (2m^2_\pi - q^2)A(\tilde{\Lambda}; q) \right\}, \quad (D8)$$

$$V_T = - \frac{1}{q^2} V_S = \frac{3g_4^4}{256\pi f_\pi^4 M_N} (5m^2_\pi + 2q^2) A(\tilde{\Lambda}; q), \quad (D9)$$

$$W_T = - \frac{1}{q^2} W_S = \frac{g_4^2}{128\pi f_\pi^2 M_N} \left[g_4^2 (3m^2_\pi + q^2) - w^2 \right] A(\tilde{\Lambda}; q), \quad (D10)$$

$$V_{LS} = \frac{3g_4^4}{32\pi f_\pi^2 M_N} (2m^2_\pi + q^2) A(\tilde{\Lambda}; q), \quad (D11)$$

$$W_{LS} = \frac{g_4^2 (1 - g_4^2)}{32\pi f_\pi^2 M_N} w^2 A(\tilde{\Lambda}; q). \quad (D12)$$
4. Leading three-pion exchange contributions

The leading 3π-exchange contributions that occur at N^3LO have been calculated in Refs. [9, 10] and are found to be negligible. We, therefore, omit them.

[29] K. Erkelenz, R. Alzetta, and K. Holinde, Nucl. Phys. A176, 413 (1971); note that there is an error in equation (4.22) of this paper where it should read

\[-W^{J}_{LS} = 2q_{L}^{J} - \frac{1}{2J+1} \left[A_{LS}^{J+2,(0)} - A_{LS}^{J,(0)} \right] \]

and

\[+W^{J}_{LS} = 2q_{L}^{J} + \frac{2}{2J+1} \left[A_{LS}^{J+2,(0)} - A_{LS}^{J,(0)} \right]. \]