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Recent studies have shown that fluctuations of various types play important roles in the evo-
lution of the fireball created in relativistic heavy ion collisions and bear many phenomenological
consequences for experimental observables. The bulk dynamics of the fireball is well described by
relativistic hydrodynamic expansion and the fluctuations on top of such expanding background can
be studied within the linearized hydrodynamic framework. In this paper we present complete and
analytic sound wave solutions on top of both Bjorken flow and Hubble flow backgrounds.
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I. INTRODUCTION

In relativistic heavy ion collisions, a hot deconfined form of strongly interacting matter, predicted by Quantum
Chromodynamics (QCD) and known as the quark-gluon plasma (QGP), has been discovered [1–4]. Such fireball of
hot QCD matter with high initial energy density, once created in a heavy ion collision, will violently explode outwards
and become cooler and more dilute with time. The system will eventually experience the “freeze-out” after which
thousands of produced hadrons individually fly away from the collision zone. Dedicated detectors have been built to
detect the identity and momentum information of these hadrons. Such heavy ion collision experiments are now done
at both the Relativistic Heavy Ion Collider (RHIC) [5–8] and the Large Hadron Collider (LHC) [9].
As it turns out, a significant part of the rather complicated dynamical evolution of the created fireball can be

very successfully described by relativistic hydrodynamics with the inclusion of viscous corrections [10–14]. In view
of the smallish size of the fireball itself at 10−fm scale, this phenomenological success is highly nontrivial, implying
an extremely short dissipative length scale in the fluid. Significant efforts have been made to quantify the dissipative
transport properties e.g. the shear viscosity normalized by entropy density η/s which is found to be much smaller than
other known substances [15–17]. Dating back to the famous boost-invariant solution commonly known as Bjorken
flow [18, 19], there have also been persistent efforts in finding analytic solutions to relativistic hydrodynamic equations
that may bear relevance to certain features of the expanding fluid in heavy ion collisions [20–32].
More recently there have been a lot of interests in studying the influence of fluctuations in such a relativistically

expanding fluid [33–53]. As clearly categorized in [33], there are different sources of fluctuations: initial-state fluctu-
ations occurring at the very beginning of hydrodynamic expansion; hydrodynamic fluctuations arising from intrinsic
thermal fluctuations of finite local fluid cells and happening all along the evolution; fluctuations induced by deposi-
tions from processes “external” to the fluid such as a penetrating jet; and finally freeze-out fluctuations occurring at
the very end of hydrodynamic expansion when the fluid “falls apart”. Except the freeze-out fluctuations, all the other
three types of fluctuations create “ripples” propagating as sound waves on top of the expanding fluids, like the ripples
created by throwing a stone into a stream. These ripples co-evolve with the bulk flow toward the end and lead to
measurable effects such as specific rapidly and azimuthal angle correlation patterns in heavy ion experiments [54, 55].
The most extensively studied fluctuation is probably the initial-state fluctuation which has been found to manifest
through the so-called “ridge” correlation [37–50, 54]. There has also been a lot of investigations on the hard-soft
particle correlations as a result of fluctuations induced by jet energy loss (see e.g. [55] and references therein). The
influence of fluctuations from stochastic hydrodynamics on observables has only been explored very recently [33–35].
To be specific, there are two interesting problems in studying such fluctuations. The first is how such fluctuations

come about, i.e. what physics generates/dominates those fluctuations and how to quantify them. To this end, different
types of fluctuations pertain to quite different physical processes and need to be studied separately. For example,
the initial-state fluctuations depend on the correct description of initial nuclear wave functions [56, 57] as well as the
pre-equilibrium evolution process [58–60], and there are different initial-state models predicting different amounts of
fluctuations. The hydrodynamic fluctuations on the other hand should be treated by a proper account of stochastic
fluctuations in local fluid cell [33].
The second problem is how such fluctuations, once created, evolves with the relativistically expanding fluid. This

latter problem is universal for different types of fluctuations and can be well studied by treating the fluctuations as
perturbations within the linearized hydrodynamics framework. The propagation of such ripples (i.e. the sound waves)
critically depends on the background flow: e.g. the ripples from a thrown stone would look very different in a static
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pond than that in a flowing stream. It is of great interest to know how these fluctuations evolve on top of various
relativistically expanding backgrounds. It is also highly desirable to have analytic solutions which allow convenient
applications to studying the phenomenological consequences from various types of fluctuations. In the present work,
we focus on this problem and present complete and analytic sound wave solutions on top of both Bjorken flow and
Hubble flow backgrounds.
The paper is organized as follows. In Section II we present the general formalism to treat the evolution of fluctuations

on top of ideal hydrodynamics. In sections III and IV we analytically derive the space-time evolution of any fluctuation
on top of Bjorken flow and Hubble flow and especially consider the Gaussian perturbation as an example. The
numerical results and discussions in these two cases are shown in Section V. We summarize in Section VI.

II. GENERALITIES

Let us first set up the linearized hydrodynamics framework to be used later. In a general space-time coordinate
frame, the hydrodynamic system with vanishing conserved charge density can be described by the energy-momenta
conservation equations:

T µν
;µ = 0 (1)

The energy-momentum tensor in the ideal hydrodynamic limit, which we shall adopt throughout the present paper,
is given by the following form

T µν = (ǫ+ p)uµuν − gµνp, (2)

where ǫ is the energy density and p is the pressure, related to each other by the equation of state for the underlying
system, p = c2sǫ with cs the speed of sound. For generality and to clearly reveal the role of cs, we will keep cs
symbolically in most of the derivation. For applications and numerical results related to high temperature quark-
gluon plasma, we use cs = 1/

√
3 which applies to an ideal relativistic plasma as well as any conformal fluid. The

four-velocity of the fluid is uµ = γ(1, ~v) with ~v the three-velocity and γ = 1/
√
1− ~v2 the Lorentz factor. The four

velocity is subject to the constraint uµuµ = 1. In hydrodynamics the degrees of freedom are these five fields (energy
density, pressure, and three independent velocity components) which satisfy five equations: four equations from energy
and momentum conservation (1) and one from the equation of state, forming a closed equation system. Finally gµν

is the metric tensor in the used coordinate. Note that in general coordinates, the derivative ;µ in the hydro equations
should be a covariant one, defined as

T µν
;µ = T µν

,µ + Γµ
ρµT

ρν + Γν
ρµT

µρ

= ∂µT
µν + Γµ

ρµT
ρν + Γν

ρµT
µρ (3)

where the affine connections are Γρ
µν = 1

2g
ρσ(gσµ,ν + gσν,µ − gµν,σ).

The sound wave is a collective excitation arising from small density and pressure fluctuations on top of certain
background. One may treat such fluctuations as a perturbation which shall satisfy the linearized hydrodynamic
equations. To do that, consider certain background flow described by p0 and uµ

0 , already satisfying the hydrodynamic
equations in (1). Let us then add a sound wave as a perturbation, with the hydro fields now being p = p0 + p1, uµ =
uµ
0 + uµ

1 . Hence, to the linear order in the perturbation, the energy-momentum tensor can be written as

T µν = (1 + c−2
s )puµuν − gµνp

= (1 + c−2
s )(p0 + p1)(u

µ
0 + uµ

1 )(u
ν
0 + uν

1)− gµν(p0 + p1)

≈ {T µν
0 }+ {T µν

1 }
=

{
(1 + c−2

s )p0u
µ
0u

ν
0 − gµνp0

}
+
{
(1 + c−2

s )uµ
0u

ν
0p1 + (1 + c−2

s )p0u
ν
0u

µ
1 + (1 + c−2

s )p0u
µ
0u

ν
1 − gµνp1

}
. (4)

Note that the velocity perturbation is subject to the constrain uµ
0u1µ = 0. Thus the linearized hydrodynamic equations

are simply given by

T µν
1 ;µ = 0. (5)

The solutions to such linearized hydrodynamic equations are the sound waves on a general background. While the
sound wave solutions on static and homogeneous background are familiar, the extension to expanding background is
highly nontrivial. Clearly the sound wave solution depends on the background flow which itself shall be a solution to
hydrodynamic equation in the first place. In what follows, we will find sound wave solutions to the linearized hydro
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equations above, based on known exact solutions as the background flow. As will become evident in the explicit
examples later, for a given background flow there will be multiple sound wave solutions in general, and a given
(arbitrary) initial perturbation will trigger a certain superposition of these solutions which subsequently propagate
independently. These sound waves generated by a common source perturbation propagate away and create correlations
over the spatial range of such sound propagation.

III. SOUND WAVES ON TOP OF 1D BJORKEN FLOW

As the first example let us consider the linearized hydrodynamic equation on the background solution known as the
boost-invariant Bjorken flow, which provides a good description of hot QCD fluid undergoing longitudinal expansion
at relatively early time in a heavy ion collision.

A. The linearized hydrodynamic equations

As is well known, the Bjorken flow is a 1-dimensional flow along the longitudinal direction, with only z-direction
flow velocity vz = z/t. To describe this background flow, it is most convenient to use the following coordinates:

τ =
√
t2 − z2, η =

1

2
ln

t+ z

t− z
,

ρ =
√
x2 + y2, φ =

1

2i
ln

x+ iy

x− iy
, (6)

with inverse transformation

t = τ cosh η, z = τ sinh η,

x = ρ cosφ, y = ρ sinφ. (7)

In the (τ, η, ρ, φ) coordinates, the metric tensor gµν is given by

gµν = Diag(1,−τ2,−1,−ρ2),

gµν = Diag(1,− 1

τ2
,−1,− 1

ρ2
) (8)

and the non-vanishing connections are

Γτ
ηη = τ, Γη

ητ = Γη
τη =

1

τ
,

Γρ
φφ = −ρ, Γφ

φρ = Γφ
ρφ =

1

ρ
. (9)

The hydrodynamic equations (1) in this coordinate system take the following form:

0 = T ττ
,τ + T τη

,η + T τρ
,ρ + T τφ

,φ + τT ηη +
1

τ
T ττ +

1

ρ
T ρτ ,

0 = T ητ
,τ + T ηη

,η + T ηρ
,ρ + T ηφ

,φ +
3

τ
T ητ +

1

ρ
T ρη,

0 = T ρτ
,τ + T ρη

,η + T ρρ
,ρ + T ρφ

,φ − ρT φφ +
1

ρ
T ρρ +

1

τ
T τρ,

0 = T φτ
,τ + T φη

,η + T φρ
,ρ + T φφ

,φ +
3

ρ
T ρφ +

1

τ
T τφ. (10)

The background Bjorken flow is a solution to the above equations, specified by pressure field p0(τ) = p(τ0)τ
1+c2s
0 /τ1+c2s

and velocity field uµ
0 (τ) = (1, 0, 0, 0) in this coordinate.
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Let us then consider a small perturbation on top of the Bjorken flow, p = p0 + p1 and uµ = uµ
0 + uµ

1 . The velocity
field constraint gµνuµuν = 1 requires uτ

1 = 0. The linearized hydrodynamic equations (5) are then given by

0 =
p0u

ρ
1

ρ
+

p1
τ

+
1

1 + c2s
p1,τ + p0(u

η
1,η + uρ

1,ρ + uφ
1,φ),

0 = p0u
η
1,τ +

2− c2s
τ

p0u
η
1 +

c2s
1 + c2s

p1,η
τ2

,

0 = p0u
ρ
1,τ −

c2s
τ
p0u

ρ
1 +

c2s
1 + c2s

p1,ρ,

0 = p0u
φ
1,τ −

c2s
τ
p0u

φ
1 +

c2s
1 + c2s

p1,φ
ρ2

. (11)

In what follows we will find solutions to the above equations, describing the sound waves propagating on top of
the background Bjorken flow. The background flow clearly differentiates the longitudinal and transverse directions:
diluting out in the former while remaining static in the latter. It is physically interesting to first examine sound waves
propagating solely in the transverse or longitudinal directions to gain intuitions on these waves, as will be done in the
next two subsections. In the last subsection we will then find the general analytic solutions for all sound waves.

