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The use of finite harmonic oscillator spaces in many-body calculations introduces both infrared
(IR) and ultraviolet (UV) errors. The IR effects are well approximated by imposing a hard-wall
boundary condition at a properly identified radius Leff . We show that duality of the oscillator
implies that the UV effects are equally well described by imposing a sharp momentum cutoff at a
momentum Λeff complementary to Leff . By considering two-body systems with separable potentials,
we show that the UV energy corrections depend on details of the potential, in contrast to the IR
energy corrections, which depend only on the S-matrix. An adaptation of the separable treatment
to more general interactions is developed and applied to model potentials as well as to the deuteron
with realistic potentials. The previous success with a simple phenomenological form for the UV error
is also explained. Possibilities for controlled extrapolations for A > 2 based on scaling arguments
are discussed.

I. INTRODUCTION

When truncated harmonic oscillator (HO) model
spaces are used in wavefunction-based methods for com-
puting atomic nuclei, both the infrared (IR) and ultravio-
let (UV) physics is modified, leading to systematic errors
in observables [1–6]. If these errors can be understood
formally, then controlled extrapolations to the results for
the full model space can be made. A theoretical for-
mulation for IR extrapolations was proposed in Ref. [5]
(together with a phenomenological model of UV extrapo-
lations for potentials from the similarity renormalization
group), and further developed in Refs. [7–9]. In this pa-
per we provide a corresponding theoretical basis for UV
extrapolations.

The IR effect of an oscillator basis truncation is prac-
tically the same as imposing a hard-wall boundary con-
dition (i.e., a sharp cutoff in position space) at a radius
Leff . This is a low-momentum equivalence in the sense
of an effective theory; we determine Leff by matching the
smallest eigenvalue of the squared momentum operator
in the finite basis to the smallest eigenvalue in the spher-
ical box. The quantity Leff depends on the number of
fermions [9]. For two-body bound states, expansions for
the corrections to the energy and other observables based
on a continuation of the S-matrix have been derived in
Ref. [8] to next-to-leading order. At leading order, the
energy correction is proportional to exp (−2kLeff), with k
the bound-state momentum, due to the exponential fall-
off of the wavefunction in position space. Further tests
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for oxygen isotopes show that the leading-order form of
the corrections works very well for A > 2 (although the
coefficients are fit rather than given as for A = 2) [9].
In those tests, it was possible (for coupled-cluster calcu-
lations with moderately soft potentials) to suppress the
UV corrections by going to large values of the oscillator
frequency Ω, so that the IR correction could be isolated.

However, the need to understand UV corrections re-
mains. For many methods the full suppression of the UV
is not feasible, and in all cases the UV effect is a system-
atic error that must be quantified. In addition, this error
worsens for harder nucleon–nucleon potentials that may
still be of interest. Finally, we seek an understanding of
the successes (and limitations) of previous phenomeno-
logical forms. Thus we are well motivated to study the
UV errors.

Here we follow the strategy of Refs. [7] and [8] by fo-
cusing on the two-body problem and exactly solvable ex-
amples to establish the true UV behavior for these simple
systems. In doing so, duality of the harmonic oscillator
tells us that part of the IR lesson carries over; namely
that the effect of the oscillator truncation in the UV is
practically the same as a hard cutoff in momentum at an
appropriate Λeff , with an expression equivalent to Leff

when each is expressed in dimensionless units. This is
demonstrated in Sec. II (and the Appendix).

However, the impact of this cutoff is not dual. While
the IR result for the bound-state energy depends only
on observables (and is therefore the same for any two in-
teractions that predict the same S-matrix elements), the
UV correction depends on the high-momentum behavior
of the potential, which is not an observable. In Sec. III,
we demonstrate this explicitly and derive a correction for-
mula by considering a rank-one separable potential with
a super-Gaussian form such as those used for effective
field theory (EFT) regulators. We then adapt the sepa-
rable formulation to more general potentials by building
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on the classic work of Ernst et al. [10]. A fitting pro-
cedure for UV extrapolation is established, tested with
model potentials, and then finally applied to the deuteron
calculated using realistic nucleon–nucleon interactions.

A phenomenological scheme for UV corrections based
on a Gaussian ansatz, applicable to interactions evolved
by the similarity renormalization group (SRG), was pro-
posed in Ref. [5] without formal justification. It was
also used for A > 2 with apparent success in Ref. [11].
Other works in the literature have also found that such
an ansatz works well (although they have not generally
treated the IR and UV parts separately). These suc-
cesses might seem puzzling in light of our more general
results, but we show in Sec. IV how the phenomenolog-
ical ansatz arises when fitting in a narrow window in
Λeff . Some further remarks on generalizing the separable-
approximation approach are given in Sec. V, and in
Sec. VI we summarize our results and provide an out-
look on extensions of the UV extrapolations to A > 2.

II. BASIS TRUNCATION AND UV CUTOFF

In this section we discuss the relation between the ba-
sis size N and frequency Ω of a finite oscillator model
space and the corresponding ultraviolet cutoff Λeff in mo-
mentum space for a two-body system. Our notation and
conventions are summarized in Appendix A, where we
also give a detailed derivation of the results stated in the
following.

A. Duality and momentum-space boxes

References [7, 8] demonstrated that a truncated oscil-
lator basis with highest excitation energy NΩ effectively
imposes a spherical hard-wall boundary condition at a ra-
dius depending on N and b. The optimal effective radius
Leff can be determined by matching the smallest eigen-
value κ2 of the squared momentum operator p2 in the
finite basis to the corresponding eigenvalue of the spher-
ical box, namely κ = π/L (for l = 0). The value can be
established numerically, but an accurate approximation
for the two-body system is [7]

Leff = L2 ≡
√

2(N + 3/2 + 2)b . (1)

Note that L2 differs by O(1/N) from the naive estimate

L0 =
√

2(N + 3/2)b. In localized bases that differ from
the harmonic oscillator, L can also be determined from
a numerical diagonalization of the operator p2.

The dual nature of the harmonic oscillator Hamilto-
nian (A1) (i.e., under p↔ µΩr) implies that the trunca-
tion of the basis will effectively impose a sharp cutoff at
a momentum Λeff depending only on N and b. The ana-
log matching condition leads us to consider the smallest
eigenvalue (denoted as ρ) of the operator r2 evaluated in
that truncated basis. This eigenvalue is identical to the

smallest (squared) distance that can be realized in the
oscillator basis. Thus it corresponds to a lattice spacing
on a grid and therefore sets the highest momentum avail-
able. As we will see below in Fig. 4, the square root of
the largest eigenvalue of the squared momentum opera-
tor, which might be a natural guess for the effective UV
cutoff, is not an accurate estimate for Λeff .

The smallest eigenvalue ρ is determined by Eqs. (A21)
and (A27) in Appendix A. From steps completely analo-
gous (dual) to those given in Refs. [7, 8] for the infrared
case, we find that the solution (in a subspace with fixed
angular momentum `) is

ρ =
x`b√

2

(
N +

3

2
+ ∆

)−1/2

(2)

with ∆ = 2 to leading order. The constant x` in the
prefactor is the first positive zero of the spherical Bessel
function j`. Since the UV cutoff is given by x`/ρ, it drops
out again in our final result

Λ2 =
√

2(N + 3/2 + 2)/b . (3)

Hence, we have shown that the proper effective ultravi-
olet cutoff imposed by the basis truncation is given by
Λ2, which differs by a correction term from the naive
estimate

Λ0 =
√

2(N + 3/2)/b (4)

that one obtains from simply considering the maximum
single-particle energy level represented by the truncated
basis. We note that subleading corrections to ∆ = 2,
which by duality apply equally to the IR and UV cutoff,
are derived in Sec. A 4 in the appendix.

B. Isolating UV corrections

For an oscillator basis truncation with general b and
N , both IR and UV errors will be significant. However,
by choosing appropriate ranges of these parameters we
can isolate one or the other and thereby analyze them
separately (with the combined effect to be considered in
future work). In Fig. 1(a) we plot the relative error in
the deuteron energy ∆Ed/Ed for a large set of basis pa-
rameters with 4 < N < 100 and 1 MeV < Ω < 100 MeV
against the value of L2 (recall Ω = 1/µb2) from Eq. (1).
The calculations use the 500 MeV N3LO nucleon-nucleon
NN potential by Entem and Machleidt [12], evolved
by the similarity renormalization group (SRG) [13] to
λ = 2 fm−1. For sufficiently large Ω, above a minimum
N all points collapse to a single exponential curve that
runs over six decades (at which point numerical errors in
the calculation are reached and cause the curve to flat-
ten1). These are the UV-converged points; that is, those

1 This effect is analogous to what can be seen in Fig. 4 of Ref. [4].
Once the calculation is converged in the UV regime, the curves
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FIG. 1. (Color online) (a) The relative error in the deuteron energy, computed in harmonic-oscillator bases, for a wide range of
oscillator parameters N and Ω as a function of L2(N,Ω). The red labels mark the minimum and maximum N along sequences
of constant Ω (indicated by blue labels along the sequence of crosses). These calculations use the N3LO NN potential with a
500 MeV regulator cutoff from Ref. [12], which was evolved by the similarity renormalization group [13] to λ = 2 fm−1. (b)
Subset of calculations from (a) for which the UV correction can be neglected compared to the IR correction (“raw”), with LO
and NLO corrections subtracted as described in the text. The inset shows the curves for the lowest values of L2.

0 2 4 6 8 10 12 14 16

Λ
2
 [fm

−1
]

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

∆
E

d
 /

 E
d

4 8 12 16 20

40

60

80

100

N
max

20

40

60

80

100

16

12
1−7 9

Ω [MeV]

N
3
LO (500 MeV)

SRG λ = 2 fm
−1

(a)

Entem-Machleidt

0 1 2 3 4 5

Λ
2
 [fm

−1
]

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

∆
E

d
 /

 E
d

1 2
0.0

0.2

0.4

0.6

0.8

1.0 Ω = 1−10 MeV

N
3
LO (500 MeV)

SRG λ = 2 fm
−1

L
2
 > 40 fm

(b)
Entem-Machleidt

FIG. 2. (Color online) (a) Oscillator calculations of the relative error in the deuteron energy for a wide range of oscillator
parameters N and Ω as a function of Λ2(N,Ω). These are the same calculations as in Fig. 1. (b) Subset of calculations from
(a) for which the IR correction can be neglected compared to the UV correction. The inset is a linear plot.
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FIG. 3. (Color online) Calculations of the relative error in
the deuteron energy as a function of Λ2(N,Ω). The circles
are for a wide range of oscillator parameters N and Ω that
are IR converged. The series of lines show energies for which
the Hamiltonian has been smoothly cutoff with exponent n.
The solid line corresponds to a sharp cutoff.

for which the UV correction is much smaller than the IR
correction.

In Fig. 1(b) these same UV-converged points are plot-
ted (labeled “raw”). They are seen to form a smooth
line with little spread; this is a signature that L2 is the
correct variable for the effective box size [7, 8] (if L0

were used instead there would be a small but notice-
able scatter). It is also evident from the straightness
of the line on a semi-log plot that the functional form
is dominantly an exponential over most of the range of
∆Ed/Ed. This exponential is predicted by the system-
atic expansion derived in Refs. [5, 7, 8], for which succes-
sive orders are suppressed by powers of e−2k∞L2 , where
k∞ is the deuteron binding momentum. (There are also
pre-factors that are low-order polynomials in L2.) If we
subtract the leading correction, the result is the steeper
exponential (proportional to e−4k∞L2) labeled “LO.” Fi-
nally, if we subtract the next-to-leading order correction
for only the S-wave part, we get the still steeper expo-
nential (“NLO S-wave”), which is valid down to 10−5.
Thus we conclude that the IR corrections are well under-
stood for the deuteron. What is not evident from these

in such error plots flatten out at a value determined by whatever
else limits the precision of the calculation. In Fig. 4 of Ref. [4],
the value of the plateau is different for each curve because the
data points have not been filtered to ensure convergence in the
IR. In our case, the value is determined by the numerical pre-
cision of the calculation, which is reflected in the fact that the
plateaus are the same in Figs. 1 and 2.

plots alone but which is documented in Ref. [7], is that
the same results in Fig. 1(b) would be obtained with an-
other potential as long as it was S-matrix equivalent at
low energies (same phase shifts and deuteron properties,
as from a unitary transformation). In this sense, the IR
corrections are universal.

Next we try in Fig. 2(a) to isolate the IR-converged
points with an analogous plot of the relative error in the
deuteron energy but now as a function of Λ2. There is a
much greater spread of points, indicating that it is more
difficult to have the IR error much smaller than the UV
error, at least for a conventional range of Ω. However,
for very low Ω we do find points collapsed to a single
curve. These points, for which L2 > 40 fm (to reach IR
errors smaller than UV errors), are plotted in Fig. 2(b).
Just as in the case of isolated infrared corrections, we
find that a signature both of IR convergence and that
Λ2 is the appropriate variable is a smooth curve with
little scatter of points. But the functional dependence is
manifestly not dual: there are no straight-line segments
on a semi-log plot. The phenomenological treatment of
the UV correction suggested in Ref. [5] for SRG-evolved

potentials used an ansatz for which ∆Ed/Ed ∝ e−b1Λ2
2

(although Λ0 instead of Λ2 was actually used in [5], this
difference is not significant for the present discussion).
As we demonstrate in Sec. IV B, this form works for a
limited range in Λ2 but is not generally applicable.

To develop a theoretical understanding of UV correc-
tions, we first validate the claim that the error from os-
cillator basis truncation is well reproduced by applying
instead a sharp cutoff in momentum at Λ2. In Fig. 3,
the calculations from Fig. 2(b) are plotted as a function
of Λ = Λ2(N,Ω) along with several other functions of Λ
given by the relative error from the same Hamiltonian,
but now smoothly cut off as

Hcut(k, k
′) = e−(k2/Λ2)nH(k, k′)e−(k′2/Λ2)n , (5)

for n = 2, 4, 8 and ∞. The latter corresponds to a sharp
cutoff. We find that the curve from a sharp cutoff tracks
the truncated-oscillator points through many orders of
magnitude. Finally, Figure 4 shows the relative error
when plotted against three different cutoff variables, Λ2,
Λ0, and Λκmax . The latter is defined as the square root of
the largest eigenvalue of the squared momentum operator
in the finite oscillator basis, which one might naively ex-
pect to be a natural choice. However, of the cases consid-
ered this actually gives the largest scatter in data. From
the fact that only for Λ2 we get an essentially smooth
curve we conclude that this identification of the relevant
UV cutoff is correct.

In the next section we take this correspondence as
given and study a model Hamiltonian for which we can
analyze the UV correction exactly.
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FIG. 4. (Color online) Relative error of deuteron binding
energy plotted vs. lengths Λ2, Λ0, and Λκ,max (multiplied by
factors 2, 1, and 1/2, respectively, to separate the curves. The
inset shows the same values on a linear scale and without the
separation factors.

III. SEPARABLE TWO-BODY INTERACTIONS

In this section we show that the UV error from oscilla-
tor basis truncations in the two-body problem can be de-
termined exactly for any rank-one separable interaction
by applying the effective sharp-momentum cutoff. We
demonstrate that unlike the case for IR corrections, the
UV corrections depend on the high-momentum behavior
of the potential. We derive an explicit correction formula
for separable potentials, and then adapt the approach to
more general potentials, which leads to a practical fitting
procedure.

A. Regularized contact interaction

Let us consider two particles interacting via an S-wave
(` = 0) rank-one separable interaction of the form

V (k,k′) = V (k′, k) = a fλ(k′)fλ(k) . (6)

While most of the following derivation is actually
more general, we will consider below the case of non-
negative, dimensionless regulator functions fλ(k) that
satisfy fλ(0) = 1 and fλ → 0 for k/λ → ∞. The poten-
tial (6) is then just a regularized contact interaction as it
would arise, for example, from a low-energy effective the-
ory (EFT), and the coupling constant a is a length scale
related (up to some rescaling factors) to an S-wave scat-
tering length. For convenience, in this section we work
in units with 2µ = 1, where µ is the reduced mass of the

two-particle system. We focus on the single bound state
(assuming a is negative and large enough) with energy
E∞ ≡ −κ2

∞ and momentum-space wavefunction φ(k).2

Thus κ∞ is the binding momentum. The Schrödinger
equation for φ(k) is

k2φ(k) + afλ(k)

∫
d3k′ fλ(k′)φ(k′) = −κ2

∞φ(k) . (7)

1. Exact extrapolation formula

Let us assume now that we are in a limited model
space with an effective sharp momentum cutoff Λ. In
Sec. II we have illustrated how this cutoff is related to
the truncation parameter of a finite harmonic oscillator
basis; below we will use a model interaction to further
demonstrate the result Λ = Λ2 numerically.

Given Λ and defining φΛ(k) ≡ φ(k)Θ(Λ − k), Eq. (7)
becomes

k2 φΛ(k) + a fλ(k) Θ(Λ− k)

∫
d3k′ fλ(k′)φΛ(k′)

= −κ2
ΛφΛ(k) . (8)

Here, Θ denotes the unit step function, so Θ(Λ− k) is a
projector, and Eq. (8) is obtained by simply introducing
such a projector for each momentum dependence. To
indicate the cutoff dependence of the energy eigenvalue,
we now write it as −κ2

Λ. Note that Eq. (8) turns into
Eq. (7) for Λ→∞. We solve Eq. (8) for φΛ(k) and find
(for k < Λ)

φΛ(k) =
cΛfλ(k)

κ2
Λ + k2

, (9)

where

cΛ ≡ −a
∫

d3k fλ(k)φΛ(k) (10)

is independent of k. Thus, we know the full momentum
dependence of φΛ from Eq. (9). The cutoff does not imply
that φΛ(k) goes smoothly to zero at k = Λ, unlike the
behavior of a coordinate-space wavefunction with a hard-
wall boundary condition, because the momentum-space
potential is nonlocal.

For the determination of the eigenvalue κΛ we in-
sert the solution (9) into Eq. (8)—or just substitute (9)
into (10) and cancel the common factor cΛ—to find the
quantization condition

−1 = a

∫
d3k

f2
λ(k)Θ(Λ− k)

κ2
Λ + k2

= 4πa

∫ Λ

0

dk
k2 f2

λ(k)

κ2
Λ + k2

,

(11)

2 φ(k) is the full three-dimensional wavefunction of the state, but
it only depends on k = |k| due to the S-wave nature of the state,
and we have absorbed the constant factor Y00 = 1/

√
4π into the

definition of φ.
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which is straightforward to solve numerically. Note that
Eq. (11) implies that there is at most one bound state, as
we have assumed. Note also that the quantized solution
κ2

Λ increases to κ2
∞ as Λ approaches ∞.

To derive an analytic formula for the dependence of κΛ

on Λ, we start by defining (recall that we set ~ = 2µ = 1)

∆EΛ ≡ EΛ − E∞ = κ2
∞ − κ2

Λ . (12)

Inserting this into Eq. (11) and Taylor-expanding to first
order in ∆EΛ/κ

2
∞, we find

−1 = a

∫
d3k

f2
λ(k)Θ(Λ− k)

κ2
∞ + k2 −∆EΛ

≈ a
∫

d3k
f2
λ(k)Θ(Λ− k)

κ2
∞ + k2

(
1 +

∆EΛ

κ2
∞ + k2

)
= −1− a

∫
d3k

f2
λ(k)Θ(k − Λ)

κ2
∞ + k2

+ ∆EΛ a

∫
d3k

f2
λ(k)Θ(Λ− k)

(κ2
∞ + k2)2

. (13)

In the second step here we have employed Eq. (11) for
Λ = ∞, also using Θ(Λ − k) = 1 − Θ(k − Λ). Thus, the
general result for ∆EΛ is

∆EΛ ≈

∫
d3k

f2
λ(k)Θ(k − Λ)

κ2
∞ + k2∫

d3k
f2
λ(k)Θ(Λ− k)

(κ2
∞ + k2)2

. (14)

This should be a quantitatively accurate expression in
those regions of Λ for which ∆EΛ ≤ κ2

∞.
We can further approximate the result by dropping

terms of O(κ2
∞/Λ

2), noting that this may not be a good
quantitative approximation when Λ ≈ λ:

∆EΛ =

∫
d3k

f2
λ(k)Θ(k − Λ)

k2∫
d3k

f2
λ(k)Θ(Λ− k)

(κ2
∞ + k2)2

[
1 +O(κ2

∞/Λ
2)
]

≈

∫
d3k

f2
λ(k)Θ(k − Λ)

k2∫
d3k

f2
λ(k)

(κ2
∞ + k2)2

[
1 +O(κ2

∞/Λ
2)
]
.(15)

In the last step, we extended the integration in the de-
nominator from Λ to ∞. This introduces a negligible
error for reasonable regulators when Λ � λ. However,
we may want to keep the Λ-dependence in the denomi-
nator more general.

If we make all these approximations, then the Λ-
dependence of ∆EΛ is simple, and we have

∆EΛ ∝
∫

dk f2
λ(k)Θ(k − Λ) =

∞∫
Λ

dk f2
λ(k) . (16)

Thus, the cutoff dependence is determined entirely by
the regulator, while the low-energy length scale a has

dropped out in this approximation and only appears in
weaker approximations through κ∞. In other words, the
energy correction will depend strongly on the details of
how the potential falls off at large momentum, but only
weakly on the strength of the potential.

2. Perturbation theory

Here we show that the result (15) for ∆EΛ in the region
Λ > λ can also be derived from first-order perturbation
theory. The unperturbed wavefunction is from Eq. (9)
with Λ→∞:

φ∞(k) ≡ 〈k|φ∞〉 =
c∞fλ(k)

κ2
∞ + k2

, (17)

and the perturbation can be written (for S-waves) as

δH(k, k′) = −
[
k2 δ(k − k′)

4πkk′
Θ(k − Λ)Θ(k′ − Λ)

+ a fλ(k′)fλ(k)
[
Θ(k − Λ) + Θ(k′ − Λ)

]]
. (18)

In writing δH(k, k′), we have neglected a contribution
to the second term proportional to Θ(k − Λ)Θ(k′ − Λ),
which would be doubly suppressed by fλ(k > Λ).

The first-order energy shift is

∆EΛ =
〈φ∞|δH|φ∞〉
〈φ∞|φ∞〉

= −
[
4πc2∞

∫ ∞
Λ

dk k2 k2f2
λ(k)

(κ2
∞ + k2)2

+ (2a)4πc∞

∫ ∞
0

dk′ k′2fλ(k′)
fλ(k′)

κ2
∞ + k′2

× 4πc∞

∫ ∞
Λ

dk k2fλ(k)
fλ(k)

κ2
∞ + k2

]
×
[
4πc2∞

∫ ∞
0

dk k2 f2
λ(k)

(κ2
∞ + k2)2

]−1

= −
[∫ ