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1CSSM and ARC Centre of Excellence for Particle Physics at the Tera-scale,
School of Chemistry and Physics, University of Adelaide, Adelaide SA 5005, Australia

2Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

The lightest baryon octet is studied within a covariant and confining Nambu–Jona-Lasinio model.
By solving the Poincaré covariant Faddeev equations – including scalar and axialvector diquarks –
we determine the baryon octet masses and axial charges for strangeness conserving transitions. For
the axial charges the degree of violation of SU(3) flavour symmetry, arising because of the strange
spectator quark(s), is found to be no more than 10%.
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I. INTRODUCTION

In the quest to fully understand Quantum Chromody-
namics (QCD) it is not sufficient to study baryons whose
valence quark content consists only of the light u and
d quarks. A solid understanding of all members of the
baryon octet – that is, the nucleon, Λ, Σ and Ξ multiplets
– remains a critical step. Early work on their structure cen-
tered on the constituent quark model [1, 2] and the MIT
bag model [3], later supplemented by chiral corrections as-
sociated with the cloud of virtual pions and kaons that are
important components of a baryon wave function [4–12].
Once their basic properties, such as masses, charge radii,
magnetic moments and axial charges had been calculated,
attention naturally turned to more complex properties,
such as their parton distribution functions [13, 14].

The empirical evidence concerning the structure of the
hyperons is naturally far more limited than for nucle-
ons. While there exists fairly good data for octet baryon
masses, magnetic moments and axial charges [15], little
or nothing is known about, e.g., their electromagnetic or
axial form factors as a function of momentum transfer.
Finding ways to explore these properties experimentally
would be very valuable. On the other hand, over the last
couple of decades lattice QCD has made steady progress
in the calculation of octet baryon masses [16–19], includ-
ing determinations of their isospin mass splittings [20] and
certain electroweak matrix elements [21]. These studies
have been complemented by a judicious use of chiral ef-
fective field theory in order to extrapolate to the physical
quark masses. Thus, we now have quite accurate deter-
minations of the hyperon electric [22] and magnetic [23]
form factors up to 1.4 GeV2, as well as low moments of
their parton distribution functions [24]. It has even been
possible recently to shed some light on the proton spin
puzzle [25, 26] by calculating the spin fractions carried
by quarks across the octet [27].

On general grounds one would prefer to have models of
octet baryon properties that are covariant and respect the
symmetries of QCD. The former is especially important
if one wants to investigate parton distribution functions
and form factors, at even moderate momentum transfer.

The hope in building more sophisticated models is that
through comparison with empirical data and lattice QCD
studies, one may develop a deeper understanding of how
QCD works in the non-perturbative regime. For exam-
ple, exploring issues such as the importance and role of
diquark correlations and chiral corrections [28], as well
as the transition from non-perturbative to perturbative
QCD [29].

In this work we investigate the masses and strangeness
conserving (∆S = 0) axial charges of the octet baryons
within the framework of the covariant model of Nambu
and Jona-Lasinio (NJL) [30–34], where confinement is
simulated by employing proper-time regularization [35–
37]. Octet baryons are described by a Poincaré covariant
Faddeev equation, where scalar and axialvector diquarks
correlations play a critical role. Flavour breaking effects,
introduced by a dressed strange quark that turns out
to be approximately 50% heavier that the dressed light
quarks, will also be studied.

The structure of the paper is as follows: Sect. II pro-
vides a brief introduction to the NJL model, including
a discussion of the Bethe-Salpeter equation for mesons
and diquarks. Sect. III introduces the Faddeev equation
for octet baryons, discussing the solution for the Poincaré
covariant Faddeev amplitude and octet masses. Finally,
in Sect. V, the formalism is used to determine the axial
charges associated with strangeness conserving beta de-
cays. Sect. VI summarises our findings and presents some
concluding remarks.

II. NAMBU–JONA-LASINIO MODEL

The NJL model was formulated as a theory of elemen-
tary fermions which encapsulated dynamical chiral sym-
metry breaking in a transparent manner [30, 31]. With
the advent of QCD, the NJL model was reformulated
with quarks as the fundamental degrees of freedom, such
that the symmetries of QCD are respected.1 In particu-

1 The SU(3) colour gauge symmetry of QCD is a global symmetry
of the NJL model.
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Figure 1. (Colour online) The NJL gap equation in the Hartree-
Fock approximation, where the thin line represents the ele-
mentary quark propagator, S−1

0q (k) = /k −mq + iε, and the
shaded circle represents the 4-fermion interaction.

lar the NJL model exhibits dynamical chiral symmetry
breaking, which, as implemented in this work, gives rise
to approximately 95% of the nucleon mass.

The complete three-flavour NJL Lagrangian in the q̄q
interaction channel – including only 4-fermion interactions
– has the form [34]

L = ψ̄
(
i/∂ − m̂

)
ψ

+ 1
2 Gπ

[
2
3

(
ψ̄ψ
)2

+
(
ψ̄ λψ

)2
− 2

3

(
ψ̄ γ5 ψ

)2 − (ψ̄ γ5 λψ
)2 ]

− 1
2 Gρ

[(
ψ̄ γµ λψ

)2
+
(
ψ̄ γµγ5 λψ

)2]
− 1

2 G0

(
ψ̄ γµ ψ

)2 − 1
2 G5

(
ψ̄ γµγ5 ψ

)2
, (1)

where λ represents the eight the Gell-Mann matrices
and m̂ = diag [mu, md, ms]. The NJL model does not
include gluons as explicit degrees of freedom, as such the
pointlike quark–quark interaction renders the NJL model
non-renormalizable. We regularize the NJL model using
the proper-time scheme, which mantains Lorentz and
gauge invariance, it also removes unphysical thresholds for
the decay of colour singlet bound states into their coloured
constituents, thereby simulating quark confinement [35–
37].

The dressed quark propagator in the NJL model is
obtained from the gap equation illustrated in Fig. 1. The
solution for a quark of flavour q = u, d, s has the form

S−1
q (k) = /k −Mq + iε, (2)

where, in the proper-time regularization scheme, the
dressed quark masses each satisfy

Mq = mq +
3

π2
Mq Gπ

∫ 1/Λ2
IR

1/Λ2
UV

dτ
e−τM

2
q

τ2
. (3)

In this three-flavour NJL model, defined by Eq. (1), the
gap equation does not introduce flavour mixing in the
quark propagator, this is in contrast to the two-flavour
case which in general has flavour mixing [34].

The quark-quark interaction needed for the two-body
interaction kernel in the Faddeev equation (to be de-
scribed shortly) can be obtained from Eq. (1) using Fierz
transformations. Keeping only scalar and axialvector di-
quark correlations, the NJL interaction Lagrangian in the

q
= +

q

Figure 2. (Colour online) Inhomogeneous Bethe-Salpeter equa-
tion for quark–quark (diquark) correlations.

qq channel reads

LqqI = Gs

[
ψ̄ γ5 C λa βA ψ̄

T
][
ψT C−1γ5 λa βA ψ

]
+Ga

[
ψ̄ γµ C λs βA ψ̄

T
][
ψT C−1γµ λs βA ψ

]
, (4)

where C = iγ2γ0 is the charge conjugation matrix and the
couplings Gs and Ga give the strength of the scalar and
axialvector qq interactions.2 The flavour matrices are la-
belled by λa = λ2, λ5, λ7 and λs = λ0, λ1, λ3, λ4, λ6, λ8,

where λ0 ≡
√

2
3 1. Thus, there are three types of scalar

and six types of axialvector diquarks. The color 3̄ matrices

are given by βA =
√

3
2 λA (A = 2, 5, 7) [38–40] and hence

the interaction terms in Eq. (4) are totally antisymmetric,
as demanded by the Pauli principle.

Quark-antiquark and quark-quark bound states are ob-
tained by solving the appropriate Bethe-Salpeter equation,
which is illustrated in Fig. 2 for diquarks. The reduced
t-matrices for scalar and axialvector diquarks, with quark
flavour content q1 and q2, take the form3

τ[q1q2](q) =
−4iGs

1 + 2Gs Π[q1q2](q2)
, (5)

τµν{q1q2}(q) =
−4iGa

1 + 2Ga Π{q1q2}(q
2)

×
[
gµν + 2Ga Π{q1q2}(q

2)
qµqν

q2

]
. (6)

The bubble diagrams are given by

Π[q1q2]

(
q2
)

=

6i

∫
d4k

(2π)4
Tr [γ5 Sq1(k) γ5 Sq2(k + q)] , (7)

Π{q1q2}(q
2)

(
gµν − qµqν

q2

)
=

6i

∫
d4k

(2π)4
Tr [γµ Sq1(k) γν Sq2(k + q)] , (8)

2 In principle the coupling in the q̄q Lagrangian of Eq. (1) are
formally related to the coupling appearing in the qq Lagrangian
of Eq. (4), as detailed in appendix A of Ref. [38]. However, to
increase the flexibility of our model, these form relations are not
retained and each coupling is separately fit to data, as explained
in Sect. IV.