B. Transverse sound wave solutions

Let us first consider solutions for transverse sound wave that travels on the plane perpendicular to the background
flow’s longitudinal expansion direction. To do that, we find solutions with vanishing longitudinal velocity i.e. uη

1 = 0.
This condition simplifies the Eqs.(11) into the following:

0 =
p0u

ρ
1

ρ
+

p1
τ

+
1

1 + c2s
p1,τ + p0(u

ρ
1,ρ + uφ

1,φ), (12)

0 = p1,η, (13)

0 = p0u
ρ
1,τ −

c2s
τ
p0u

ρ
1 +

c2s
1 + c2s

p1,ρ, (14)

0 = p0u
φ
1,τ −

c2s
τ
p0u

φ
1 +

c2s
1 + c2s

p1,φ
ρ2

. (15)

The Eq.(13) can be trivially solved by having all quantities independent of η i.e. being boost-invariant. One
strategy to solve the remaining equations is to manipulate the equations into a form allowing variable separation
procedures (with the “price” of elevating to second order differentiations). To see that, one combines them via
(12),τ−(14),ρ−(15),φ+(12)/τ−(14)/ρ and obtains

c−2
s p1,ττ + (1 + 2c−2

s )
p1,τ
τ

= p1,ρρ +
p1,ρ
ρ

+
p1,φ,φ
ρ2

. (16)

The above equation can then be further solved by usual variable separation. First by doing Fourier expansion of
angle dependence, p1 =

∑
m pmeimφ, we can get

c−2
s pm,ττ + (1 + 2c−2

s )
pm,τ

τ
= pm,ρρ +

pm,ρ

ρ
− m2

ρ2
pm. (17)

A further separation procedure leads to two decoupled second order differential equations for τ and ρ dependence,
and both are easily solved. At the end, we obtain the following solution:

p1 = p0

( τ

τ ′

) 1+c2s
2

∑

m=0,±1,±2,...

∫ [
am,ωJ 1+c2s

2

(csωτ) + bm,ωJ− 1+c2s
2

(csωτ)
]
Jm(ωρ)eimφdω,

uρ
1 = uρ

1(τ
′) +

c2s
1 + c2s

u⊥,ρ,

uφ
1 = uφ

1 (τ
′) +

c2s
1 + c2s

1

ρ2
u⊥,φ,

uτ
1 = uη

1 = 0, (18)
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where p0(τ) is the background solution from Bjorken flow, and the auxiliary field u⊥ is given by

u⊥ =
( τ

τ ′

)c2s ∑

m

∫ [
(
τ

τ ′
)

1−c2s
2

am,ω

csω
J c2s−1

2

(csωτ)− (
τ

τ ′
)

1−c2s
2

bm,ω

csω
J 1−c2s

2

(csωτ)

] ∣∣∣∣
τ

τ ′

Jm(ωρ)eimφdω (19)

which satisfies u⊥(τ → τ ′) → 0. Note that to ensure the solutions to be real numbers, one has the constraints a∗−m,ω =
(−1)m am,ω and b∗−m,ω = (−1)m bm,ω. The parameter τ ′ has the meaning of initial time when the perturbation is

introduced, and uρ,φ
1 (τ ′) shall be matched to the initial velocity field perturbation. The coefficients am,ω and bm,ω

shall be determined from initial pressure field perturbation and velocity perturbation. It should be noted that the
transverse sound wave solutions found here are different from those for a completely static background. Here the
longitudinally expanding background flow induces dilution of density which affects the sound propagation even in
transverse direction. As a result of this nontrivial interplay between the background and the sound wave, nontrivial
time dependence appears in the above solution. In contrast, a transverse solution on a completely static background
would have its time dependence as simply ∼ e±icsωτ .
It would be interesting to examine the asymptotic behavior of the solution. The Bessel functions behave as

Jm(x) ∼ x−1/2 cos(x−π/4−mπ/2) when x → ∞. As such one can infer that in the limit of infinite time and distance
τ → ∞ and ρ → ∞, the solution (18) takes the following form

p1
p0

∝ τc
2
s/2ρ−1/2 cos(csωτ − π/4∓ π/3) cos(ωρ− π/4−mπ/2) (20)

which appears as a “standing wave” from mixture of inbound and outbound sound waves with phase velocity δρ
δτ = ±cs.

From p0(τ) ∼ 1/τ−(1+c2s), p1 itself behaves as ∼ 1/τ−(1+c2s/2) at late time limit and decreases in time.
Let us now give an explicit example of the solutions, with the initial Gaussian-shape perturbation for the pressure

and vanishing velocity fluctuations,

p1(τ
′) = p0(τ

′)
ξ

2πσ2
e−

ρ2+ρ′2−2ρρ′ cos(φ−φ′)

2σ2τ′2 ,

u1(τ
′) = 0, (21)

where there are two dimensionless parameters, σ controlling the width of the Gaussian perturbation and ξ governing
the magnitude of the perturbation relative to the background pressure. By matching the solution (18) with the above
initial condition at τ ′, we determine all coefficients, and the resulting sound wave from such Gaussian fluctuation is
described by

p1(τ, ρ, φ)

p0
=

ξ τ ′2

2π

( τ

τ ′

) 1+c2s
2

∑

m

∫ ∞

0

J 1−c2s
2

(csωτ
′)J 1+c2s

2

(csωτ) + J
− 1−c2s

2

(csωτ
′)J

− 1+c2s
2

(csωτ)

J 1−c2s
2

(csωτ ′)J 1+c2s
2

(csωτ ′) + J
− 1−c2s

2

(csωτ ′)J− 1+c2s
2

(csωτ ′)

× e−
σ2ω2τ′2

2 Jm(ωρ)Jm(ωρ′)eim(φ−φ′)ω dω. (22)

With the very useful sum rule for Bessel functions [61],

∞∑

m=−∞
Jm(x)Jm(x′)eimφ = J0(

√
x2 + x′2 − 2xx′ cosφ) ≡ J0(|~x− ~x′|), . (23)

we can perform the summation in the solution and obtain

p1(τ, ρ, φ)

p0
=

ξ τ ′2

2π

( τ

τ ′

) 2
3

∫ ∞

0

J 1−c2s
2

(csωτ
′)J 1+c2s

2

(csωτ) + J
− 1−c2s

2

(csωτ
′)J

− 1+c2s
2

(csωτ)

J 1−c2s
2

(csωτ ′)J 1+c2s
2

(csωτ ′) + J
− 1−c2s

2

(csωτ ′)J− 1+c2s
2

(csωτ ′)
e−

σ2ω2τ′2

2 J0(ωρ̄)ωdω, (24)

where ρ̄ ≡ |~ρ − ~ρ′| =
√
ρ2 + ρ′2 − 2ρρ′ cos(φ− φ′) is the distance between the point (ρ, φ) and the center of the

original perturbation at (ρ′, φ′). Thus the physical picture of the above transverse wave becomes transparent: it is a
cylindrically symmetric wave propagating away from the center of the initial perturbation. The corresponding sound
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wave velocity field is given by

uρ
1 = − ξτ ′2

8πcs

( τ

τ ′

) 2
3

∫ ∞

0

J 1−c2s
2

(csωτ
′)J

− 1−c2s
2

(csωτ)− J
− 1−c2s

2

(csωτ
′)J 1−c2s

2

(csωτ)

J 1−c2s
2

(csωτ ′)J 1+c2s
2

(csωτ ′) + J
− 1−c2s

2

(csωτ ′)J− 1+c2s
2

(csωτ ′)

×e−
σ2ω2τ′2

2 J1(ωρ̄)
ρ− ρ′ cos(φ− φ′)

ρ̄
ωdω,

uφ
1 = − ξτ ′2

8πcs

( τ

τ ′

) 2
3

∫ ∞

0

J 1−c2s
2

(csωτ
′)J

− 1−c2s
2

(csωτ)− J
− 1−c2s

2

(csωτ
′)J 1−c2s

2

(csωτ)

J 1−c2s
2

(csωτ ′)J 1+c2s
2

(csωτ ′) + J
− 1−c2s

2

(csωτ ′)J− 1+c2s
2

(csωτ ′)

×e−
σ2ω2τ′2

2 J1(ωρ̄)
ρ′ sin(φ − φ′)

ρρ̄
ωdω. (25)

Finally we consider the case of Dirac-delta form initial perturbation p1(τ
′) = p0(τ

′) · τ ′2δ(2)(~ρ− ~ρ′) = p0(τ
′) · τ ′2 δ(ρ)

πρ

which can be obtained as a proper limit σ → 0 of the Guassian case. A careful calculation reveals that the transverse
wave solution from such a completely localized initial perturbation can be obtained by simply putting σ = 0 in the
above solution given by Eqs.(24) and (25).

C. Longitudinal sound wave solutions

Let us then consider solutions for longitudinal sound wave that travels in parallel to the background flow’s expansion

direction. To do that, we find solutions with vanishing transverse velocity i.e. uρ
1 = uφ

1 = 0. This condition greatly
simplifies the Eqs.(11),

0 =
p1
τ

+
1

1 + c2s
p1,τ + p0u

η
1,η,

0 = p0u
η
1,τ +

2− c2s
τ

p0u
η
1 +

c2s
1 + c2s

p1,η
τ2

. (26)

It is straightforward to find the solution,

p1 = p0

( τ

τ ′

)− 1−c2s
2

∫ ∞

−∞
dk

[
ake

i[kη−cs

√

k2− (1−c2s)2

4c2s
ln( τ

τ′
)]
+ bke

i[kη+cs

√

k2− (1−c2s)2

4c2s
ln( τ

τ′
)]
]
,

uη
1 =

( τ

τ ′

)− 3−c2s
2

∫ ∞

−∞
dk

[−i(1− c2s)−
√
4c2sk

2 − (1− c2s)
2

2k(1 + c2s)
ake

i[kη−cs

√

k2− (1−c2s)2

4c2s
ln( τ

τ′
)]

+
−i(1− c2s) +

√
4c2sk

2 − (1− c2s)
2

2k(1 + c2s)
bke

i[kη+cs

√

k2− (1−c2s)2

4c2s
ln( τ

τ′
)]
]

(27)

with k the dimensionless longitudinal wave number (in “conjugation” to spatial rapidity η). We note that this
particular solution, i.e. longitudinal wave on top of Bjorken background flow has been studied in [33], and the above
solution agrees precisely with that found in [33]. The small coefficients ak, bk ≪ 1 are determined by matching with
initial perturbation at time τ ′. They should also satisfy the following constraints to ensure all the above physical

quantities to be real numbers, a∗−k = bk (thus b∗−k = ak) for |k| > 1−c2s
2cs

and a∗−k = ak and b∗−k = bk for |k| < 1−c2s
2cs

and either of the two conditions for |k| = 1−c2s
2cs

.

