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Abstract

Time Reversal Invariant Violating (TRIV) effects in neutron transmission through a nuclear

target are discussed. We demonstrate the existence of a class of experiments that are free from

false asymmetries. We discuss the enhancement of TRIV effects for neutron energies corresponding

to p-wave resonances in the compound nuclear system. We analyze a model experiment and show

that such tests can have a discovery potential of 102 − 104 compared to current limits.
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INTRODUCTION

Time reversal invariance violation (TRIV) in nuclear physics has been studied for several

decades. There are a number of TRIV effects in nuclear reactions and nuclear decays,

which are sensitive to either CP-odd and P-odd (or T - and P-violating) interactions or T

-violating P-conserving (C-odd and P-even) interactions. Here we consider TRIV effects in

nuclear reactions which can be measured in the transmission of polarized neutrons through

a polarized target[1, 2]. Such reactions can be described within the framework of neutron

optics (for a discussion of neutron optics and see for example [3, 4].) The transmitted neutron

wave propagates through a medium according to a spin-dependent index of refraction. The

index of refraction depends on any applied magnetic field and the polarization of the medium.

Because the state of the medium does not change, the polarization of the medium can be

treated as a classical field. Because the initial and final propagation vectors of the neutron

are the same, the initial and final states of the neutron can be time reversed in an experiment

by rotation of the apparatus.

The neutron and nuclei are both composite systems and any measurement of a T-odd

process in a particular system may have accidental cancellation of TRIV effects or might be

relatively insensitive to one or more of the many possible sources of T-odd amplitudes. A

search for TRIV in neutron transmission expands the variety of nuclear systems. This pro-

vides assurance that possible “accidental” cancellation of T-violating effects due to unknown

structural factors related to the strong interactions in the particular system can be avoided.

Taking into account that different models of the CP-violation may contribute differently

to a particular T/CP-odd observable, which may have unknown theoretical uncertainties,

TRIV nuclear effects could be considered complementary to electric dipole moment (EDM)

measurements, whose status as null tests of T invariance is more widely known. Moreover,

there is the possibility of an enhancement of T-violating observables by many orders of mag-

nitude in neutron transmission due to the complex nuclear structure (see, i.e. paper [5] and

references therein).

For the observation of TRIV and parity violating (PV) effects, we consider neutron optical

effects related to the T-odd correlation, ~σn · (~k × ~I), where ~σn is the neutron spin, ~I is the

target spin, and ~k is the neutron momentum, which can be observed in the transmission of

polarized neutrons through polarized target. This correlation leads to a P-odd and T-odd
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difference between the total neutron cross sections [2] ∆σ6T 6P for ~σn parallel and anti-parallel

to ~k × ~I and to the neutron spin rotation angle [1] φ 6T 6P around the axis ~k × ~I

∆σ6T 6P =
4π

k
Im(f↑ − f↓),

dφ 6T 6P

dz
= −2πN

k
Re(f↑ − f↓). (1)

Here, f↑,↓ are the zero-angle scattering amplitudes for neutrons polarized parallel and anti-

parallel to the ~k × ~I axis, respectively; z is the target length and N is the number of target

nuclei per unit volume. These TRIV effects can be enhanced [6] by a factor as large as

106. Similar enhancement was already observed for PV effects related to (~σn ·~k) correlation
in neutron transmission through nuclear targets. For example, the PV asymmetry in the

0.734 eV p-wave resonance in 139La has been measured to be (9.56 ± 0.35) · 10−2 (see, for

example [7] and references therein).

The PV and TRI-conserving difference of total cross sections ∆σ6P in the transmission

of polarized neutrons through unpolarized targets which is proportional to the correlation

(~σ ·~k) can be written in terms of differences of zero angle elastic scattering amplitudes with

negative and positive neutron helicities as:

∆σ6P =
4π

k
Im(f− − f+). (2)

One can calculate both TRIV and PV amplitudes using distorted wave Born approxi-

mation to first order in the parity and time reversal violating interactions (see, for example

ref.[6]). Thus, the symmetry violating amplitudes can be written as

tfi6P, 6P 6T =< Ψ−
f |V 6P, 6P 6T |Ψ+

i >, (3)

where Ψ±
i,f are the eigenfunctions of the nuclear T-invariant Hamiltonian with the appropri-

ate boundary conditions [8]:

Ψ±
i,f =

∑

k

a±k(i,f)(E) φk +
∑

m

∫

b±m(i,f)(E,E
′) χ±

m(E
′) dE ′. (4)

Here φk is the wave function of the kth compound-resonance and χ±
m(E) is the potential

scattering wave function in the channel m. The coefficient

a±k(i,f)(E) =
exp (±iδi,f )

(2π)
1

2

(Γi,f
k )

1

2

E −Ek ± i
2
Γk

(5)

describes compound nuclear resonances reactions and the coefficient b±m(i,f)(E,E
′) describes

potential scattering and interactions between the continuous spectrum and compound reso-

nances. (Here Ek, Γk, and Γi
k are the energy, the total width, and the partial width in the
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channel i of the k-th nuclear compound resonance, E is the neutron energy, and δi is the

potential scattering phase shift in the channel i; (Γi
k)

1

2 = (2π)
1

2 < χi(E)|V |φk >, where V

is a residual interaction operator.)