3 Throughout this paper [q1q2] will indicate a quantity associated
with a scalar diquark and {q1q2} will indicate a quantity associ-
ated with an axialvector diquark.
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where the flavour and colour traces have been taken,
and the remaining trace is over Dirac indices only. The
masses of the various diquarks are given by the poles
in the corresponding t-matrix, e.g., the scalar diquarks
masses are given by the pole condition

1 + 2Gs Π[q1q2]

(
q2 = M2

[q1q2]

)
= 0. (9)

For the octet baryon calculations we approximate the
full diquark t-matrix by a contact + pole form [37], that
is

τ[q1q2](q)→ 4iGs −
i Z[q1q2]

q2 −M2
[q1q2] + i ε

, (10)

τµν{q1q2}(q)→

4iGa −
i Z{q1q2}

q2 −M2
{q1q2} + i ε

(
gµν − qµqν

M2
{q1q2}

)
, (11)

where the pole residues are given by

Z−1
[q1q2] = −1

2

∂

∂q2
Π[q1q2](q

2)
∣∣∣
q2=M2

[q1q2]

, (12)

Z−1
{q1q2} = −1

2

∂

∂q2
Π{q1q2}(q

2)
∣∣∣
q2=M2

{q1q2}

. (13)

III. FADDEEV EQUATIONS FOR OCTET
BARYONS

Octet baryons are constructed as solutions to a Poincaré
covariant Faddeev equation, which is illustrated in Fig. 3,
where the quark–diquark approximation used here has
been made explicit [41]. A tractable solution to the Fad-
deev equation is obtained by employing the static ap-
proximation [42] to the quark exchange kernel, where
the exchanged quark propagator becomes Sq(k)→ − 1

Mq
.

This approximation has been shown to yield excellent
results for nucleon form factors [28] and quark distribu-
tions [43–46]. The Faddeev equation for each octet baryon
then takes the form

ΓB(p, s) = ZB ΠB(p) ΓB(p, s), (14)

where B labels an octet baryon, ZB the corresponding
quark exchange kernel and ΠB(p) is a diagonal matrix
containing the various combinations of quark and diquark
propagator. Eq. (14) must be supplemented by a nor-
malization condition, such that the normalized Faddeev
vertex reads

ΓB(p, s) =
√
−ZB Γ0B(p, s), (15)

where Γ0B(p, s) is the unnormalized vertex and the nor-
malization condition that determines ZB will be discussed
shortly.

For equal light quark masses the nucleon, Σ and Ξ
Faddeev vertex functions contain one scalar and two types

p
=

p

Figure 3. Homogeneous Poincaré covariant Faddeev equation
whose solution gives the mass and vertex function for each
member of the baryon octet.

of axialvector diquark,4 with a Dirac structure of the form

Γb(p, s) =

Γq1[q1q2](p, s)

Γµq1{q1q2}(p, s)

Γµq2{q1q1}(p, s)

 , (16)

=
√
−Zb

 α1

α2
pµ

Mb
γ5 + α3 γ

µγ5

α4
pµ

Mb
γ5 + α5 γ

µγ5

ub(p, s), (17)

where b = [nucleon, Σ, Ξ] and Zb is the vertex normaliza-
tion. The Faddeev vertex function for the Λ baryon, with
equal u and d quark masses, contains two types of scalar
diquark and an axial-vector diquark and therefore reads

ΓΛ(p, s) =
√
−ZΛ

 α1

α2

α3
pµ

MΛ
γ5 + α4 γ

µγ5

uΛ(p, s). (18)

The quark exchange kernel for the nucleon, Σ and Ξ
reads

Zb = 3


1
M1

1
M1
γσγ5 −

√
2

M2
γσγ5

1
M1
γ5γµ

1
M1
γσγµ

√
2

M2
γσγµ

−
√

2
M2
γ5γµ

√
2

M2
γσγµ 0

 (19)

where, in each case, M1 is the mass of the singly rep-
resented dressed quark and M2 the mass of the doubly
represented dressed quark.5 The factor of 3 is obtained
from projecting the kernel onto colour singlet states. For
the Λ the quark exchange kernel is given by

ZΛ =


0

√
2

M`
−
√

2
M`√

2
M`

− 1
Ms

− 1
Ms
γσγ5

−
√

2
M`
γ5γµ − 1

Ms
γ5γµ − 1

Ms
γσγµ

 , (20)

4 For the nucleon, in the Mu = Md limit, the singly and doubly
represented axialvector diquarks are mass degenerate and could
therefore be treated as a single type of diquark. However, for
the nucleon we will keep the description more general so that the
analogy with the other members of the octet is straightforward.

5 For the Σ0, the term “doubly represented” means the two light
quarks of different flavours.
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ΛIR ΛUV M` Ms Gπ Gρ Gs Ga

0.240 0.645 0.40 0.59 19.0 10.8 7.6 2.6

Table I. Model parameters are constrained to reproduce the
physical pion and ρ meson masses; the pion decay constant;
the nucleon and Ξ masses and the nucleon axial coupling.
The infrared regulator and the dressed u and d quark masses
– labelled by M` – are assigned their values a priori. The
regularization parameters and dressed quark mass are in units
of GeV, while the couplings are in units of GeV−2.

where M` is the mass of the dressed light quark. The
quark–diquark bubble diagram matrix for the nucleon, Σ
and Ξ reads

Πb(p) =

Πq2[q1q2](p) 0 0

0 Πσν
q2{q1q2}(p) 0

0 0 Πσν
q1{q2q2}(p)

 ,
(21)

where for each baryon q1 is the singly represented dressed
quark and q2 the doubly represented dressed quark. For
the Λ the analogous quantity reads

ΠΛ(p) =

Πs[``](p) 0 0

0 Π`[`s](p) 0

0 0 Πσν
`{`s}(p)

 . (22)

The quark–diquark bubble diagrams are given by

Πqi[qjqk](p) =

∫
d4k

(2π)
4 Sqi(k) τ[qjqk](p− k), (23)

Πµν
qi{qjqk}(p) =

∫
d4k

(2π)
4 Sqi(k) τµν{qjqk}(p− k). (24)

Finally, the vertex normalization is given by

Z−1
B = Γ0B

∂ΠB(p)

∂p2
Γ0B

∣∣∣∣
p2=M2

B

. (25)

Note, the value of p2 which satisfies the Faddeev equation
for each octet baryon defines its mass, M2

B, and at that
point the coefficients αi then define the octet baryon
vertex function.

IV. RESULTS FOR OCTET BARYONS MASSES

The NJL model employed in this work has the following
parameters: two regularization parameters ΛIR and ΛUV ;
the dressed quark masses Mu, Md and Ms;

6 two cou-
pling constants, Gπ and Gρ, from the q̄q NJL Lagrangian,

6 Alternatively, one may use the current quark masses mu, md,
ms from the NJL Lagrangian, as the gap equation provides a
one-to-one correspondence with the dressed masses.

MK M[``] M[`s] M{``} M{`s} M{ss}

0.47 0.68 0.85 1.04 1.17 1.30

Table II. Results for the kaon mass, together with the various
diquark masses, where the subscript ` = u, d. Recall that the
square brackets label scalar diquarks and the curly brackets
axialvector diquarks. All masses are in units of GeV.

given in Eq. (1); and the two coupling constants Gs and
Ga from the qq NJL Lagrangian. The infrared cutoff
implements confinement and therefore should be of the
order of ΛQCD and we choose ΛIR = 0.240 GeV; for the
light-quark dressed masses we take Mu = Md = 0.4 GeV;
the ultraviolet cutoff ΛUV and the couplings Gπ and Gρ
are constrained by the empirical values for the pion decay
constant, the pion mass and the ρ mass; the qq couplings
are chosen to reproduce the physical nucleon mass and
the nucleon axial coupling constant. Finally, the dressed
s-quark mass is fixed to reproduce the empirical mass of
the cascade baryon (Ξ). The resulting parameters are
summarized in Tab. I.

Results for the kaon mass together with the various
diquark masses are given in Tab. II. The splitting between
the various scalar diquarks and between the axialvector
diquarks is the result of explicit SU(3)F breaking effects
from the strange quark. The empirical light to strange
current quark mass ratio in the MS regularization scheme
is ms/mq = 27.5± 1.0 [15], while we find ms/mq = 21.7.
For the analogous dressed quark mass ratio we obtain
Ms/Mq ' 1.5, which illustrates that effects from DCSB
are very much suppressed for the heavier strange quark.
For completeness we give in Tab. III the pole residues for
the meson and diquark t-matrices.

The octet baryon masses obtained by solving the ap-
propriate Faddeev equation, as discussed in Sect. III, are
given in Tab. IV. In the SU(3)-flavour limit all octet
baryon masses are degenerate and hence the mass split-
ting between octet baryons results solely from the heavier
s quark mass. The mass splitting between the Λ and
Σ baryons is a consequence of the different diquark cor-
relations which dominate their wavefunctions. The Λ
baryon contains two types of scalar diquark and one type
of axialvector diquark – [``], [`s] and {`s} – while the
Σ baryon contains one type of scalar diquark and two
types of axialvector diquark – [`s], {`s} and {``}. Scalar
diquarks are more bound than axialvector diquarks – be-
cause of their strong connection with the pion and DCSB
– and consequently we find that the Λ is approximately
110 MeV lighter than the Σ baryon. This is in reasonable

Zπ ZK Z[``] Z[`s] Z{``} Z{`s} Z{ss}

17.8 29.6 14.8 16.4 3.56 3.93 4.29

Table III. Results for the pole residues in the various meson
and diquark t-matrices (c.f. Eqs. (10) and (11) ).
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MN MΛ MΣ MΞ

NJL 0.940 1.120 1.234 1.318

Experiment 0.940 1.116 1.193 1.318

Table IV. Results for octet baryon masses and the average
experimental mass for the corresponding multiplet. All exper-
imental masses have an error of at most 0.015% but usually it
is much less [15]. Because we have Mu = Md the masses of
each member of the various isospin multiplets are degenerate.
Recall that the nucleon and Ξ masses were used to determine
two of our NJL model parameters. All masses are in GeV.

agreement with the empirical mass splitting of approx-
imately 80 MeV. A more precise fit would also need to
include chiral corrections. The parameters defining the
Faddeev vertex function for each member of the baryon
octet are summarized in Tab. V.

V. AXIAL CHARGES

The axial charges of the baryons are important be-
cause they connect the strong and weak interactions.
They are also related to the quark spin content of the
baryons [47]. In fact, assuming SU(3)-flavour symmetry,
all octet baryon decays can be parametrized by just three
quantities: the Cabbibo angle, θC , and the F and D
couplings [48, 49].

The axial current of an octet baryon has the form

Jµ,a5,λ′λ(p′, p) =
〈
p′, λ′

∣∣ψ̄q γµγ5 λa ψq
∣∣ p, λ〉 ,

= ū(p′, λ′)
[
γµγ5GA(Q2)

+
qµγ5

2MB
GP (Q2) +

iσµνqν γ5

2MB
GT (Q2)

]
λa u(p, λ). (26)

where q = p′ − p is the 4-momentum transfer, Q2 ≡ −q2

and λ, λ′ represent the initial and final baryon helicity,
respectively. The scalar functions GA(Q2), GP (Q2) and
GT (Q2) label the axial, induced pseudoscalar and induced
pseudotensor form factors, respectively. In this work we
restrict ourselves to the q → 0 limit, where the current
becomes

Jµ,a5,λ (p, p) = GA(0) ū(p, λ) γµγ5 λa u(p, λ). (27)

α1 α2 α3 α4 α5

nucleon 0.418 0.013 -0.259 -0.018 0.366

Λ 0.364 0.278 -0.016 0.440 –

Σ 0.351 0.032 -0.215 -0.021 0.406

Ξ 0.388 0.017 -0.273 -0.015 0.364

Table V. Numerical coefficients that define the Faddeev vertex
functions for each member of the baryon octet. The nucleon,
Σ and Ξ vertex functions have the form given in Eq. (17) and
the Λ vertex function is given in Eq. (18).

p p′

q

+
p p′q

Figure 4. (Colour online) Feynman diagrams representing the
axial current for the octet baryons. The diagram on the left is
called the quark diagram and the one on the right the diquark
diagram. In the diquark diagram the photon interacts with
each quark inside the non-pointlike diquark.

The flavour-triplet axial charge of an octet baryon, gBA ,
is given by the matrix element

gBA s
µ =

〈
B
∣∣ψ̄ γµγ5 λ3 ψ

∣∣B〉 = (∆uB −∆dB) sµ , (28)

where sµ = ū(p, λ) γµγ5 u(p, λ) is the spin-vector of the
octet baryon. The quark-spin fractions of the baryon are
defined by

∆qB s
µ =

〈
B
∣∣ψ̄ γµγ5 P̂q ψ

∣∣B〉, (29)

where the u and d quark projection operators are given
by

P̂q =
1

2

(
2

3
1± λ3 +

1√
3
λ8

)
, (30)

and the plus sign corresponds to the u quark.
The various spin-fractions for the octet baryons under

consideration are given by the sum of the six Feynman
diagrams represented in Fig. 4 and have the structure

∆up = fQu[ud] + fQu{ud}

+ 2 fDu[ud] + 2 fDu{ud} + 4 fDd{uu} + 2 fDu{ud}↔u[ud], (31)

∆dp = fQd{uu} + 2 fDu[ud] + 2 fDu{ud} − 2 fDu{ud}↔u[ud],

(32)

∆uΣ− = 0, (33)

∆dΣ− = fQd[ds] + fQd{ds}

+ 2 fDd[ds] + 2fDd{ds} + 4 fDs{dd} + 2 fDd{ds}↔d[ds], (34)

∆uΞ− = 0, (35)

∆dΞ− = fQd{ss} + 2 fDs[ds] + 2 fDs{ds} − 2 fDs{ds}↔s[ds].