Note that the delicate structure
√
k2 − (1−c2s)

2

4c2s
can be either a real number or an imaginary number. For |k| > 1−c2s

2cs

(corresponding to short “wavelength” or well localized modes), the solution has an oscillating time dependence which

resembles a propagating wave. The case of |k| = 1−c2s
2cs

is trivial, without any oscillating phase in time. For 0 < |k| <
1−c2s
2cs

, the behavior of the sound wave becomes quite interesting. Naively it looks like exponentially growing or decaying
in time and one may worry about possible instability due to the exponential growth, but that is not true due to the

ln(τ/τ ′) structure in the exponential term. In fact for 0 < |k| < 1−c2s
2cs

we can write
√
k2 − (1−c2s)

2

4c2s
= i

√
(1−c2s)

2

4c2s
− k2

and then have e
i[±ics

√

(1−c2s)2

4c2s
−k2ln(τ/τ ′)] ∼ (τ/τ ′)

±cs

√

(1−c2s)2

4c2s
−k2

. For cs

√
(1−c2s)

2

4c2s
− k2 <

1−c2s
2 , even with the positive
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power, neither the pressure nor the velocity field of the sound wave would grow in time, instead they both decrease
in time by a power law dependence on time. Physically this type of behavior may be understood as follows. For the
small |k| modes their wavelength becomes so large that the background Bjorken flow will stretch the different parts
inside the same wavelength away from each other significantly (recalling that the Bjorken flow is just a 1D Hubble
flow in which each local fluid cell “sees” all other cells expanding away) and thus render the usual time oscillation no
longer possible. The k = 0 case requires some special discussion. In this case the pressure is finite, but the velocity
field integration bears a logarithmic singularity ∼

∫
dk/k at small k. However the leading order of the integrand is

an odd function for k → 0 and thus the divergence will be canceled.
One may be curious about the behavior of the solutions under longitudinal boost. One may boost to a refer-

ence frame with a velocity ṽ along longitudinal direction relative to the original flow by the following coordinate
transformation:

τ → τ,

η → η +
1

2
ln
1 + ṽ

1− ṽ
= η + δη. (28)

Note that in the solutions (27) the η dependence is entirely in eikη, and upon the above transformation one gets extra
factors eikδη which can all be absorbed into a redefinition of the coefficients ak and bk (and it is not difficult to see
that such redefinition satisfies the constraints for these coefficients). One therefore sees that the longitudinal sound
wave solution has a boost-invariant form.
Let us also look at the dispersion relation for the propagating modes with |k| > 1−c2s

2cs
. From the oscillating phase

e
i[kη∓cs

√

k2− (1−c2s)2

4c2s
ln( τ

τ′
)]
, one may identify a phase velocity τδη

δτ = ±cs

√
1− (1−c2s)

2

4c2sk
2 which approaches cs for large

wavenumber k → ∞. It is instructive to also look at the dispersion in the flat coordinate δz
δt = tanh η±cs

1±cs tanh η = vz±cs
1±vzcs

where vz = z/t is the local background flow velocity. Clearly the phase velocity in flat coordinate has the interpretation
of red/blue shifted wave propagation by the local background flow.
As an example, let us examine the evolution of a static Gaussian perturbation introduced at τ = τ ′ and η = η′,

p1(τ
′) = p0(τ

′)
ξ√
2πσ

e−
(η−η′)2

2σ2 ,

uη
1(τ

′) = 0. (29)

The corresponding sound wave resulting from such perturbation can be written as

p1(τ, η)

p0
=

ξ

2π

( τ

τ ′

)− 1−c2s
2

∫ ∞

−∞
dk e−

σ2k2

2 cos[k(η − η′)] cos[cs

√
k2 − (1− c2s)

2

4c2s
ln(τ/τ ′)],

uη
1 =

ξ

4π

( τ

τ ′

)− 3−c2s
2

∫ ∞

−∞
dk e−

σ2k2

2
sin[k(η − η′)]

k

(
1− c2s
1 + c2s

cos

[
cs

√

k2 − (1 − c2s)
2

4c2s
ln(τ/τ ′)

]

−
√
4c2sk

2 − (1 − c2s)
2

1 + c2s
sin

[
cs

√
k2 − (1− c2s)

2

4c2s
ln(τ/τ ′)

])
. (30)

Note that there is no divergence of the integrand in the above velocity field in the k → 0 region by virtue of the fact
sin[k(η − η′)] ∼ k.
Similarly, by taking the limit σ → 0 in the above equations, one obtains the solution with Dirac-delta initial

perturbation. An interesting point, as discussed in [33], is that the sound wave solution originating from a delta-
function perturbation shall bear a singular “sound front” if viscosity is neglected. Indeed, our sound wave solution
from Guassian perturbation in the σ → 0 limit shows the existence of such singularity. To see that, let us take the
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limit σ → 0 and examine the behavior of p1/p0 in Eq.(30), for which the k-integration part can be rewritten as

∫ ∞

−∞
dk cos[k(η − η′)] cos

[
cs

√
k2 − (1− c2s)

2

4c2s
ln(τ/τ ′)

]

=

∫ ∞

−∞
dk cos[k(η − η′)] cos[csk ln(τ/τ

′)]

+

∫ ∞

−∞
dk cos[k(η − η′)]

[
cos[csk

√

1− (1− c2s)
2

4c2sk
2

ln(τ/τ ′)]− cos[csk ln(τ/τ
′)]

]

=
1

2

∫ ∞

−∞
dkei[k(η−η′)+csk ln(τ/τ ′)] +

1

2

∫ ∞

−∞
dkei[k(η−η′)−csk ln(τ/τ ′)]

+

∫ ∞

−∞
dk cos[k(η − η′)]

[
cos[csk

√

1− (1− c2s)
2

4c2sk
2

ln(τ/τ ′)]− cos[csk ln(τ/τ
′)]

]
(31)

Clearly the first two terms in the last step give rise to singularities precisely at the two“sound front” positions due
to propagation in both longitudinal directions. The third term ∼ sin(kcs ln(τ/τ

′))/6k at k → ∞ and thus is regular
everywhere. This analysis shows that our result is in consistency with that in [33].

D. General sound wave solutions

Finally let us find the general sound wave solutions for the background Bjorken flow. We start by rewriting the
linearized equations (11) as

0 =
1

1 + c2s

ρ

τc
2
s

(p1
p0

)

,τ
+ (τ−c2sρuη

1),η + (τ−c2sρuρ
1),ρ + (τ−c2sρuφ

1 ),φ, (32)

0 = (τ2−c2suη
1),τ +

c2s
1 + c2s

1

τc
2
s

(p1
p0

)

,η
, (33)

0 = (τ−c2sρuρ
1),τ +

c2s
1 + c2s

ρ

τc
2
s

(p1
p0

)

,ρ
, (34)

0 = (τ−c2sρuφ
1 ),τ +

c2s
1 + c2s

1

τc
2
sρ

(p1
p0

)

,φ
. (35)

Let us introduce the notation δ ≡ p1/p0. By the manipulation (1 + c−2
s ) τ

c2s

ρ [(32),τ − (34),ρ − (35),φ] we obtain

(1 + c−2
s )τc

2
s(

uη
1

τc
2
s
),τη =

1

τ
δ,τ − c−2

s δ,ττ + δ,ρρ +
1

ρ
δ,ρ +

1

ρ2
δ,φφ. (36)

Further using Eqs.(33) and (36) we can eliminate the variable uη
1 and obtain an equation only for variable δ. With the

assumption of making variable separation δ(τ, η, ρ, φ) = δ‖(τ, η)δ⊥(ρ, φ), the procedure leads to separate equations
for the longitudinal and transverse fluctuations,

δ⊥,ρρ +
1

ρ
δ⊥,ρ +

1

ρ2
δ⊥,φφ = −ω2δ⊥,

τ1+c2s(τ−1−c2sδ‖,ηη),τ = (3− c2s)ω
2τδ‖ + (ω2τ2 − 2 + c2s)δ‖,τ + (3c−2

s − 2)τδ‖,ττ + c−2
s τ2δ‖,τττ . (37)

One can then find the eigen modes for the above two equations

δ⊥(ρ, φ) ∼ Jm(ωρ) eimφ,

δ‖(τ, η) ∼ eikη ×W (τ). (38)
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Based on these, one can construct the following general solution for the pressure as well as velocity components,

δ(τ, η, ρ, φ) =
∑

m

∫ ∞

0

dω

∫ ∞

−∞
dk eikηJm(ωρ)eimφW (τ),

uη
1(τ, η, ρ, φ) = (

τ

τ ′
)c

2
s−2uη

1(τ
′, η, ρ, φ) +

c2s
1 + c2s

τc
2
s−2u⊥,η(τ, η, ρ, φ),

uρ
1(τ, η, ρ, φ) = (

τ

τ ′
)c

2
suρ

1(τ
′, η, ρ, φ) +

c2s
1 + c2s

τc
2
su⊥,ρ(τ, η, ρ, φ),

uφ
1 (τ, η, ρ, φ) = (

τ

τ ′
)c

2
suφ

1 (τ
′, η, ρ, φ) +

c2s
1 + c2s

τc
2
s

ρ2
u⊥,φ(τ, η, ρ, φ), (39)

where we have introduced the auxiliary field

u⊥(τ, η, ρ, φ) =
∑

m

∫ ∞

0

dω

∫ ∞

−∞
dk eikηJm(ωρ)eimφ

∫ τ

τ ′

dτ̃ τ̃−c2s W (τ̃ ), (40)

and the function W (τ) including three independent components

W (τ) ≡ Ak,ω,mW1(τ) +Bk,ω,mW2(τ) + Ck,ω,mW3(τ),

W1(τ) = (
τ

τ ′
)−

1−c2s
2 −αk(ωτ)αk

[1− c2s − 2αk

2
J−αk

(csωτ)− (csωτ)J1−αk
(csωτ)

]
,

W2(τ) = (
τ

τ ′
)−

1−c2s
2 +αk(ωτ)−αk

[1− c2s − 2αk

2
Jαk

(csωτ) + (csωτ)Jαk−1(csωτ)
]
,

W3(τ) = (ωτ)1+c2s 1F2[2;
7 + c2s + 2αk

4
,
7 + c2s − 2αk

4
;−c2sω

2τ2/4] (41)

with αk =
√
(1− c2s)

2/4− c2sk
2. In the above solutions, there are a set of coefficients Ak,ω,m, Bk,ω,m and Ck,ω,m

depending on wave mode parameters. These parameters are determined by the initial fluctuations, as we will discuss
in the next subsection. Note that the hypergeometric function here 1F2[a1; b1, b2;x] is symmetric with respect to the
exchange b1 ↔ b2, and one can show that W3 is always real for any k.
Clearly the solution maintains a general structure of factorized longitudinal and transverse dynamics. The de-

pendence on η, ρ, φ is basically a superposition of those eigen functions in each of the spatial coordinates. More
nontrivial is the time dependence, which is a combination of the three functions W1,2,3 — loosely speaking this ap-
pears in correspondence with three independent sound modes (for given ω, k parameters), expected in three spatial
dimensions.
Let us firstly discuss some general behavior of the functions W . 1) It is not difficult to show that for k2 ≤ (1 −

c2s)
2/(4c2s) all the three functions W1,2,3 are real. For k

2 > (1−c2s)
2/(4c2s), one has W3 = W ∗

3 and W ∗
1 = W2. Therefore

to ensure the solution to take real values, the set of coefficients should satisfy the constraints (−1)mC∗
−k,ω,−m = Ck,ω,m

and (−1)m{A,B}∗−k,ω,−m = {A,B}k,ω,m for k2 ≤ (1 − c2s)
2/(4c2s) and (−1)m{B,A}∗−k,ω,−m = {A,B}k,ω,m for k2 >

(1 − c2s)
2/(4c2s). 2) One can show W1,2,3(τ) ∼ τ1/6 at τ → ∞, which means the same asymptotical behavior as the

transverse sound wave. (Note that p1 ∼ p0W would still decrease in time.) It is also interesting to examine these
functions in the two limits of ω → 0 (longitudinal limit) and k → 0 (transverse limit),