Since it is already known that the dominant mechanism of symmetry violation in heavy

nuclei is the mechanism of symmetry mixing in the compound nuclear resonances [6], only

first term in Eq. (4) is important to include for our estimates. For sake of simplicity we

consider the case of a two resonance approximation, which is reasonably good for many

heavy nuclei in the low neutron energy region E ∼ 1eV −100eV . Then, symmetry violating

amplitudes due to mixing of nearby s-wave and p-wave resonances can be written as:

< p|t|s >= − 1

2π

(v + iw)(Γn
sΓ

f
p)

1

2

(E − Es + iΓs/2)(E −Ep + iΓp/2)
ei(δ

n

s
+δn

p
), (6)

and

< s|t|p >= − 1

2π

(v − iw)(Γn
pΓ

n
s )

1

2

(E − Es + iΓs/2)(E −Ep + iΓp/2)
ei(δ

n

p
+δn

s
), (7)

where v and w are and imaginary parts of the real and imaginary parts of the matrix

elements for PV and TRIV mixing between s- and p-wave compound resonances

v + iw =< φp|V 6P + V 6P 6T |φs > (8)

due to V 6P (PV) and V 6P 6T (TRIV) interactions. One can see that PV and TRIV matrix

elements are real and imaginary parts of the same matrix element calculated with exactly

the same wave functions. Also, the difference of amplitudes (f− − f+) for the PV effect

in Eq. (2) is proportional to the sum of the symmetry violating amplitudes (Eq. (6) and

Eq. (7)) but the difference of amplitudes (f↑ − f↓) for the PT -violating effect in Eq. (1) is

proportional to the difference of the same amplitudes (Eq. (6) and Eq. (7)). This results in

the same energy dependencies for both PV and TRIV effects. Indeed, taking into account

all numerical factors one gets:

∆σ6P 6T = −2πGT
J

k2
w(Γn

sΓ
n
p (S))

1

2

[s][p]
[(E − Es)Γp + (E −Ep)Γs], (9)

and

∆σ6P =
2πGP

J

k2
v(Γn

sΓ
n
p )

1

2

[s][p]
[(E − Es)Γp + (E −Ep)Γs], (10)

where [s, p] = (E − Es,p)
2 + Γ2

s,p/4, G
T
J and GP

J are spin factors, and J is the spin of

compound nucleus (see details in ref.[5, 6, 9]). One can see that due to the similarity of
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these two equations, the TRIV effect has the same enhancement on resonance as the PV

one.

Now one can find the relation between the values of the PV and TRIV effects as

∆σ6T 6P = κ(J)
w

v
∆σ6P , (11)

where

κ(I + 1/2) = − 3

23/2

(

2I + 1

2I + 3

)3/2
(

3√
2I + 3

γ −
√
I

)−1

,

κ(I − 1/2) = − 3

23/2

(

2I + 1

2I − 1

)(

I

I + 1

)1/2
(

− I − 1√
2I − 1

1

γ
+
√
I + 1

)−1

. (12)

Here γ = [Γn
p (I + 1/2)/Γn

p(I − 1/2)]1/2 is the ratio of the neutron width amplitudes for

the different channel spins. In general, the parameter γ may be obtained from gamma-

ray angular correlation measurements in neutron capture reactions on resonance [6, 10].

Using standard unitary transformations one can rewrite the parameter γ in the neutron

spin (j = l ± 1/2) representation scheme Γn
p(j)

1/2 as

γ =
−
√
2Γn

p (1/2)
1/2 + Γn

p(3/2)
1/2

Γn
p (1/2)

1/2 +
√
2Γn

p (3/2)
1/2

. (13)

One can see from eq.(11), that larger values of the parameter κ(J) increase the sensitivity of

the TRIV difference of total cross sections compared to the PV. One can therefore enhance

the sensitivity of TRIV experiments in polarized neutron transmission by choosing a p-wave

resonance in a nucleus with favorable properties.

ENHANCEMENT FACTORS

Let us recall the main features of the enhancement factors for TRIV and PV effects using

as an example the P-odd difference ∆σ6P of total cross sections. The quantity ∆σ6P displays

resonance peaks near both s- and p-wave resonances, increasing its value by a factor of

(D/Γ)2 with respect to an energy between the resonances (D =| Es − Ep |). These peaks

are caused by the resonant enhancement of the wave function amplitude in the region of the

interaction. The physical meaning of the resonance enhancement is similar to the estimates

of the lifetime of the compound nucleus. This lifetime τ can be understood as the additional

time, that the neutron spends in the range of the nuclear interaction due to the resonant
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component of the neutron-nucleus interaction. In terms of the neutron scattering phase shift

δ(E), one can write

τ = 2
dδ(E)

dE
, (14)

where the resonant part of the phase shift for the i-th resonance is δ(E) ≃ − arctan ((Γi/2)/(E −Ei))

near the resonance energy. In the resonance state, the particle remains within the nucleus

for a longer time of the order of the resonance lifetime ∼ (1/Γ). Therefore, it is natural

to expect an enhancement of symmetry violation proportional to the ratio of the resonance

lifetime (1/Γ) to the lifetime of compound- nucleus away from the resonance (Γ/D2), that

is to (D/Γ)2.