(36)

The nomenclature for these Feynman diagrams is: a su-
perscript Q implies that the operator acts directly on
a quark (quark diagram) and a superscript D implies
that the operator acts on (a quark inside) a diquark
(diquark diagram); the notation q1[q2q3] indicates a dia-
gram with quark content q1q2q3 contains only a scalar
diquark of quark content q2q3. Similarly the notation
q1{q2q3} indicates a diagram contains only an axialvector
diquark of quark content q2q3; and finally the notation
q1{q2q3} ↔ q1[q2q3] indicates the sum of the two diagrams
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p p′

q
µ

−k

+
p p′

−k

q
µ

Figure 5. (Colour online) Feynman diagrams that represent
the diquark axial current. The shaded circles are the diquark
Bethe-Salpeter vertices and the shaded oval is the γµγ5 vertex.

where the operator induces a transition between scalar
and axialvector diquarks of flavour q2q3. The numerical
coefficients arise from the flavour structure of the opera-
tor and the Faddeev amplitude. Analogous expressions
for the neutron, Σ+ and Ξ0 can easily be obtained using
charge symmetry.

In general the quark diagram with a scalar diquark
spectator reads

fQq1[q2q3] u γ
µγ5 u = Γq1[q2q3](p)

∫
d4k

(2π)4

× Sq1(k) γµγ5 Sq1(k) τ[q2q3](p+ k) Γq1[q2q3](p), (37)

and the analogous diagram with an axialvector diquark
spectator is given by

fQq1{q2q3} u γ
µγ5 u = Γq1{q2q3},α(p)

∫
d4k

(2π)4

× Sq1(k) γµγ5 Sq1(k) ταβ{q2q3}(p+ k) Γq1{q2q3},β(p). (38)

Similarly, the general form of the diquark diagram with a
scalar diquark reads

fDq1[q2q3] u γ
µγ5 u = Γq1[q2q3](p)

∫
d4k

(2π)4
iSq1(p+ k)

× τ[q2q3](k) Λµ[q2q3] τ[q2q3](k) Γq1[q2q3](p), (39)

and the analogous diagram with an axialvector diquark
is given by

fDq1{q2q3} u γ
µγ5 u = Γq1{q2q3},α(p)

∫
d4k

(2π)4
iSq1(p+ k)

× τασ{q2q3}(k) Λµση,{q2q3} τ
ηβ
{q2q3}(k) Γq1{q2q3},ν(p), (40)

where Λµ[q2q3] and Λµαβ,{q2q3} represent, respectively, the

interaction of a scalar and axialvector diquark, with an
axialvector current, in the q → 0 and on-shell limits. Be-
cause the scalar diquark has spin-zero, we have Λµ[q2q3] = 0,

while for the axialvector diquark we have

Λµ,αβ{q2q3}(p) = 3i

∫
d4k

(2π)4

× TrD
[
γβ S(p+ k) γµγ5 S(p+ k) γα S(k)

]
, (41)

= g
{q2q3}
A iεµαβλpλ , (42)

∆up ∆dp ∆uΣ− ∆dΣ− ∆uΞ− ∆dΞ−

1.145 0.331 0 -1.048 0 0.313

Table VI. Results for the spin fractions in the proton, Σ−, and
Ξ−. Analogous results for the neutron, Σ+ and Ξ0 can easily
be obtained using charge symmetry.

where α is the inital and β the final diquark polarization.
The Feynman diagram for this contribution is illustrated
in Fig. 5. For the various axialvector diquarks we find:

g
{``}
A = −0.216, g

{`s}
A = −0.194, g

{`s}
A = −0.213 and

g
{ss}
A = −0.194.7 Note that in evaluating Eq. (41) we

have used the on-shell condition, εα(p) pα = 0, for both
the inital and final axialvector diquark.

The final Feynman diagram represents the mixing be-
tween the scalar and axialvector diquarks induced by the
axial current, this diagram reads

fDq1[q2q3]↔q1{q2q3} ≡ f
D
q1[q2q3]→q1{q2q3} + fDq1{q2q3}→q1[q2q3],

(43)

where each contribution is given by8

fDq1[q2q3]→q1{q2q3} u γ
µγ5 u = Γq1{q2q3},α(p) i

∫
d4k

(2π)4

Sq1(p+ k) τασ{q2q3}(k) Λµσ,[q2q3]→{q2q3} τ[q2q3](k) Γq1[q2q3](p),

(44)

fDq1{q2q3}→q1[q2q3] u γ
µγ5 u = Γq1[q2q3](p) i

∫
d4k

(2π)4

Sq1(p+ k) τ[q2q3](k) Λµσ,{q2q3}→[q2q3] τ
σα
{q2q3}(k) Γq1{q2q3},α(p).

(45)

The diquark transition vertices are given by

Λµα[q2q3]→{q2q3} = 3i

∫
d4k

(2π)4

× TrD [γ5 S(p+ k) γµγ5 S(p+ k) γα S(k)] , (46)

Λµα{q2q3}→[q2q3] = 3i

∫
d4k

(2π)4

× TrD [γα S(p+ k) γµγ5 S(p+ k) γ5 S(k)] . (47)

These vertices have the general form

Λµα[q2q3]→{q2q3} = aq2q3 g
µα + bq2q3 p

µpα = −Λµα{q2q3}→[q2q3].

(48)

7 In our notation the underlined character denotes the quark that
interacts with the photon. For example in {`s} the light quark
interacts with the photon in the axialvector diquark.

8 Note, when calculating these diagrams we in practice consider a
small momentum transfer so that we can correctly identify p′2

and p2 with the inital and final diquark mass squared.
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q

p

p

=
q

p

p′

+
q

p

p′

Figure 6. (Colour online) Inhomogeneous Bethe-Salpeter equa-
tion whose solution gives the quark-axialvector vertex, repre-
sented as the large shaded oval. The small dot is the inhomo-
geneous driving term (γµγ5), while the shaded circle is the q̄q
interaction kernel. Only the Gρ interaction channel of Eq. (1)
contributes.

For the various diquark transitions we find: a`` = −0.054,
a`s = −0.052, a`s = −0.048, b`` = 0.092, b`s = 0.096 and
b`s = 0.115.

Evaluating these diagrams gives the spin-fractions
which we summarize in Tab. VI. In addition to these
body form factor contributions, the axial charge of the
quark receives a finite renormalization. This renormal-
ization is given by the inhomogeneous BSE illustrated in
Fig. 6. The renormalized axial charge of the light quark
is given by

gqA =
1

1 + 2Ga1
Π

(T )
AA(0)

, (49)

where Π
(T )
AA(q2) is the transverse piece of the bubble dia-

gram

Πµν
AA(q2) = 6i

∫
d4k

(2π)4
TrD [γµγ5 S(k + q) γνγ5 S(k)] ,

≡
(
gµν − qµqν

q2

)
Π

(T )
AA(q2) +

qµqν

q2
Π

(L)
AA(q2). (50)

The coupling Ga1
is adjusted (Ga1

= 1.0) to give
Ma1

= 1.26 GeV. The unrenormalized quark axial charge
is unity, however for the renormalized axial charge we
find gqA = 0.935. The value of the axial charge for octet
baryon strangeness conserving transitions, for the bare
case (“Bare”) and for the case with a renormalized axial
quark vertex (“BSE”) are given in Tab. VII.

The axial charges for the octet baryons also receive
corrections from the meson cloud. In order to preserve
the correct non-analytic behavior, required by chiral sym-
metry, it is easiest to compute these at the hadronic
level [50, 51]. This requires the meson-baryon coupling
constants and form factors. The former are given by
the appropiate Goldberger-Treiman relation, which is re-
spected because the NJL model respects chiral symmetry.
The latter are related to the hadron sizes. Since both the
axial charges and hadron sizes in the present model are
very close to those calculated in the cloudy bag model
(CBM) [4, 52], we can take the meson corrections directly
from the work of Kubodera et al. [53]. In practice this
means that our results should be multiplied by 0.92 for
gnA, 0.90 for gΣ

A and 0.95 for gΞ
A. Our final results, in-

cluding corrections from the quark vertex renormalization
and the meson cloud are shown in Tab. VII. The only

Bare BSE BSE + CBM exp’t or Ref. [55]

(gA/f1)n 1.48 1.38 1.27 1.2701 ± 0.0025

(gA/f1)Σ 0.52 0.49 0.44 0.44

(gA/f1)Ξ -0.31 -0.29 -0.28 -0.32

Table VII. Axial charges for the beta decays with ∆S = 0,
corresponding to the three cases: Bare, treats the quark as
a point-like particle, without structure and without a meson
cloud; BSE, includes the renormalization of the quark axial
charge through the solution of the BSE and, finally, including
the BSE renormalization as well as meson cloud corrections
computed within the CBM. As the experimental result is only
known for the nucleon case, for the Σ and Ξ we show the
results from the CBM computation in Ref. [55], modified very
slightly to reproduce the current experimental value of gnA.

experimental value we have available is gnA. The values

of the vector form factors f1(0) are 1,
√

2 and 1 for the
nucleon, Σ, and Ξ, respectively. This comes from charge
conservation when the electromagnetic form factors are
computed in the octet.

We are now in a position to determine the size of
SU(3)-flavour breaking effects for the axial charges of the
octet baryons, using the SU(3)-flavour parametrization
of Ref. [48], namely

n→ p+ νe + e− =⇒ (gA/f1)
n

= F +D, (51)

Σ− → Σ0 + νe + e− =⇒ (gA/f1)
Σ

= F, (52)

Ξ− → Ξ0 + νe + e− =⇒ (gA/f1)
Ξ

= F −D. (53)

Within our model the values of F and D may be com-
puted by choosing any pair of the previous relations.
We call FΣ(Ξ) and DΣ(Ξ) the parameters calculated from

(gA/f1)
Σ(Ξ)

and (gA/f1)
n
. From Tab. VII we obtain

FΣ = (gA/f1)
Σ

= 0.441,

DΣ = (gA/f1)
n − (gA/f1)

Σ
= 0.829, (54)

and

FΞ = 1
2((gA/f1)

n
+ (gA/f1)

Ξ
) = 0.496,

DΞ = 1
2((gA/f1)

n − (gA/f1)
Ξ
) = 0.774 . (55)

The discrepancies suggest SU(3)-flavour symmetry break-
ing effects of around 10%, with FΣ/FΞ = 0.89 and
DΣ/DΞ = 1.07. Since the strangeness conserving β-
decays for the Σ− and Ξ− have not yet been measured,
this result should be viewed as a prediction to be tested
experimentally. We note that even larger SU(3) viola-
tion has been reported in the context of the proton spin
problem [54].

In addition, a comparison of our results with the cloudy
bag model computations performed in Ref. [55] shows
that gΣ

A is the same in both models, whereas gΞ
A is slightly

smaller in magnitude in our work. The calculation of
Ref. [55] includes one-gluon exchange and center of mass
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corrections, plus recoil effects and a rescaling factor to
reproduce the experimental gnA.

The other source of “data” with which our model might
be compared are lattice QCD calculations. There has
recently been good progress in the calculation of the
electromagnetic form factors for the octet baryons [22, 23],
using chiral extrapolations of the lattice results. Clearly
an extension of that work to weak form factors would
provide a valuable test our model predictions.

VI. CONCLUSIONS

We have computed the masses and the ∆S = 0 axial
charges of the baryon octet using a confining NJL model.
The model results for the masses are in good agreement
with the experimental values. While there are currently
no measurements of the ∆S = 0 axial charges, other than
for the neutron, we did find very close agreement between
our results and those found within the cloudy bag model.
Since there is currently considerable discussion concerning

the degree of violation of SU(3)-flavour symmetry, the
deviation of order 10% which we found is significant.

It will be important to extend the present investigation
to calculate the chiral corrections explicitly within this
model. Given the new lattice results for octet baryon elec-
tromagnetic form factors, we look forward to simulations
of a similar quality for the axial form factors. Meantime,
it would be very interesting to extend the present model
to calculate the hyperon electromagnetic form factors.
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[29] I. C. Cloët, C. D. Roberts and A. W. Thomas, Phys. Rev.
Lett. 111, 101803 (2013) [arXiv:1304.0855 [nucl-th]].

[30] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345
(1961).



9

[31] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 124, 246
(1961).

[32] U. Vogl and W. Weise, Prog. Part. Nucl. Phys. 27, 195
(1991).

[33] T. Hatsuda and T. Kunihiro, Phys. Rept. 247, 221 (1994)
[hep-ph/9401310].

[34] S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).
[35] D. Ebert, T. Feldmann and H. Reinhardt, Phys. Lett. B

388, 154 (1996) [hep-ph/9608223].
[36] G. Hellstern, R. Alkofer and H. Reinhardt, Nucl. Phys. A

625, 697 (1997) [hep-ph/9706551].
[37] W. Bentz and A. W. Thomas, Nucl. Phys. A 696, 138

(2001) [nucl-th/0105022].
[38] N. Ishii, W. Bentz and K. Yazaki, Nucl. Phys. A 587, 617

(1995).
[39] N. Ishii, W. Bentz and K. Yazaki, Phys. Lett. B 301, 165

(1993).
[40] N. Ishii, W. Bentz and K. Yazaki, Phys. Lett. B 318, 26

(1993).
[41] I. R. Afnan and A. W. Thomas, Top. Curr. Phys. 2, 1

(1977).
[42] A. Buck, R. Alkofer and H. Reinhardt, Phys. Lett. B 286,

29 (1992).
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