W1(τ) ∝





τ−
1−c2s

2 −αk ω → 0

τ
1+c2s

2 J 1+c2s
2

(csωτ) k → 0
,

W2(τ) ∝





τ−

1−c2s
2 +αk ω → 0

τ
1+c2s

2 J
− 1+c2s

2

(csωτ) k → 0
,

W3(τ) ∝
{

0 ω → 0

τ
1+c2s

2 J 1+c2s
2

(csωτ) k → 0
. (42)

These limit cases appear in close correspondence with the previously found longitudinal and transverse wave solutions.
3) In the limit ω >> 1 and ω >> k, it can be shown that the function W (τ) reveals a symptomatic phase factor
∼ e±icsωτ which together with the asymptotic form of Jm(ωρ) at large ρ reveals a propagating transverse wave with
phase velocity cs. On the other hand, if we take k >> 1 and k >> ω limit, we will find a similar structure ∼ e±icskτ ,
which together with the factor eikη reveals a propagating longitudinal wave in correspondence to our previous analysis.
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E. Determining the coefficients from initial perturbation

With the general solution in Eqs.(39), one needs to determine the coefficients {A,B,C}k,ω,m in the function W
by matching to the initial condition δ(τ ′) and u1(τ

′) when such perturbation occurs. One needs three conditions,
and the strategy is as follows. A first constraint is provided by the initial pressure perturbation δ(τ ′). One uses the
initial perturbation together with the hydro equations to determine the first and second order time derivatives of the
pressure field i.e. ∂τ δ and ∂2

τδ. Then one can use the three matching conditions for δ, ∂τ δ, as well as ∂
2
τδ to completely

fix the coefficients. Let us see how that works. Using the linearized hydro equations at time τ ′, it is not difficult to
obtain

∂τ δ(τ
′) = −(1 + c2s)

[
uη
1,η(τ

′) +
(ρuρ

1),ρ(τ
′)

ρ
+ uφ

1,φ(τ
′)
]
,

∂2
τ δ(τ

′) = c2s

[δ,ηη(τ ′)
τ ′2

+
(ρδ,ρ(τ

′)),ρ
ρ

+
δ,φφ(τ

′)

ρ2

]

+
c2s(1 + c2s)

τ ′

[ (1 + c−2
s )(2 − c2s)

1 + c2s
uη
1,η(τ

′)− (ρuρ
1(τ

′)),ρ
ρ

− uφ
1,φ(τ

′)
]

(43)

which can completely fix ∂τ δ and ∂2
τ δ at the time moment τ ′ from the initial perturbation δ and u1 at τ ′. Now we

focus on δ in Eq.(39). By integrating the two sides of the equation over spatial coordinates multiplied by proper basis
functions (similar to the inverse of Fourier transformation), we have

W (τ ′) =
ω

4π2

∫ ∞

0

ρdρ

∫ ∞

−∞
dη

∫ 2π

0

dφ δ(τ ′, η, ρ, φ)e−ikηe−imφJm(ωρ). (44)

We further take the first and second order time derivatives of the above equation,

∂τW (τ ′) =
ω

4π2

∫ ∞

0

ρdρ

∫ ∞

−∞
dη

∫ 2π

0

dφ [∂τ δ(τ
′, η, ρ, φ)]e−ikηe−imφJm(ωρ),

∂2
τW (τ ′) =

ω

4π2

∫ ∞

0

ρdρ

∫ ∞

−∞
dη

∫ 2π

0

dφ [∂2
τ δ(τ

′, η, ρ, φ)]e−ikηe−imφJm(ωρ) . (45)

Now the quantities W (τ ′), ∂τW (τ ′) and ∂2
τW (τ ′) are all fixed by initial perturbations.

From Eq.(41), W (τ ′), ∂τW (τ ′), and ∂2
τW (τ ′) can also be determined by the three coefficients {A,B,C}k,ω,m. This

provides the way to fix {A,B,C}k,ω,m from W (τ ′), ∂τW (τ ′), and ∂2
τW (τ ′),




Ak,ω,m

Bk,ω,m

Ck,ω,m



 =




W1(τ

′) W2(τ
′) W3(τ

′)
∂τW1(τ

′) ∂τW2(τ
′) ∂τW3(τ

′)
∂2
τW1(τ

′) ∂2
τW2(τ

′) ∂2
τW3(τ

′)




−1

·




W (τ ′)

∂τW (τ ′)
∂2
τW (τ ′)



 . (46)

In the above, the matrix elements ∂
{0,1,2}
τ W1,2,3 can all be directly computed from Eqs.(41). In this way we’ve shown

the method to determine the sound wave solutions completely for any arbitrarily given initial perturbation.
To make the procedure more transparent, let us give an explicit example, by considering a static initial Gaussian

perturbation with cylindrical symmetry,

δ(τ ′) =
ξ

(2πσ2)3/2
e−

(η−η′)2+ρ2/τ′2

2σ2 ,

u1(τ
′) = 0. (47)

In this case one can obtain from Eqs.(43),

dδ

dτ
|τ ′ = 0,

d2δ

dτ2
|τ ′ = − 3c2s

σ2τ ′2
δ(τ ′) + c2s

τ ′2(η − η′)2 + ρ2

σ4τ ′4
δ(τ ′). (48)

We can then use the Eqs.(44) and (45) to derive

W (τ ′) = δm,0
ξτ ′2

4π2
ωe−

σ2(ω2τ′2+k2)
2 e−ikη′

,

∂τW (τ ′) = 0,

∂2
τW (τ ′) = δm,0

(
−c2s

ω2τ ′2 + k2

τ ′2

)
W (τ ′) (49)



11

and in turn the coefficients




Ak,ω,m

Bk,ω,m

Ck,ω,m


 = δm,0

ξτ ′2

4π2
ωe−

σ2(ω2τ′2+k2)
2 e−ikη′




W1(τ
′) W2(τ

′) W3(τ
′)

∂τW1(τ
′) ∂τW2(τ

′) ∂τW3(τ
′)

∂2
τW1(τ

′) ∂2
τW2(τ

′) ∂2
τW3(τ

′)




−1 


1
0

−c2s
ω2τ ′2+k2

τ ′2


 , (50)

where again ∂
{0,1,2}
τ W1,2,3 are computed from Eqs.(41).

Clearly to obtain the sound wave solutions arising form an initial delta-function perturbation, one simply takes
σ → 0 in the above calculations.

IV. SOUND WAVES ON TOP OF 3D HUBBLE FLOW

In this Section, we study another example of sound waves on expanding background and present general solutions
to the linearized hydrodynamic equations on the background 3D Hubble flow. The 3D Hubble flow, mostly studied
for the Universe expansion, also provides an approximate description of the relatively late time expansion (when
transverse flow becomes significant) of hot QCD fluid in a heavy ion collision.

A. The linearized hydrodynamic equations

A 3D Hubble flow expands radially with a velocity field ~v = ~r/t. As is well known, from the point of view of any
local rest frame in the fluid, the whole system expands in the same rotationally symmetric way. For describing such
a flow background, it’s most convenient to use the following coordinates

τ =
√
t2 − r2, η =

1

2
ln
t+ r

t− r
,

θ =
1

2i
ln
z + i

√
x2 + y2

z − i
√
x2 + y2

, φ =
1

2i
ln
x+ i y

x− i y
(51)

with r =
√
x2 + y2 + z2. Note that the η here has a different definition from the 1D Bjorken case, while θ and φ

are the polar and azimuthal angles in usual spherical frame. To keep the main line of our discussions clear, we leave
many of the details regarding the coordinate system, the metric and connections, as well as the full hydrodynamic
equations in this coordinate system in the Appendix A.
The 3D Hubble flow, in the above coordinates, is conveniently described by

p0 =
p0(τ0)τ

3(1+c2s)
0

τ3(1+c2s)
, uµ

0 = (1, 0, 0, 0). (52)

We now consider the sound wave on top of this background, p = p0 + p1 and uµ = uµ
0 + uµ

1 . By substituting these
into the hydrodynamic equations and keeping the leading order in perturbation, we obtain the following linearized
equations on top of the 3D Hubble background,

0 =
1

1 + c2s
p1,τ +

3

τ
p1 + p0u

η
1,η + p0u

θ
1,θ + p0u

φ
1,φ + 2

cosh η

sinh η
p0u

η
1 +

cos θ

sin θ
p0u

θ
1 (53)

0 = p0u
η
1,τ +

2− 3c2s
τ

p0u
η
1 +

c2s
1 + c2s

p1,η
τ2

(54)

0 = p0u
θ
1,τ +

2− 3c2s
τ

p0u
θ
1 +

c2s
1 + c2s

1

τ2 sinh2 η
p1,θ (55)

0 = p0u
φ
1,τ +

2− 3c2s
τ

p0u
φ
1 +

c2s
1 + c2s

1

τ2 sinh2 η sin2 θ
p1,φ . (56)

Note also that the four-velocity constraint uµuµ = 1 requires (at linear order of perturbation) uτ
1 = 0.
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B. General sound wave solutions

Now we proceed to solve the linearized equations, using a similar strategy as before i.e. to combine them into a
higher-order differential equation for the pressure perturbation with a form allowing variable separations. That can
be done by (53),τ−(54),η−(55),θ−(56),φ + 5

τ× (53) −2cothη× (54)−cotθ× (55) which leads to the equation

c−2
s τ2p1,ττ + (3 + 8c−2

s )τp1,τ + 12(1 + c−2
s )p1 = p1,ηη + 2

coshη

sinh η
p1,η +

1

sinh2 η

(
p1,θθ +

cos θ

sin θ
p1,θ +

1

sin2 θ
p1,φφ

)
. (57)

Deferring the detailed derivation into the Appendices B&C, here we present the final results for the general sound
wave solutions on top of the 3D Hubble flow,

p1(τ, η, θ, φ)

p0
= (

τ

τ ′
)

3c2s−1

2

∑

l,m

∫ ∞

−∞
al,m(k) cos [βk ln(τ/τ

′)]Rl(k, η)Y
m
l (θ, φ) dk

+(
τ

τ ′
)

3c2s−1

2

∑

l,m

∫ ∞

−∞
bl,m(k) sin [βk ln(τ/τ

′)]Rl(k, η)Y
m
l (θ, φ) dk,

uη
1(τ, η, θ, φ) = (

τ ′

τ
)2−3c2suη

1(τ
′, η, θ, φ) +

c2s
1 + c2s

u⊥,η(τ
′, η, θ, φ),

uθ
1(τ, η, θ, φ) = (

τ ′

τ
)2−3c2suθ

1(τ
′, η, θ, φ) +

c2s
1 + c2s

1

sinh2 η
u⊥,θ(τ

′, η, θ, φ),

uφ
1 (τ, η, θ, φ) = (

τ ′

τ
)2−3c2suφ

1 (τ
′, η, θ, φ) +

c2s
1 + c2s

1

sinh2 η sin2 θ
u⊥,φ(τ

′, η, θ, φ) (58)

with βk ≡ cs
√
k2 + (1− c2s)(9c

2
s − 1)/4c2s. In the above solution, we’ve introduced two auxiliary functions Rl(k, x)

and u⊥(τ, η, θ, φ) defined as

Rl(k, η) =

√
Γ(l + 1 + ik)Γ(l + 1− ik)

π22l+2Γ(l + 3/2)2
sinhl η 2F1(

l + 1 + ik

2
,
l + 1− ik

2
, l + 3/2,− sinh2 η)

=
Γ(l + 1)√

Γ(l + 1− ik)Γ(l + 1 + ik)

2l

sinh(πk)
sinhl ηC

(l+1)
ik−l−1(cosh η),

u⊥(τ, η, θ, φ) =
1

τ

∑

l,m

∫ ∞

−∞

βkbl,m(k) + (3c2s − 1)al,m(k)