Let us consider the ratio P = ∆σ6P /(2σtot), where σtot is the total cross section and consists

of the s-resonance , p-resonance and the potential scattering contributions. The quantity

σtot also displays a marked resonance peak in the vicinity of s -wave resonance, which

compensates completely for the corresponding peak of the numerator P . Therefore, the

quantity P is not enhanced in the vicinity of the s-wave resonance and remains approximately

on the same level as the value between the resonances. In general, σtot is dominated by the

smooth background of the s-wave resonance and potential scattering cross section in the

vicinity of the p-wave resonance, since for the neutron energies under consideration here

(kR) ≪ 1 (R is the nuclear radius). Therefore, the resonance peak of ∆σ6P near the p-

resonance is retained in the quantity P , which is enhanced here by a factor of (D/Γ)2

P (Ep) ∼ 8
v

D

√

√

√

√

Γn
p

Γn
s

D2

ΓsΓp

[

1 +
σp + σpot

σs

]−1

. (15)

The presence of the “penetration factor”
√

Γn
p/Γ

n
s ∼ (kR) in eq.(15) is characteristic of

all correlations observed in low energy nuclear reactions which arise due to initial state

interference and, consequently, are proportional to the neutron momentum in the correlation

(~σ · ~k). It should be noted that P might have the maximal magnitude

Pmax ≃ v

D

D

Γ
=
v

Γ
, (16)

when the total cross section contributions from the s- and p-resonances have similar magni-

tudes in the vicinity of the p-wave resonance.

In addition to the resonance enhancement factor, there is also the so called “dynamic” en-

hancement factor, which is connected with the ratio v/D. For a crude estimate of this ratio,
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one can expand the compound resonance wave function φ in terms of simple-configuration

wave functions (e.g., one-particle wave functions) ψi which are admixed to compound reso-

nances by strong interactions:

φ =
N
∑

i=1

ciψi. (17)

Using the normalization condition for the coefficients ci and the statistical random-phase

hypothesis for matrix elements < ψi|W |ψk > we obtain

v =< φs|W |φp >=< ψi|W |ψk >RMS N
−1/2. (18)

Here < ψi|W |ψk >RMS is the root mean square value of the matrix elements between

simple configurations. In the black-nucleus statistical model, the number of components N

is estimated in terms of the average spacing D of compound resonances and the average

spacing D0 of single-particle states:

N ≈ D0/D. (19)

One can estimate N from the experimental data on neutron strength functions since, in

the statistical model of heavy nuclei, the neutron strength function is proportional to N−1

(see, e.g., [11]). The value of N is about 106. Hence

v

D
≃ < ψi|W |ψk >RMS

D0

√
N, (20)

where the ratio of the single-particle weak matrix element to the single particle level distance

is about 10−7 (or the usual scale of the nucleon-nucleon weak interaction). The enhancement

factor
√
N occurs as a result of the small level distance between compound nuclear resonances

(D−1 ∼ N) and the random-phase averaging procedure (∼ N−1/2).

Using the one particle formula (18) for the weak matrix element:

v ≃ 2 · 10−4
√

D(eV ), (21)

one can see that the maximal possible P -odd effect is estimated to be

Pmax ∼ 10−4
√

D(eV )/Γ ≤ 10% (22)

for the case of medium and heavy nuclei, which have typical values of the parameters D ∈
(1− 103)eV , Γ ∈ (0.05− 0.2)eV .
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Using one particle PV and TRIV potentials

VP =
G

81/2M
{(~σ · ~p), ρ(~r)}+, (23)

VPT =
iGλ

81/2M
{(~σ · ~p), ρ(~r)}−, (24)

where G is the weak interaction Fermi constant, M is the proton mass, ρ(~r) is the nucleon

density, ~p is the momentum of the valence nucleon, one can get a relation between the ratio

of matrix elements λ = w/v and the ratio of nucleon coupling constants λ = g 6P 6T/g 6P :

λ =
λ

1 + 2ξ
. (25)

Here ξ ∼ (1− 7) (for detailed discussions see papers[12–15]). with

ξ =
< φp|ρ(~σ~p)|φs >

< φp|(~σ~p)ρ|φs >
. (26)

φs,p are the s, p−resonance wave functions of the compound nucleus. The value of the matrix

element in numerator can be estimated [12] using the operator identity 2~p = iM [Hsp, ~r] as

< φp|ρ(~σ~p)|φs > ≃ iρM

2
Dsp< φp|(~σ~p)|φs >. (27)

Here Hsp is the single particle nuclear Hamiltonian, Dsp is the average single particle level

spacing, and ρ is the average value of the nuclear density. For the denominator of eq.(26)

one can show

< φp|(~σ~p)ρ|φs >= − < φp|(~σ~r)
1

r

∂ρ

∂r
|φs >=

2iρ

R2
< φp|(~σ~r)|φs >, (28)

where R is the nuclear radius. Then, we obtain

ξ =
1

4
MDspR

2 =
1

4
π(KR), (29)

where

Dsp =
1

MR2
πKR, (30)

for square-well potential model [11], with K the nucleon momentum in the nucleus. This

leads to a value of ξ ≃ 1. Taking into account that theoretical predictions for λ vary from

10−2 to 10−10 for different models of CP violation (see, for example, [16] and references

therein), one can estimate a range of possible values of the TRIV observable and relate a

particular mechanism of the CP-violation to their values.
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ABSENCE OF FINAL STATE INTERACTIONS IN FORWARD SCATTERING

The unique feature of the TRIV neutron optical effects in forward neutron-nucleus elastic

scattering (as well as the similar effects related to the TRIV and parity conserving correlation

~σn · (~k × ~I) · (~k · ~I)) is the absence of false TRIV effects due to the final state interactions

(FSI) (see, for example [5] and references therein). The possibility to construct a null test

of T invariance in this case is related to the fact that neutron optical effects involve elastic

scattering at zero angle. The general theorem about the absence of FSI for TRIV effects in

elastic scattering has been proved first by R. M. Ryndin [17] (see, also [5, 18–20]). Since

this theorem is very important, we give a brief sketch of the proof for the case of the zero

angle elastic scattering following [5, 17].