(3c2s − 1)2 + β2
k

[
cos

(
βk ln

τ

τ ′

)
− 1

]
Rl(k, η)Y

m
l (θ, φ) dk

+
1

τ

∑

l,m

∫ ∞

−∞

−βkal,m(k) + (3c2s − 1)bl,m(k)

(3c2s − 1)2 + β2
k

sin
(
βk ln

τ

τ ′

)
Rl(k, η)Y

m
l (θ, φ) dk, (59)

where C
(ν)
µ are Gegenbauer functions. The coefficients al,m and bl,m satisfy the constraints a∗l,m = (−1)mal,−m,

b∗l,m = (−1)mbl,−m, al,m(−k) = al,m(k) and bl,m(−k) = bl,m(k), they are determined by the initial perturbation at

time τ ′.
It is interesting to take a look at the simplest sound wave mode here, i.e. the spherically symmetric wave with

l = m = 0 and R0(k, η) =
1√

πk sinh(πk)

sin kη
sinh η . In this case the solution can be simplified as

p1 = p0

∫ ∞

−∞
a0,0(k)e

±iβk ln(τ/τ ′) sin(kη)

k sinh η
dk. (60)

By rewriting sin(kη) = (eikη − e−ikη)/(2i), one may literally extract a phase velocity of the wave propagation

τδη

δτ
= ±βk

k
= ±cs

k

√
k2 +

(1 − c2s)(9c
2
s − 1)

4c2s
(61)

which at large k limit approaches the speed of sound on static background. By returning to the original flat coordinates
one can obtain the phase velocity

δr

δt
=

tanh η ± cs
1± cs tanh η

=
vr ± cs
1± vrcs

. (62)

Its physical meaning becomes transparent: these are two sound wave modes, one traveling inward while the other
traveling outward with the sound speed cs relative to the underlying Hubble flow.
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C. Determining the coefficients from initial perturbation

In general, for a given initial perturbation δ(τ ′) ≡ p1(τ
′)/p0(τ ′) and u1(τ

′), we need to determine the coefficients
al,m(k) and bl,m(k) from Eqs.(58). As the expressions with symbolic cs become too lengthy and complicated to

display, we will use the speed of sound cs = 1/
√
3 in this part. Note that by expanding the initial pressure field in

terms of eigen-functions can only provide one set of constraints. In addition, we can get the first time derivative of
the pressure at τ ′ through Eq.(53), namely

∂δ

∂τ

∣∣∣∣
τ ′

= −4

3

[
[sinh2 ηuη

1(τ
′)],η

sinh2 η
+

[sin θuθ
1(τ

′)],θ
sin θ

+ uφ
1,φ(τ

′)

]
. (63)

With the two constraints from δ(τ ′) and ∂δ
∂τ |τ ′ we can then completely fix the two sets of coefficients

al,m(k) = k sinh(πk)

∫

4π

dΩ

∫ ∞

0

sinh2 ηdη δ(τ ′, η, θ, φ)Rl(k, η)Y
m
l (θ, φ)∗,

bl,m(k) =
τ ′

βk
k sinh(πk)

∫

4π

dΩ

∫ ∞

0

sinh2 ηdη
∂δ

∂τ
(τ ′, η, θ, φ)Rl(k, η)Y

m
l (θ, φ)∗ (64)

with βk =
√

k2+1
3 when we use c2s = 1/3. Note that the technical details for fixing the normalization coefficients are

given in the Appendix C. With these coefficients determined, one can substitute them back to the solution in Eq.(58),
and simplify the solution by using the following summation identity:

R0(k, η̄)R0(k, 0)|Y 0
0 |2 =

∑

l,m

Rl(k, η
′)Rl(k, η)Y

m
l (θ, φ)Y m

l (θ′, φ′)∗ (65)

in which the parameter η̄ is defined via

cosh η̄ = cosh η′ cosh η − sinh η′ sinh η[cos θ′ cos θ + sin θ′ sin θ cos(φ− φ′)] . (66)

The ultimate origin of the above identity lies in a 3D boost-invariance of the Hubble flow (i.e. one sees the same
Hubble flow when changes to any fluid cell’s local rest frame). A strict mathematical proof of the above identity is
provided in Appendix D. The space-time evolution of the pressure perturbation is then given as follows,

δ =
p1
p0

=

∫ ∞

−∞

k2

4π2
dk

∫

4π

dΩ′
∫ ∞

0

sinh2 η′dη′ cos [βk ln(τ/τ
′)]

sin(kη̄)

k sinh η̄
δ(τ ′, η′, θ′, φ′)

+

∫ ∞

−∞

k2

4π2
dk

∫

4π

dΩ′
∫ ∞

0

sinh2 η′dη′
τ ′ sin [βk ln(τ/τ

′)]

βk

sin(kη̄)

k sinh η̄

[
∂δ

∂τ
(τ ′, η, θ, φ)

]
. (67)

The above form could be physically understood as follows: the first term is the superposition of the wave generated
from each localized delta-function source in pressure convoluted with the initial pressure perturbation field δ(τ ′),
while the second term is the superposition of the wave generated from each localized delta-function source in velocity
field convoluted with the initial velocity perturbation field ∂δ

∂τ (τ
′) (via Eq.(63)).

As a concrete example let us consider again a static Gaussian-like perturbation,

p1(τ
′) = p0(τ

′) · ξ

(2πσ2)3/2
e−

η̄2

2σ2 ,

u1(τ
′) = 0. (68)

After fixing the coefficients from Eqs.(64), we obtain the following solution

p1(τ, η, θ, φ)

p0
= ξ

∑

l,m

∫ ∞

−∞
k sinh(πk)

sin(kσ2)

kσ2e−σ2/2
e−

σ2k2

2

× cos[βk ln(τ/τ
′)]Rl(k, η

′)Y m
l (θ′, φ′)∗Rl(k, η)Y

m
l (θ, φ) dk . (69)

The physical picture of the above sound wave is best manifested after using the summation identity (65) to obtain:

p1(τ, η, θ, φ)

p0
=

ξ

4π2

∫ ∞

−∞

sin(kσ2)

kσ2e−σ2/2
e−

σ2k2

2
sin(kη̄)

sinh(η̄)
cos[βk ln(τ/τ

′)]k dk . (70)
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In fact this can be directly obtained by starting from Eq.(67). Intuitively the solution is a spherically symmetric
sound wave triggered from the center of the initial Gaussian perturbation, which becomes apparent when one makes
a boost of coordinates to the local rest frame at the center of the initial Gaussian perturbation. The corresponding
velocity field of the sound wave is given by

u⊥(τ, η, θ, φ) = − ξ

4π2τ

∫ ∞

−∞

sin(kσ2)

kσ2e−σ2/2

e−
σ2k2

2

βk

sin(kη̄)

sinh(η̄)
sin [βk ln(τ/τ

′)] k dk,

∂u⊥
∂η̄

= − ξ

4π2τ

∫ ∞

−∞

sin(kσ2)

kσ2e−σ2/2

e−
σ2k2

2

βk

[
k cos(kη̄)

sinh(η̄)
− sin(kη̄) cosh(η̄)

sinh2(η̄)

]
sin [βk ln(τ/τ

′)] k dk,

uη
1(τ, η, θ, φ) =

u⊥,η

4
=

1

4 sinh η̄

(
∂u⊥
∂η̄

)
[cosh η′ sinh η − sinh η′ cosh η(cos θ′ cos θ + sin θ′ sin θ cos(φ− φ′))],

uθ
1(τ, η, θ, φ) =

u⊥,θ

4 sinh2 η
=

1

4 sinh η̄

(
∂u⊥
∂η̄

)
sinh η′

sinh η
(cos θ′ sin θ − sin θ′ cos θ cos(φ− φ′)),

uφ
1 (τ, η, θ, φ) =

u⊥,φ

4 sinh2 η sin2 θ
=

1

4 sinh η̄

(
∂u⊥
∂η̄

)
sinh η′ sin θ′

sinh η sin θ
sin(φ− φ′). (71)

Finally one can get the sound wave solution from the delta-function initial perturbation by taking the limit σ → 0,

i.e. p1(τ
′) = p0(τ

′) · δ(3)(η̄) = p0(τ
′) · δ(η̄)

2πη̄2 . This amounts to reduce the factor sin(kσ2)

kσ2e−σ2/2
e−

σ2k2

2 in Eq.(70) to be one,

from which we obtain:

p1(τ, η, θ, φ)

p0
=

ξ

4π2

∫ ∞

−∞

sin(kη̄)

sinh(η̄)
cos[βk ln(τ/τ

′)] k dk. (72)

V. NUMERICAL RESULTS AND DISCUSSIONS

In the previous two sections, we have found the analytic solutions describing how a general form of perturbation,
once introduced, propagates on top of the Bjorken flow as well as the Hubble flow. As already discussed in the
Introduction, there can be many applications of these solutions in order to understand the manifestations of various
types of fluctuations through observables like rapidity and azimuthal angle correlations in high energy heavy-ion (as
well as pp or pA/dA) collisions. As also mentioned, the primary purpose of the present paper is to find these solutions,
while a detailed investigation of various phenomenological applications is underway and will be reported elsewhere.
In this Section, we show only a number of simple examples. We will focus on the rapidity distribution of pressure
fluctuations δ(τ, η) from a static Guassian initial perturbation occurring at an earlier time τ ′ < τ . Note that for a

conformal equation of state p = c2sǫ = ǫ/3, one has δ ≡ p1

p0
= ∆p

p = ∆ǫ
ǫ = 4

3
∆s
s . We also study the resulting equal-time

rapidity correlation:

C(∆η) =

∫
dη1δ(τ, η1)δ(τ, η1 +∆η) , (73)

In the following we study and compare these quantities for different types of waves on top of the two types of
background flows. For later convenience, we introduce the two types of rapidity variables, the radial rapidity and the
longitudinal rapidity, for which we use the notation ηr = 1/2 ln(t+r)/(t−r) and ηz = 1/2 ln(t+z)/(t−z) respectively.

A. Longitudinal wave on top of Bjorken flow

The first case we consider is the longitudinal sound wave (i.e. homogeneous on transverse plane) on top of the
Bjorken flow. The solution for δ(τ, η) resulting from a static Gaussian perturbation at time τ ′ is given in Eq.(30), and
the rapidity correlation C(∆η) is given in Eq.(E1) of the Appendix E. To visualize the patterns of the solution, we use
the following concrete numbers for plotting the solution: the center of the perturbation at η0 = 0, the Gaussian width
σ = 0.2 and the perturbation amplitude parameter ξ = 0.1

√
2πσ. Note that all these parameters introduced in this

paper are dimensionless. In Fig.1, we show the wave amplitude δ(η) = p1/p0 (left) and the resulting pressure-pressure
rapidity correlation C(∆η) (right) for an evolution time τ/τ ′ = 1 (blue), 2, (red), 3 (orange), 5 (magenta), 10 (purple)
and 20 (black). One can clearly see the propagation of the wave in rapidity from the original perturbation center
toward the two side of large rapidity. While the amplitude of the two peaks is reduced with propagation time, the
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platform in between the two peaks formed at longer time becomes almost a constant. As a result, the correlation
shows a clear pattern. There is always a short-range correlation peaked at zero separation, though its magnitude
and width become smaller and smaller with time. With longer propagation time, the correlation becomes more and
more stretched in rapidity separation ∆η. The long rapidity structure is associated with and bounded by the “sound
horizon” [37], the maximal distance that a sound wave could travel in a finite time. Note that these features for the
longitudinal wave on top of Bjorken flow were previously already studied in [33].

FIG. 1: (Color online) The longitudinal sound wave amplitude δ = p1/p0 (a) and the resulting pressure-pressure rapidity
correlation (b) for an evolution time τ/τ ′ = 1 (blue), 2, (red), 3 (orange), 5 (magenta), 10 (purple) and 20 (black).

FIG. 2: (Color online) The longitudinal sound wave amplitude δ = p1/p0 (a) and the resulting pressure-pressure rapidity
correlation (b) at a fixed freeze-out time τf = 10 fm/c, arising from fluctuations that occur at time τ ′ = 0.5 (blue), 1 (red), 2
(magenta) and 5 (black) fm/c.

In view of application to heavy ion collisions, it would be interesting to see the patterns of the sound wave at a
fixed final time τf (i.e. the freeze-out time) from perturbations that occur at any time before. In Fig.2, we show the
wave amplitude δ(η) = p1/p0 (left) and the resulting pressure-pressure rapidity correlation C(∆η) (right) observed
at τf = 10 fm/c, arising from fluctuations that occur at time τ ′ = 0.5 (blue), 1 (red), 2 (magenta) and 5 (black)
fm/c. Again, one sees that the perturbation from early time travels over large rapidity interval and contributes to
long-range rapidity correlation. In realistic case, the final correlation should be a time-integrated result by convoluting
the fluctuation spectrum at all different times with their respective waves propagating to the freeze-out time. Clearly
this contributes to the observed rapidity correlations. How important this component is (in view of the measured
pattern) would require a more quantitative study.
Lastly we study how sensitive these patterns are to the width parameter of the Gaussian perturbation. In Fig.3, we

show sound wave amplitude δ = p1/p0 (left) and the resulting pressure-pressure rapidity correlation (right) at a fixed
freeze-out time τf = 10 fm/c, arising from fluctuations that occur at time τ ′ = 0.5 (solid curves) and 5 (dashed curves)
fm/c with width σ = 0.1 (blue), 0.2 (red) and 0.4 (black). The results clearly show that the rapidity distribution
and correlation patterns are sensitive to the width for short propagation time, but become largely similar after long
propagation time despite different width parameters.
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FIG. 3: (Color online) The longitudinal sound wave amplitude δ = p1/p0 (left) and the resulting pressure-pressure rapidity
correlation (right) at a fixed freeze-out time τf = 10 fm/c, arising from fluctuations that occur at time τ ′ = 0.5 (solid curves)
and 5 (dashed curves) fm/c with Guassian fluctuation width σ = 0.1 (blue), 0.2 (red) and 0.4 (black).

B. 3D wave on top of Bjorken flow

We now consider the 3D sound wave on top of the Bjorken flow. While the background flow is the same as the
previous case, now the perturbation induces the sound wave that propagates both in longitudinal and transverse
directions. This should be a more realistic case for application to heavy ion collisions, and is not previously studied.
The solution for δ = p1/p0 resulting from a static (3D) Gaussian perturbation at time τ ′ is given in Eq.(39,41,50). For
comparison with the previous case, here we also focus on the wave amplitude δ and the resulting pressure-pressure
rapidity correlation C(∆η), and see how the wave propagation in transverse plane may affect the longitudinal patterns.

FIG. 4: (Color online) The sound wave amplitude δ = p1/p0 at fixed transverse distance ρ and at evolution time τ/τ ′ = 2
(red), 3 (orange), 5 (magenta) and 10 (purple).
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FIG. 5: (Color online) The sound wave amplitude δ = p1/p0 at different transverse distance ρ (measured in unit of the transverse
wave-front position ρf = cs(τ − τ ′)) at evolution time τ/τ ′ = 2 (red), 3 (orange), 5 (magenta) and 10 (purple).

FIG. 6: (Color online) The pressure-pressure rapidity correlation (after integration over transverse coordinates) at evolution
time τ/τ ′ = 2 (red), 3 (orange), 5 (magenta) and 10 (purple).

We consider the static (3D) Gaussian perturbation located at center η0 = ρ′ = 0, with width parameter σ = 0.1 and

amplitude parameter ξ = 0.1
(
2πσ2

)3/2
. Because of the cylindric symmetry of the system and the initial perturbation,

there will be no azimuthal structure in all the quantities. In Figs.4 the wave amplitude at evolution time τ/τ ′ = 2
(red), 3 (orange), 5 (magenta) and 10 (purple) are shown for various transverse positions. One can see the decrease
of wave amplitude and its propagation along rapidity direction with time at fixed ρ. It is also instructive to plot
the wave amplitude for transverse radius ρ measured in unit of the time-dependent transverse wave-front position
ρf = cs(τ − τ ′), as shown in Fig.5. For each fixed ρ relative to ρf , one sees the wave propagation in longitudinal
direction with two fronts toward large rapidity. The longitudinal propagation is faster for smaller radius. This could be
simply understood as follows: the wave modes propagating to larger transverse radius have larger transverse velocity
component while smaller longitudinal velocity component. There is a major difference between the 3D sound wave
amplitude patterns here and the longitudinal sound wave patterns in the previous Subsection. In the present 3D wave
case following the propagating crests there are wave trough regions of negative pressure perturbation δ < 0, which are
absent in the pure longitudinal wave case. This could be understood as a stronger “push-out” in the 3D wave case
creating “pressure void” behind the wavefronts. We will further discuss this behavior in the next Subsection together
with the Hubble case.
Finally we examine the pressure-pressure correlation in this case. The correlation now depends on transverse radius

ρ. Since our focus is the rapidity correlation and for convenience in comparison with the longitudinal wave case, we
integrate over ρ to obtain the pressure-pressure rapidity correlation. The detailed calculation is shown in Appendix
E 2 and the results are plotted in Fig.6 at evolution time τ/τ ′ = 2 (red), 3 (orange), 5 (magenta) and 10 (purple).
We see that the rapid correlation has a similar pattern to the longitudinal wave case: a peak at very small rapidity



18

separation; a smaller peak at large rapidity separation arising from the “sound horizon”; and a relatively flat regime
in between. The correlation has its strength decrease while extends to large rapidity separation with increasing time
for wave propagation.

C. 3D wave on top of Hubble flow

Finally we study the 3D sound wave on top of the Hubble flow. By comparison with the previous case for the
3D wave on top of Bjorken flow, this will allow us to see how a different background flow, in particular how the
background transverse expansion, will affect the sound wave propagation from the same perturbation and how the
resulting rapidity correlation patterns may change. We emphasize that this may also be interesting for the recent
intensive discussions on possible hydrodynamic explosion in high multiplicity pp and pA/dA collisions, since these
small colliding systems have a small transverse size (with high pressure gradients) and thus the transverse flow may
build up more quickly than in the AA case. The solution for δ resulting from a static (3D) Gaussian perturbation at
time τ ′ is given in Eq.(70).

To be concrete we use the following parameters for the Guassian perturbation: η′ = 0, σ = 0.1, and ξ = 0.1
(
2πσ2

)3/2
. Fig.7 shows the time evolution of the sound wave amplitude in radial rapidity ηr. Note that ηr is not the observable
rapidity, a meaningful correlation is that of the pseudo rapidity, which can be obtain from the angle θ. As the
sound wave is spherically symmetric here, there is no angle dependence of the pressure. Consequently, the pressure
correlation should be a constant of pseudo rapidity.

FIG. 7: (Color online) The wave amplitude δ at evolution time τ/τ ′ = 1 (blue), 2 (red), 3 (orange), 5 (magenta), 10 (purple)
and 20 (black).
For better comparison with the previous cases from Bjorken flow, we focus on the longitudinal rapidity distribution of

the wave amplitude δ(ηz) and the resulting pressure-pressure rapidity correlation C(∆ηz). Here we make a projection
and recast the spatial coordinates in the solution to be (τr, ηz, ρ, φ): note the ηz , ρ, φ are the same as that in the
Bjorken case, while we still keep the time coordinate to be τr, which is most proper for the background Hubble flow
(e.g. with regard to the freeze-out condition). Details about the coordinate projection is given in Appendix E 3.
Figs.8, 9, and 10 show the evolution of the perturbation as well as the resulting pressure-pressure rapidity correlation
at different radial coordinate ρ. As the background is expanding in all directions, the transverse position of the wave-
front in this case should be defined as ρf = τr sinh[cs ln(τr/τ

′
r)] (see detailed derivation in the Appendix E 3). We can

see that the wave patterns at given ρ relative to the wave-front, are quite similar to the 3D sound waves on top of
Bjorken background in Fig.5. There is however one important difference: for the 3D wave on top of Bjorken flow, one
sees only one wave crest and one trough for each propagating direction; while for the 3D wave on top of Hubble flow,
one sees a much stronger oscillatory pattern with multiple crests and troughs along each propagating direction. As a
result of such difference, the rapidity correlation in the present Hubble case also develops an oscillating pattern with
positive and negative regions in rapidity while in the previous Bjorken case the correlation is always positive without
multiple oscillation in rapidity. Clearly, such difference arises from the different background flows in the two cases. A
plausible origin of the multiple oscillation pattern in the Hubble case could be the nontrivial interplay between the
wave propagation and the transverse expansion of the background flow.
Finally, as discussed above, we find that the 3D wave amplitude on top of both Bjorken and Hubble flow and

Hubble flow has a structure of a trough following the crest, which is quite different from the 1D longitudinal wave
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FIG. 8: (Color online) The sound wave amplitude δ = p1/p0 (a-c) and the resulting pressure-pressure rapidity correlation (d-f)
at fixed transverse distance ρ and at evolution time τr/τ

′

r = 2 (red), 3 (orange), 5 (magenta), 10 (purple) and 20 (black) fm/c.
ρf = τr sinh[cs ln(τr/τ

′

r)] is the transverse wave-front at the corresponding time.

FIG. 9: (Color online) The sound wave amplitude δ = p1/p0 at fixed transverse distance ρ and at evolution time τr/τ
′

r = being
2 (red), 3 (orange), 5 (magenta), 10 (purple) and 20 (black) fm/c.
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FIG. 10: (Color online) The pressure-pressure rapidity correlation at fixed transverse distance ρ and at evolution time τr/τ
′

r =
2 (red), 3 (orange), 5 (magenta), 10 (purple) and 20 (black) fm/c.

FIG. 11: (Color online) The early time evolution of 3D sound wave amplitude δ = p1/p0 from initial Guassian perturbation
at the center of Bjorken flow (a), Hubble flow (b) and static background (c) at evolution time τ/τ ′ = 0 (red), 0.05 (pink), 0.1
(orange), 0.15 (magenta), 0.2 (purple), 0.3 (blue), 0.4 (gray), 0.5 (brown) and 0.7 (black).

in the Bjorken case. Here we demonstrate that the origin of such difference is due to different dimensions of wave
propagation, by showing that the same difference arises also for 1D and 3D waves on top of a static background
without any flow. In that case, a 1D Gaussian perturbation evolves as

δ(t, x) =
ξ

2(2π)1/2σ
[e−

(x−cst)2

2σ2 + e−
(x+cst)2

2σ2 ], (74)

while a 3D Gaussian one evolves according to

δ(t, r) =
ξ

2(2π)3/2σ3
[
r − cst

r
e−

(r−cst)2

2σ2 +
r + cst

r
e−

(r+cst)2

2σ2 ]. (75)

The former is always positive, while the latter develops crest/trough structure. In fact when close to the center of both
the Bjorken and the Hubble expansion, the background flow is relatively weak, so the early evolution of perturbation in



21

these cases still keeps a similar patten as in the static background. Hence, we can examine and compare the very early
time evolution of perturbations in these cases. Fig.11 shows the perturbation evolution in these very early moments.
Clearly in all three cases, the sound waves show highly similar crest/trough patterns. One may thus conclude that
for the 3D waves in all three cases, the crest/trough patterns are generated early in the evolution near the original
perturbation center and subsequently propagating toward wide regions away from the center.

VI. SUMMARY

We have studied the evolution of fluctuations in relativistically expanding fluid in the framework of linearized
hydrodynamics. The complete and analytic solutions of sound waves on top of the Bjorken flow as well as the Hubble
flow backgrounds have been obtained. Regarding fluctuations as perturbations with respect to the background flow,
we showed the way to derive the propagation of a fluctuation in thermodynamic functions such as the pressure. For
the often considered Gaussian fluctuation, we obtained analytically the expression of its space-time evolution and saw
clearly its propagation on top of the background. We also numerically calculated the rapidity, transverse distance
and time dependence of the Gaussian fluctuation and the pressure-pressure correlation which is closely related to the
observable correlations in heavy ion collisions. A dedicated study based on the present work and focusing on the
phenomenological applications in heavy ion collisions is in progress and will be reported in a future publication.
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Appendix A: Coordinate Transformation for Hubble Flow

In this Appendix we give the details about the coordinate transformation for the 3D Hubble flow and the corre-
sponding hydrodynamic equations. From the inverse coordinate transformation from (τ, η, θ, φ) to (t, x, y, z)

t = τ cosh η, z = τ sinh η cos θ,

x = τ sinh η sin θ cosφ, y = τ sinh η sin θ sinφ, (A1)

the metric tensor can be written as
gµν = Diag(1,−τ2,−τ2 sinh2 η,−τ2 sinh2 η sin2 θ),

gµν = Diag
(
1,− 1

τ2
,− 1

τ2 sinh2 η
,− 1

τ2 sinh2 η sin2 θ

)
, (A2)

and the four-velocity (uτ , uη, uθ, uφ) is related to the three-velocity (vx, vy, vz) through

uτ = γ(−vx sinh η sin θ cosφ− vy sinh η sin θ sinφ− vz sinh η cos θ + cosh η),

uη =
γ

τ
(vx cosh η sin θ cosφ+ vy cosh η sin θ sinφ+ vz cosh η cos θ − sinh η),

uθ =
γ

τ sinh η
(vx cos θ cosφ+ vy cos θ sinφ− vz sin θ),

uφ =
γ

τ sinh η sin θ
(vy cosφ− vx sinφ). (A3)

From the Affine connections with non-vanishing terms

Γτ
ηη = τ, Γτ

θθ = τ sinh2 η, Γτ
φφ = τ sinh2 η sin2 θ,

Γη
θθ = − sinh η cosh η, Γη

φφ = − sinh η cosh η sin2 θ,

Γθ
φφ = − sin θ cos θ, Γφ

θφ = Γφ
φθ =

cos θ

sin θ
,

Γη
τη = Γη

ητ = Γθ
τθ = Γθ

θτ = Γφ
τφ = Γφ

φτ =
1

τ
,

Γθ
ηθ = Γθ

θη = Γφ
ηφ = Γφ

φη =
cosh η

sinh η
(A4)
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and the covariant derivatives

Tατ
;τ = Tατ

,τ + δαη Γ
η
ητT

τη + δαθ Γ
θ
θτT

τθ + δαφΓ
φ
φτT

τφ,

Tαη
;η = Tαη

,η + Γη
τηT

ατ + δατ Γ
τ
ηηT

ηη + δαη Γ
η
ητT

τη + δαθ Γ
θ
θηT

ηθ + δαφΓ
φ
φηT

ηφ,

Tαθ
;θ = Tαθ

,θ + Γθ
τθT

ατ + Γθ
ηθT

αη + δατ Γ
τ
θθT

θθ + δαη Γ
η
θθT

θθ + δαφΓ
φ
φθT

θφ

+δαθ Γ
θ
τθT

θτ + δαθ Γ
θ
ηθT

θη,

Tαφ
;φ = Tαφ

,φ + Γφ
τφT

ατ + Γφ
ηφT

αη + Γφ
θφT

αθ + δατ Γ
τ
φφT

φφ + δαη Γ
η
φφT

φφ

+δαθ Γ
θ
φφT

φφ + δαφΓ
φ
τφT

φτ + δαφΓ
φ
ηφT

φη + δαφΓ
φ
θφT

φθ, (A5)

the full hydrodynamic equations in the frame (τ, η, θ, φ) are expressed as

T τλ
;λ = T ττ

,τ + T τη
,η + T τθ

,θ + T τφ
,φ + Γη

τηT
ττ + Γτ

ηηT
ηη + Γθ

τθT
ττ + Γθ

ηθT
τη

+Γτ
θθT

θθ + Γφ
τφT

ττ + Γφ
ηφT

τη + Γφ
θφT

τθ + Γτ
φφT

φφ,

T ηλ
;λ = T ητ

,τ + T ηη
,η + T ηθ

,θ + T ηφ
,φ + 3Γη

ητT
τη + Γθ

τθT
ητ + Γθ

ηθT
ηη + Γη

θθT
θθ

+Γφ
τφT

ητ + Γφ
ηφT

ηη + Γφ
θφT

ηθ + Γη
φφT

φφ,

T θλ
;λ = T θτ

,τ + T θη
,η + T θθ

,θ + T θφ
,φ + 3Γθ

θτT
τθ + Γη

τηT
θτ + 3Γθ

θηT
ηθ + Γφ

τφT
θτ

+Γφ
ηφT

θη + Γφ
θφT

θθ + Γθ
φφT

φφ,

T φλ
;λ = T φτ

,τ + T φη
,η + T φθ

,θ + T φφ
,φ + 3Γφ

φτT
τφ + Γη

τηT
φτ + 3Γφ

φηT
ηφ + Γθ

τθT
φτ

+Γθ
ηθT

φη + 3Γφ
φθT

θφ. (A6)

Appendix B: Sound Wave on Top of Hubble Flow

In this Appendix we give the detailed steps for obtaining the sound wave solutions on top of Hubble flow. The
sound wave upon the Hubble-expanding system satisfies the evolution equation

3τ2p1,ττ + 27τp1,τ + 48p1 = p1,ηη + 2
cosh η

sinh η
p1,η +

1

sinh2 η

(
p1,θθ +

cos θ

sin θ
p1,θ +

1

sin2 θ
p1,φφ

)
. (B1)

Expanding the pressure p1 in terms of the spherical harmonic functions,

p1(τ, η, θ, φ) =
∑

l,m

pl,m(τ, η)Y m
l (θ, φ),

3τ2
∂2pl,m
∂τ2

+ 27τ
∂pl,m
∂τ

+ 48pl,m =
∂2pl,m
∂η2

+ 2
cosh η

sinh η

∂pl,m
∂η

− l(l+ 1)

sinh2 η
pl,m (B2)

and then separating the τ and η dependence pl,m(τ, η) = Tl,m(τ)Hl,m(η) which leads to two independent equations

3τ2T ′′
l,m + 27τT ′

l,m + 48Tl,m = (k2 − 1)Tl,m,

H ′′
l,m + 2

coshη

sinh η
H ′

l,m − l(l + 1)

sinh2 η
Hl,m = (k2 − 1)Hl,m (B3)

with the solution

Tl,m = τ±i

√

1−k2

3 −4,

Hl,m = cl,m sinhl η 2F1(
l + 1 + k

2
,
l + 1− k

2
,
3

2
+ l,− sinh2 η), (B4)

we have the pressure fluctuation

p1 = p0
∑

l,m

∫ 1

−1

[
pl,m(k)e±i

√

1−k2

3 ln(τ/τ ′)Y m
l (θ, φ)

× sinhl η 2F1(
l + 1 + k

2
,
l + 1− k

2
,
3

2
+ l,− sinh2 η)

]
dk, (B5)
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where k can be either a real number or a pure imaginary number. For the latter, we can do the transformation k → ik
and obtain

p1 = p0
∑

l,m

∫ ∞

−∞

[
pl,m(k)e±i

√

1+k2

3 ln(τ/τ ′)Y m
l (θ, φ)

× sinhl η 2F1(
l + 1 + ik

2
,
l + 1− ik

2
,
3

2
+ l,− sinh2 η)

]
dk. (B6)

From the boundary condition sinh η → ∞ in the limit of r → ∞, p1 sinh η should not be larger than O(η0) at
η → ∞. Considering the asymptotic behavior of the hypergeometric functions,

sinhl η 2F1(
l + 1 + k

2
,
l + 1− k

2
,
3

2
+ l,− sinh2 η) ∼ e(|k|−1)η,

sinhl η 2F1(
l + 1 + ik

2
,
l + 1− ik

2
,
3

2
+ l,− sinh2 η) ∼ e−ηeikη , (B7)

the proper pressure fluctuation which satisfies the boundary condition should take the form

p1 = p0
∑

l,m

∫ ∞

−∞

[
pl,m(k)e±i

√

1+k2

3 ln(τ/τ ′)Y m
l (θ, φ)

× sinhl η 2F1(
l + 1 + ik

2
,
l + 1− ik

2
,
3

2
+ l,− sinh2 η)

]
dk. (B8)

Taking into account the symmetric behavior of the hypergeometric functions with respect to the parameters a and
b, 2F1(a, b; c;x) = 2F1(b, a; c;x), we find

[
sinhl η 2F1(

l + 1 + ik

2
,
l+ 1− ik

2
,
3

2
+ l,− sinh2 η)

]∗

=
[
sinhl η 2F1(

l + 1− ik

2
,
l+ 1 + ik

2
,
3

2
+ l,− sinh2 η)

]

=
[
sinhl η 2F1(

l + 1 + ik

2
,
l+ 1− ik

2
,
3

2
+ l,− sinh2 η)

]
(B9)

which means that p1 is a real function of η.

Appendix C: Normalization of the sound wave on top of Hubble flow

In this Appendix we normalize the sound wave showed in Section IVB. From the asymptotic expression of the
radial part of the sound wave at η → ∞,

R̃l(k, η) ≡ sinhl η 2F1(
l + 1 + ik

2
,
l + 1− ik

2
,
3

2
+ l,− sinh2 η)

→
√
π2lΓ(l + 3/2)

sinh(πk)

[ 1

Γ(l + 1 + ik)Γ(1− ik)
+

1

Γ(l + 1− ik)Γ(1 + ik)

] sin(kη)
sinh η

−
√
π2lΓ(l + 3/2)

sinh(πk)

[ i

Γ(l + 1 + ik)Γ(1− ik)
− i

Γ(l + 1− ik)Γ(1 + ik)

]cos(kη)
sinh η

, (C1)

its normalization integration derived from the differential equations can be asymptotically expressed as

∫ ∞

0

sinh2 ηR̃l(k
′, η)R̃l(k, η) dη =

sinh2 η(R̃′(k, η)R̃(k′, η)− R̃(k, η)R̃′(k′, η))|∞
k′2 − k2

→ 22l+1Γ(l + 3/2)2

Γ(l + 1 + ik)Γ(l + 1− ik)

1

k sinh(πk)

[
sin[(k′ − k)η]

(k′ − k)
+

sin[(k′ + k)η]

(k′ + k)

]

∞

=
22l+1Γ(l + 3/2)2

Γ(l + 1 + ik)Γ(l + 1− ik)

π

k sinh(πk)
[δ(k′ − k) + δ(k′ + k)]. (C2)
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From the relations between the Gegenbauer functions and the Gamma functions and associated Legendre functions,

2F1(
l + 1 + ik

2
,
l + 1− ik

2
, l+ 3/2,− sinh2 η) = 2F1(l + 1 + ik, l+ 1− ik, l+ 3/2,− sinh2(η/2))

= cosh−2l−1(η/2) 2F1(1/2 + ik, 1/2− ik, l+ 3/2,− sinh2(η/2))

= cosh−2l−1(η/2)
Γ(l + 3/2)

tanhl+1/2(η/2)
P

−l−1/2
ik−1/2 (cosh η)

=
Γ(l + 3/2)2l+1/2

sinhl+1/2 η
P

−l−1/2
ik−1/2 (cosh η), (C3)

the radial part can be written as

R̃l(k, η) ≡ sinhl η 2F1(
l + 1 + ik

2
,
l + 1− ik

2
, l + 3/2,− sinh2 η)

=
Γ(l + 3/2)2l+1/2

sinh1/2 η
P

−l−1/2
ik−1/2 (cosh η)

=
Γ(2l+ 2)Γ(ik − l) sinhl η

Γ(ik + l+ 1)
C

(l+1)
ik−l−1(cosh η). (C4)

For convenient, we modify the radial part with a factor,

Rl(k, η) ≡
√

Γ(l + 1 + ik)Γ(l+ 1− ik)

π22l+2Γ(l + 3/2)2
R̃l(k, sinh η)

=

√
Γ(l + 1 + ik)Γ(l+ 1− ik)

π22l+2Γ(l + 3/2)2
sinhl η 2F1(

l + 1 + ik

2
,
l + 1− ik

2
, l+ 3/2,− sinh2 η)

=
Γ(l + 1)√

Γ(l + 1− ik)Γ(l+ 1 + ik)

2l

sinh(πk)
sinhl ηC

(l+1)
ik−l−1(cosh η) (C5)

which satisfies the normalization condition
∫ ∞

0

sinh2 ηRl(k
′, η)Rl(k, η) dη =

1

k sinh(πk)

δ(k′ − k) + δ(k′ + k)

2
. (C6)

Appendix D: Sum Rule

In this Appendix we use the relation between the associated Legendre functions and Gegenbauer functions to prove
the summation identity

R0(k, η̄)R0(k, 0)|Y 0
0 |2 =

∑

l,m

Rl(k, η
′)Rl(k, η)Y

m
l (θ, φ)Y m

l (θ′, φ′)∗. (D1)

From the addition theorem of the spherical harmonic function

l∑

m=−l

Y m
l (θ, φ)Y m

l (θ′, φ′)∗ =

√
2l+ 1

4π
Y 0
l (ξ, 0) =

2l + 1

4π
Pl(cos ξ) (D2)

with

cos ξ = cos θ′ cos θ + sin θ′ sin θ cos(φ− φ′), (D3)

the identity becomes

R0(k, η̄) =

∞∑

l=0

(2l+ 1)Rl(k, η
′)Rl(k, η)Pl(cos ξ) (D4)
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with

cosh η̄ = cosh η′ cosh η − sinh η′ sinh η cos ξ. (D5)

Representing the radial and angel parts in terms of the Gegenbauer functions,

Pl(cos ξ) = C
(1/2)
l (cos ξ),

Rl(k, η) =
Γ(l + 1)√

Γ(l + 1− ik)Γ(l+ 1+ ik)

2l

sinh(πk)
sinhl ηC

(l+1)
ik−l−1(cosh η), (D6)

the identity further becomes

C
(1)
ik−1(cosh η̄) =

∞∑

l=0

(2l+ 1)(−4)l
Γ(l + 1)2Γ(ik − l)

Γ(l + 1 + ik)
sinhl ηC

(l+1)
ik−l−1(cosh η) sinh

l η′C(l+1)
ik−l−1(cosh η

′)C(1/2)
l (cos ξ)

=
∞∑

l=0

(−1)l
Γ(l + 1)Γ(ik − l)Γ(2l+ 2)Γ(1/2)

Γ(l + 1/2)Γ(l+ 1 + ik)
sinhl ηC

(l+1)
ik−l−1(cosh η) sinh

l η′C(l+1)
ik−l−1(cosh η

′)C(1/2)
l (cos ξ).(D7)

This is exactly the addition theorem of Gegenbauer functions [62].

Appendix E: Pressure-Pressure Correlation

1. Longitudinal Bjorken Flow

For Guassian perturbation on top of longitudinal Bjorken flow, the correlation can be simplified as

Cδδ(τf ,∆η) ≡
∫ ∞

−∞
dξ δ(τf , η − ξ)δ(τf , η +∆η − ξ)

=
( ξ

2π

)2(τf
τ ′

)−2/3
∫ ∞

−∞
dk

∫ ∞

−∞
dk′e−

σ2k2

2 e−
σ2k′2

2

× cos[

√
k2 − 1/3

3
ln(τf/τ

′)] cos[

√
k′2 − 1/3

3
ln(τf/τ

′)]

∫ ∞

−∞
dξe−i(k+k′)ξeik

′∆η

= 2π
( ξ

2π

)2(τf
τ ′

)−2/3
∫ ∞

−∞
dke−σ2k2

cos2[

√
k2 − 1/3

3
ln(τf/τ

′)] cos(k∆η)

=
ξ2

2π

(τf
τ ′

)−2/3
∫ ∞

−∞
dke−σ2k2

cos2[

√
k2 − 1/3

3
ln(τf/τ

′)] cos(k∆η). (E1)

2. General Bjorken Flow

For perturbation on top of general Bjorken flow, the integration over transverse distance ρ can be done analytically.
From the definition

Ω(ω) ≡
∫ ∞

0

J0(ωρ)ρdρ = lim
a→0

∫ ∞

0

e−a2ρ2/2J0(ωρ)ρdρ = lim
a→0

1

a2
e−

ω2

2a2 (E2)

and its property for any function f(ω) with convergency at ω = 0,
∫ ∞

0

Ω(ω)ωf(ω)dω = lim
a→0

1

a2

∫ ∞

0

ωf(ω)e−
ω2

2a2 dω

=

∞∑

n=0

f (n)(0)

n!
lim
a→0

1

a2

∫ ∞

0

ωn+1e−
ω2

2a2 dω

=
∞∑

n=0

f (n)(0)

n!
lim
a→0

(2a)n/2Γ(1 + n/2)

= f(0), (E3)
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we have

δ̄(τf , η) =

∫∫∫∫
eikηJ0(ωρ)W (ω, k, τf )ρdρdωdkdφ

= 2π

∫ ∞

−∞
eikη

W

ω
(ω → 0, k, τf)dk (E4)

and

W1(τ) =
1− c2s − 2αk

2Γ(1− αk)

( c

2

)−αk
( τ

τ ′

)− 1−c2s
2 −αk

,

W2(τ) =
1− c2s + 2αk

2Γ(1 + αk)

( c

2

)αk
( τ

τ ′

)− 1−c2s
2 +αk

,

W3(τ) = (ωτ)1+c2s (E5)

at ω → 0 and in turn

W

ω
(ω → 0, k, τf) =

ξτ ′2

8π2
e−

σ2k2

2

(τf
τ ′

)−1/3

×
[(

1− 1√
1− 3k2

)(τf
τ ′

)−
√
1−3k2/3

+

(
1 +

1√
1− 3k2

)(τf
τ ′

)√
1−3k2/3

]

≡ ξτ ′2

8π2
e−

σ2k2

2

(τf
τ ′

)−1/3

× F (k,
τf
τ ′

). (E6)

Consequently, we find the correlation with only one-dimensional integration,

Cδδ(τf ,∆η) ≡
∫ ∞

−∞
dξ δ̄(τf , η − ξ)δ̄(τf , η +∆η − ξ)

=
(ξτ ′2

4π

)2(τf
τ ′

)−2/3
∫ ∞

−∞
dk

∫ ∞

−∞
dk′e−

σ2k2

2 e−
σ2k′2

2 K(k,
τf
τ ′

)K(k′,
τf
τ ′

)

∫ ∞

−∞
dξe−i(k+k′)ξeik

′∆η

= 2π
(ξτ ′2

4π

)2(τf
τ ′

)−2/3
∫ ∞

−∞
dke−σ2k2

F 2(k,
τf
τ ′

) cos(k∆η). (E7)

3. Hubble Flow

Making the transformation from the frame (τr, ηr, θ, φ) to the frame (τr , ηz, ρ, φ) leads to the projection

sinh2 ηr → sinh2 ηz +
ρ2

τ2r
cosh2 ηz ,

sin2 θ → ρ2

τ2r sinh2 ηz + ρ2 cosh2 ηz
, (E8)

and the evolution of the central Gaussian perturbation is expressed as

δ(τr, ηz , ρ, φ) =
ξ

2π2

∫ ∞

−∞

sin(kσ2)

kσ2e−σ2/2
e−

σ2k2

2
1√

τ2r tanh2 ηz + ρ2
cos[βk ln(τr/τ

′)]
coshik−1 ηz

τ ik−1
r

×
(
√
τ2r + ρ2 +

√
τ2r tanh2 ηz + ρ2)ik − (

√
τ2r + ρ2 −

√
τ2r tanh2 ηz + ρ2)ik

2i
k dk. (E9)

The position of the wave-front can be found from the dispersion relation,

δη

δτ
≈ cs

τ
,

ηf = cs ln(τr/τ
′
r),

ρf = τr sinh ηf = τr
(τr/τ

′
r)

cs − (τr/τ
′
r)

−cs

2
. (E10)
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4. Pressure-Pressure Correlation in General

For a given background flow there will be multiple sound wave solutions in general, and a given initial perturbation
will trigger a certain superposition of these solutions which subsequently propagate independently. A particularly
important case is the solution from an initial condition of delta-function perturbation ∼ δ(t− t′)δ(3)(~r−~r′), which can
be denoted as the “Green’s function” G(t, ~r; t′, ~r′). Suppose space-time dependent perturbations f(t′, ~r′) are present
for all time t′ < t, then at time t, the sound solution (in terms of pressure) is then

p1(t, ~r) =

∫

t′<t,~r′
G(t, ~r; t′, ~r′) f(t′, ~r′), (E11)

the equal time correlations (on average) at given time t is then given by

〈p1(t, ~r1) p1(t, ~r2)〉 =
∫

t′<t,~r′

∫

t′′<t,~r′′
G(t, ~r1; t

′, ~r′)G(t, ~r2; t
′′, ~r′′) 〈f(t′, ~r′) f(t′′, ~r′′)〉. (E12)

If one is considering sound perturbation from only initial fluctuations f0(~r) at time t0, then the above correlations
are reduced to

〈p1(t, ~r1) p1(t, ~r2)〉 =
∫

~r′

∫

~r′′
G(t, ~r1; t0, ~r

′)G(t, ~r2; t0, ~r
′′) 〈f0(~r′) f0(~r′′)〉. (E13)

If the initial fluctuations at different space points are uncorrelated, 〈f0(~r′) f0(~r′′)〉 → F (~r′)δ(3)(~r′ − ~r′′), we have

〈p1(t, ~r1) p1(t, ~r2)〉 =
∫

~r′
G(t, ~r1; t0, ~r

′)G(t, ~r2; t0, ~r
′)F (~r′). (E14)

Alternatively for hydrodynamic fluctuations that occur stochastically and locally in space-time throughout the course
of background hydrodynamic evolution, 〈f(t′, ~r′) f(t′′, ~r′′)〉 → F (t′, ~r′)δ(t′ − t′′)δ(3)(~r′ − ~r′′), one obtains

〈p1(t, ~r1) p1(t, ~r2)〉 =
∫

t′<t,~r′
G(t, ~r1; t

′, ~r′)G(t, ~r2; t
′, ~r′)F (t′, ~r′) . (E15)

The above formulation will be very useful for the phenomenological application of the found sound wave solutions,
and for completeness we include this discussion here.
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