It is well known that the T-odd angular correlations in scattering and in particle decays

are not sufficient to establish TRIV, i.e. they can have non-zero values in any process

with strong, electromagnetic, and weak interactions. For example, the parity-conserving

analyzing power in the scattering of polarized particles ~σ · (~ki × ~kf) is formally odd under

time reversal judged superficially according to the change in signs of the vectors under

a T transformation, and is known to be O(1) for many systems. This is because TRI,

unlike parity conservation, does not provide a constraint on a single amplitude for any

process, but rather relates the amplitudes for two different processes: for example, direct

and inverse channels of reactions. We can relate T-odd correlations to TRIV interactions

in such processes only in the first order Born approximation to the scattering amplitude:

higher order processes can be sources of “final state effects” which introduce (formally)

T-odd correlations from T-invariant interactions. Indeed, the unitarity condition for the

scattering matrix in terms of the reaction matrix T , which is proportional to the scattering

amplitude, can be written as [21]

T † − T = iTT † (31)

The first Born approximation can be used when the right side of the unitarity equation is

much smaller than the left side, and results in a hermitian T -matrix

< i|T |f >=< i|T ∗|f >, (32)

which with TRI condition

< f |T |i >=< −i|T | − f >∗ (33)
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leads to the constraint on the T -matrix as

< f |T |i >=< −f |T | − i >∗ . (34)

This condition forbids T-odd angular correlations, as is the case with the P-odd correlations

when parity is conserved. (Here the minus signs in matrix elements mean the opposite signs

for particle spins and momenta in the corresponding states.) In the case of forward scattering

relevant for neutron optics, which corresponds to zero angle elastic scattering, the initial and

final states coincide (i = f). Combined with the TRI condition (33), this condition gives

Eq.(34) without the violation of unitarity (32). Therefore, in this case, FSI cannot mimic

T-odd correlations originated from TRIV interactions. Therefore, an observation of a non-

zero value of TRIV effects in neutron transmission directly indicates TRIV, exactly like in

the case of neutron EDM [22].

To measure TRIV effects for neutron propagation with the simple changing of neutron

and/or nucleus polarizations is unpractical since it requires unobtainably precise control for

many parameters which can contribute to systematic errors (see, for example, [23, 24]. The

approach to eliminate this difficulties was suggested in [20] (see also [25–27]), which will be

implemented and discussed later in this paper.

TRIV TRANSMISSION THEOREM

We have shown in the previous section that a null test of T invariance can in principle be

constructed from transmission differences involving the forward elastic amplitudes in neutron

optics. How best to conduct a practical experiment that makes use of the full potential of

this null test for T invariance is a separate question. We now start to address this question

in the rest of the paper.

Many authors have considered this question and have outlined various experimental

strategies in the literature. The first impulse one might have when presented with the

triple correlation of vectors of interest in the forward scattering amplitude is that one can

simply reverse the sign of whatever vectors are most convenient experimentally and measure

the resulting cross section difference. Since it is typically much easier to flip a spin without

changing other aspects of the apparatus, the great majority of these papers have analyzed

procedures in which either the neutron spin or the target spin are reversed. Unfortunately
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detailed considerations of these schemes have shown that this approach is very sensitive

to the alignment of the relevant vectors which are very difficult to control to the required

precision.

In this paper we advocate an experimental approach whose essential reversal involves not

only a spin flip but also a rotation of the apparatus. This approach to the realization of

the experiment, which we advocate below, has also been suggested before in the literature

[25, 26]. To clarify why we believe that this approach can be superior to many of the

previous schemes proposed in the literature, we first prove a theorem for polarized neutron

motion in a medium in the presence of any external fields (neutron optical, magnetic,) whose

interaction with the neutrons can be treated in the classical limit.

Systematic errors in a transmission test of T invariance can arise from one or more of the

following sources: imperfect alignment of polarizer, target and analyzer, differences in the

polarizer and analyzer, inhomogeneity of the target medium, rotations of the neutron spin

due to the holding field of a polarized target, and the interaction of the neutron spin with

the target spin from the spin dependence of the strong interaction (sometimes referred to in

the literature as nuclear pseudomagnetism) [28, 29]. Masuda [26, 30, 31], and Serebrov [32]

have proposed experiments that involve adding additional spin flips to the basic polarizer

and polarized target apparatus. The difficulty in these approaches is that each added spin

flip increases the number of parameters needed to characterize the apparatus by three: two

alignment angles and an analyzing power. Lamoreaux and Golub [23] argue that, “. . . it will

be necessary to develop new methods to make very precise absolute measurements of the

neutron-spin direction. It seems hopeless to devise a experiment that would convincingly

measure TRIV in the presence of such a wide variety of potential sources of false effects.”

To resolve this problem we consider a configuration of the apparatus related to the ap-

proach originally proposed by Kabir [20, 33], which is shown in Fig.(1), where the polarizer

and analyzer prepare and select spin perpendicular to neutron momentum ~k. The target is

polarized perpendicular to both ~k and the polarizer direction.

To describe the transmission difference between these two configurations with both the

polarizer and analyzer reversed, we can use the equation of motion for the neutron spin

as the neutron propagates through a medium and an external magnetic field, ~B, given by
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FIG. 1. (Color online) Apparatus to search for time reversal symmetry violation. The collimators,

polarizer/analyzer and polarized target are mounted on a turn table that rotates about a vertical

axis. In the forward configuration, the neutron first pass through the polarizer/analyzer, then

through the target, and are detected. In the reversed configuration the neutrons pass through

the polarized target, then through the polarizer/analyzer and are detected. The dashed line is

the horizontal axis of symmetry of the apparatus. The solid line is a neutron trajectory. The

collimators select the same bundles of trajectories in the two configurations. The signs of the

magnetic fields, the target polarization, and the polarizer/analyzer direction are all opposite in the

two configurations.

Schrödinger’s equation with the effective Hamiltonian (Fermi potential):

H =
2πh̄2

mn
Nf − µ

2
(~σ · ~B) (35)

where mn is the neutron mass, N is the number of scattering centers per unit volume, f is

the forward elastic scattering amplitude, and ~σ are the Pauli spin matrices. (For discussion
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of the conditions under which equation (35) applies, see [23] and references therein.) We

can write f as the sum of four terms:

f = a0 + b0(~σ · ~I) + c0(~σ · ~k) + d0(~σ · [~k × ~I]), (36)

where I is the polarization of the target medium, and quantities other than the neutron

spin ~σ are treated as classical fields. Neutron spin-optics tests of TRIV have the goal of

measuring d, which is the only term that originates from a TRIV interaction. Terms a

and b, give the strengths of the spin-independent and strong spin-spin (pseudo magnetic)

interactions, while terms c and d give the degree of PV and TRIV arising from symmetry

mixing in the neutron resonances in the target medium.

We now show that if ~B and ~I are reversed, the forward and reversed transmissions for

the apparatus configuration presented in Fig. 1 are equal if d = 0. Note carefully that, in

this proposed approach, the magnetic field ~B is reversed, but the orientation of the target

polarization ~I with respect to ~B is unchanged. Therefore, one can re-write Hamiltonian (35)

as

H = a+ b(~σ · ~I) + c(~σ · ~k) + d(~σ · [~k × ~I]), (37)

where a = 2πh̄2

mn

Na0, b =
2πh̄2

mn

Nb0 − (µB)/2, c = 2πh̄2

mn

Nc0, and d = 2πh̄2

mn

Nd0. The neutron

beam phase space acceptance of the apparatus is defined by a pair of collimators mounted

on a rigid rotatable platform with the polarizers (analyzer) and target as shown in Fig.1.

Rotating the apparatus by an angle π about an axis perpendicular to the symmetry axis

of the collimators reverses the sign of ~k for neutrons. We assume that the product of the

neutron source strength and neutron detector efficiency is symmetric with respect to the

plane of the symmetry axis and the rotation axis. Then, the time evolution operator for the

forward neutron transmission, UF , gives the relationship between the initial and final spin

wave functions for a neutrons that propagate from the source through the apparatus, and

ends on the detector.

Let us consider the case when we have only TRI interactions. Then we divide the appa-

ratus into m slabs and write the time evolution operator UF as a time ordered product of

the evolution operators for each of the slabs:

UF =
m
∏

j=1

exp (−i∆tj
h̄
HF

j ) = α + (~β · ~σ). (38)
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Here HF
j is the Hamiltonian from equation (37) evaluated at slab j, and α and ~β contain

only TRI terms, since we temporarily assume that the TRIV parameter d = 0. In the

expression for the reverse evolution operator, UR, the time ordering of the product and the

signs of the spin-dependent terms in HR
j are reversed from those in HF

j . Then, the reverse

evolution operator is

UR =
1
∏

j=m

exp (−i∆tj
h̄
HR

j ) = α− (~β · ~σ). (39)

The fact that the signs of the spin-dependent terms in the reverse evolution operator are

changed eliminates potential systematic effects which may mimic TRIV effects in scattering

experiments. This analysis agrees with Kabir’s result about the possibility to unambiguously

[20] measure TRIV effects in neutron scattering. Since the relation asserted in equation (39)

between forward and reverse evolution operators is very important for further consideration

and not obvious, we will prove it here.

First, let us consider two-slab medium. The forward and reverse evolution operators are

UF = U
(1)
F U

(2)
F = exp (−i∆t1

h̄
HF

1 ) exp (−i
∆t2
h̄
HF

2 ),

UR = U
(2)
R U

(1)
R = exp (−i∆t2

h̄
HR

2 ) exp (−i
∆t1
h̄
HR

1 ). (40)

For the case of infinitesimally small widths of the slabs, each exponential operator in the

above equations can be written as

U
(j)
F = (1− i

∆tj
h̄
HF

j ) = F (j) + ( ~A(j) · ~σ),

U
(j)
R = (1− i

∆tj
h̄
HR

j ) = F (j) − ( ~A(j) · ~σ), (41)

correspondingly, where

F (j) = 1− i
∆tj
h̄
a(j),

~A(j) =
−i∆tj
h̄

(b(j)~I + c(j)~k). (42)

These one slab evolution operators have exactly the same structure as the operators in eqs.

(38) and (39), provided F (j) → α(j) and ~A(j) → ~β(j). Substitution into eq.(40) lead to

exactly the same form as for eqs. (38) and (39), again, with

α = α(1)α(2) + (~β(1) · ~β(2)),

~β = α(1)~β(2) + α(2)~β(1) − [~β(1) × ~β(2)]. (43)

14



Then, applying mathematical induction, one can prove the proposition in general (multi-

slab) case as is given in eqs. (38) and (39). Applying this result for the calculations of the

forward and reverse transmissions, TF and TR , for our experimental setup we obtain the

relation

TF =
1

2
Tr(U †

FUF ) = α∗α + (~β∗~β) =
1

2
Tr(U †

RUR) = TR, (44)

which we call TRIV transmission theorem. This theorem shows that if d = 0 and whole

apparatus is rotated with ~B and ~I being reversed, then the transmissions of (un-polarized)

neutrons through the apparatus in opposite directions are equal. The proof of TRIV theo-

rem makes no assumption concerning the geometrical symmetry of the classical fields and

materials of the apparatus. Therefore, any deviation from the equality of the forward and

reversed transmissions in eq.(44) is a clear manifestation of the existence of TRIV interac-

tions (non-zero d coefficient in eq.(37)). It should be noted that for non-zero d coefficient

the difference between TF and TR transmissions arises from both spin dependent and spin

independent parts of the evolution operators, which is in agreement with Kabir’s [20, 33]

conclusion about the existence of a number of possible unambiguous tests.

EVALUATION OF A MODEL EXPERIMENT

No TRIV experiment in neutron optics has been done to date: polarized targets of

materials that have compound nuclear resonances that exhibit large PV asymmetries are

not easy to construct. It has proved difficult to devise an experiment that would eliminate

false effects that arise from combinations of instrumental imperfections and TRI interactions

of the neutron spin with materials and external fields. We believe that we have made progress

on the second issue with our TRIV transmission theorem. Considerable progress has also

been made on the first problem: groups at the KEK national laboratory in Japan [34, 35], at

Kyoto University [36], and at PSI in Switzerland [37] have achieved substantial polarizations

of 139La nuclei in Lanthanum Aluminate crystals as large as 10 cc. Thus the 0.734 eV p-

wave resonance in 139La, which has a parity-odd longitudinal transmission asymmetry of

9.5% [38], is a good candidate for TRIV studies.

To polarize the epithermal neutron beam for the proposed experiment based on the

TRIV transmission theorem, we can use cells of polarized 3He as neutron polarizers and

analyzers. The direction of the 3He polarization in these polarizers, based on spin-exchange
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optical pumping, is parallel to the external magnetic field and will reverse direction when

the field direction is reversed adiabatically. Note that polarizers and analyzers based on

ferromagnetic materials can be difficult to use in this experiment because hystersis effects

prevent their precise reversal. Also, since the earth’s magnetic field cannot be reversed,

it must be compensated or shielded in this experimental approach. It is also essential

that the values of the classical fields be stable in time. Magnetic field strengths and the

polarizations of 3He and the target medium can be accurately monitored using nuclear-

magnetic-resonance techniques.

For the target we use 139La nuclei in Lanthanum Aluminate crystals which has a very large

PV effect in the vicinity of 0.734 eV resonance. Using the experimentally achieved value of

139La polarization of 47.5% combined with the existing knowledge of the spin dependence

of the polarized neutron scattering amplitudes on polarized 139La nuclei in the J + 1/2 and

J − 1/2 spin channels, we can estimate [28, 39] the size of the pseudo-magnetic field inside

the crystal as a function of neutron energy (see Fig. 2), the pseudo-magnetic field is opposite

the applied field. This gives an advantage for using Lanthanum Aluminate crystals, since

values of TRIV effects in neutron optics, in general, are inverse proportional to the sum of

magnetic and pseudo magnetic fields [39, 40].

0.6 0.7 0.8 0.9 1.0
EnHeVL

-0.0860

-0.0855

-0.0850

-0.0845

-0.0840

-0.0835
HHTL

FIG. 2. (Color online) Pseudo-magnetic field in Lanthanum Aluminate crystals.

As an example of the statistical accuracy that can be achieved with present spallation

neutron sources, we make a rough estimate of the statistical uncertainty in the T-odd cross

section that could be achieved in 107 seconds of data collection on the water moderator of

Flight Path 16A at the Spallation Neutron Source at Oak Ridge National Laboratory. At

the present time this beamline has not been instrumented. We assume a proton current

of 1.4 mA at 1 GeV proton energy. We carry out the estimate for the 0.734 eV reso-
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nance in 139La. We assume that the target consists of one neutron interaction length of

dynamically polarized Lanthanum Aluminate and that the neutron beam is polarized by a

one-interaction-length 70% polarized 3He spin filter.

We were unable to find a calculation or measurement of the neutron flux for FP16A. We

estimated the neutron flux using the measurement of the flux from the water moderator of

Flight Path 2 at the Los Alamos Neutron Scattering Center at the Los Alamos National

Laboratory. Roberson et al. [41] found that the moderator brightness was well described by

the expression

d3N

dAdtdΩ
= k

∆E

E

(

E

1eV

)γ ( i

e

)

(neutrons cm−2sec−1sr−1), (45)

with k = 5.8 · 10−3 and γ = 0.1. E is the neutron energy, i is the proton current, e is the

charge quantum, A is the area of the moderator that is viewed, ∆E is the range of neutron

energies accepted, and Ω is the solid angle acceptance of the apparatus. We assume that the

neutron production rate is proportional to the proton energy and increase k by 1000/800,

the ratio of proton energies. We assume that SNS will operate at 1.4 MW and i = 1.4 mA.

We assume that A = 100cm2 and that the acceptance of the apparatus is defined by a

10 cm diameter polarized target located 15 meters from the moderator: Ω = 3.5 · 10−5 sr.

We set ∆E = .045 eV to cover the total width of the resonance. The neutron flux within

the 139La p-wave resonance width is dN/dt = 7.8 · 107 neutrons/sec.
In order to determine the uncertainty in the TRIV asymmetry we must make some

assumptions concerning running time, source, polarizer, polarized target, detector, and cross

sections. We assume a running time of 107 sec. We use the peak value of the resonance

cross section is 2.9 barns, the potential scattering cross section is 3.1 barns, and the capture

cross section at the resonance energy is 1.6 barns. We use the cross sections of aluminum

and oxygen are 3.8 barns and 1.4 barns [42]. We calculate that the neutron polarization

is 46% and the transmission of the polarizer is 46%. We assume a one-interaction-length

LaAlO3 target. We further reduce the transmission by a factor of 2 to account for various

windows. The transmission of the apparatus for 0.7 eV neutrons is then estimated to be

11%. The transmitted beam intensity in ∆E is F lux = .86·107 neutrons/sec. The fractional
uncertainty in TRIV cross section is given by

δσ

σ
=

1√
F lux · T ime

∑

σk
σp

. (46)
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(The sum runs over all the cross sections given above.) If we adopt the fractional parity-

violating asymmetry for the resonance to be 9.5% [38], we obtain an uncertainty in λ , the

ratio of the TRIV to PV asymmetries of 6.0 · 10−6.

DISCOVERY POTENTIAL

As noted above in the Introduction, the question of how sensitive any T-odd observable

is to a particular source of T violation in the nucleon system is theoretically nontrivial, due

in part to our lack of quantitative understanding of many of the relevant aspects of the

strong interaction. As an example to set the scale for the potential sensitivity of a TRIV

search in neutron transmission, we start first with a case in which a quantitative analysis is

possible and has already been performed: the neutron-deuteron system. Using the results of

the recent calculations of PV and TRIV effects in neutron deuteron scattering [43, 44], one

can calculate the parameter λ for this reaction and compare it to the case of the complex

nuclei. Let us consider the ratio of the TRIV difference of total cross sections in neutron

deuteron scattering given in [44]

P 6T 6P =
∆σ6P 6T

2σtot
=

(−0.185 b)

2σtot
[ḡ(0)π + 0.26ḡ(1)π − 0.0012ḡ(0)η + 0.0034ḡ(1)η (47)

− 0.0071ḡ(0)ρ + 0.0035ḡ(1)ρ + 0.0019ḡ(0)ω − 0.00063ḡ(1)ω ]

to the corresponding PV difference [43]

P 6P =
∆σ6P
2σtot

=
(0.395 b)

2σtot
[h1π + h0ρ(0.021) + h1ρ(0.0027) (48)

+ h0ω(0.022) + h1ω(−0.043) + h
′1
ρ (−0.012)].

Here, we use the one meson exchange model, known as the DDH model for PV nucleon-

nucleon interactions, to calculate both effects; in the above expressions, ḡ and h are meson-

nucleon TRIV and PV coupling constants, correspondingly (see for details [43, 44]). The

dimensionless numerical constants multiplying these couplings come from the detailed eval-

uation of n-D scattering given the measured properties of the strong NN interactions. These

factors naturally become progressively more difficult to calculate for heavier nuclei. From

these expressions, one can see that in this case contributions from pion exchange are dom-

inant for both TRIV and PV parameters. Taking into account only the dominant pion
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contributions, one can estimate λ as

λ =
∆σ6T 6P

∆σ6P
≃ (−0.47)

(

ḡ(0)π

h1π
+ (0.26)

ḡ(1)π

h1π

)

. (49)

This result is in reasonable agreement with an estimate for complex nuclei [12].

We can attempt to relate the parameter λ to the existing experimental constrains obtained

from EDM measurements, with the understanding that even such a relative comparison is

highly model dependent. The CP-odd coupling constant ḡ(0)π can be related to the value of

the neutron EDM dn generated via a π-loop in the chiral limit [45]. Using the experimental

limit [46] on dn, one can estimate ḡ(0)π < 2.5 × 10−10. The constant ḡ(1)π can be bounded

using the constraint [47] on the 199Hg atomic EDM as ḡ(1)π < 0.5× 10−11 [48].

The comparison of the λ parameter with the constrains on the coupling constants from

the EDM experiments gives us the opportunity to estimate the possible sensitivity of TRIV

effects to the value of TRIV nucleon coupling constant, which we call a “discovery potential”

for neutron scattering experiments [49, 50], since it shows a possible factor for improving the

current limits of the EDM experiments. Taking the DDH “best value” of h1π ∼ 4.6 · 10−7,

the nuclear enhancement factors estimated above, and assuming that the parameter λ could

be measured with an accuracy of 10−5 on complex nuclei, one can see from Eq.(49) that

the existing limits on the TRIV coupling constants could be improved in neutron optics

transmission measurements using existing neutron sources by two orders of magnitude. To

obtain Eq.(49), we assumed that the π exchange contribution dominates the PV effects.

However, there is an indication [51–53] that the PV coupling constant h1π could well be

much smaller than the “best value” of the DDH. Should this hint be confirmed by the

−→n + p → d + γ experiment, the estimate for the sensitivity of λ to the TRIV coupling

constant would be increased, as can be seen from Eqs.(47-49), since in most theoretical

estimates the parameter λ is a ratio of TRIV to PV pion coupling constants (λ). (Note that

there is absolutely no fundamental reason to our knowledge why the an effective TRIV pion

coupling should be suppressed if the PV pion coupling is suppressed: Barton’s theorem,

for example, suppresses neutral pion exchange in PV meson-nucleon interactions but not in

TRIV interactions.) This increased sensitivity combined with a possible choice of the target

with large spin factor (13) might increase the relative values of TRIV effects by two orders

of magnitude, and as a consequence, the discovery potential of the TRIV experiments could

be about 104.
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The TRIV effects in neutron transmission through a nuclei target are unique TRIV

observables being free from FSI, and constitute null tests for time reversal invariance as

do EDM experiments. These TRIV effects can be enhanced on certain p-wave epithermal

neutron resonances by about a factor of 106 due to the nuclear enhancement well-understood

mechanisms discussed above. In addition to this resonant enhancement in complex nuclei,

the sensitivity to TRIV interactions in these effects might be structurally enhanced by about

102 if PV π-nucleon coupling constant is less than the “best value” DDH estimate. Therefore,

these types of experiments with high intensity neutron sources have a discovery potential of

about 102−104 for the improvement of the current limits on the TRIV interaction obtained

from the EDM experiments.

Another important feature of these experiments is the complementarity to other searchers

for TRIV. To illustrate this we use results of the calculations of neutron and proton EDMs

[54] and EDMs of few body nuclei [55] presented in terms of TRIV meson-nucleon coupling

constants. Then, assuming that TRIV pion, rho, eta, and omega meson coupling constants

have about the same order of magnitude, we can write the main contributions to these EDMs

in e · fm units as

dn ≃ 0.14(ḡ(0)π − ḡ(2)π ), (50)

dp ≃ 0.14ḡ(2)π , (51)

dD ≃ 0.22ḡ(1)π , (52)

d3He ≃ 0.2ḡ(0)π + 0.14ḡ(1)π , (53)

d3H ≃ 0.22ḡ(0)π − 0.14ḡ(1)π , (54)

where ḡ(T )
π is pion-nucleon TRIV coupling constant with isospin T . The comparison these

results with eq.(47) shows that all these observable have different sensitivities to the models

of TRIV. This becomes even more pronounced if we relax the assumption about values of

TRIV coupling constants. These sensitivities of TRIV neutron scattering effect and neutron

and light nuclei to TRIV π-mesons coupling constants are shown figures 3 and 4. Therefore,

one can see that even for the simplest case with the dominance of TRIV pion-nucleon

coupling constants, it is necessary to measure at least three independent TRIV effects to

constrain the source of CP-violation.
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FIG. 3. The dependence of neutron EDM (solid), 3He EDM (dotted-dashed), 3H EDM (dotted)

and parameter λ on TRIV π-mesons iso-scalar and iso-tensor coupling constants.
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FIG. 4. The dependence of neutron EDM (solid), 3He EDM (doted-dashed), 3H EDM (doted)

and parameter λ on TRIV π-mesons iso-scalar and iso-vector coupling constants.
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CONCLUSIONS

We presented the summary of theoretical description of the TRIV effects in neutron

transmission through a nuclei target and demonstrated that these TRIV observables are

free from FSI, and, as a consequence, are of the same quality as the EDM experiments. The

neutron transmission effects can be enhanced by about 106 due to the nuclear enhancement

factor. In addition to this enhancement, the sensitivity to TRIV interactions in these effects

compared to observed PV effects might be enhanced by about 102 if PV π-nucleon coupling

constant is less than the “best value” DDH estimate, and by choosing a target with large

partial neutron width related to TRIV observables.

The main result of this paper is the proof of the TRIV transmission theorem showing

that the transmission of neutrons through an apparatus with arbitrary spin-dependent in-

teractions that arise from time-reversal-invariant interactions is unchanged when the signs

of all classical fields that interact with the neutron spin are reversed. We have used this

result to propose a specific experimental procedure to test time-reversal invariance which

is in principle free of false asymmetries arising from combinations of time-reversal-invariant

interactions and asymmetries in the apparatus. These types of experiments with high in-

tensity neutron sources have a discovery potential of about 102 − 104 for the improvement

of the current limits on the TRIV interaction obtained from the EDM experiments.
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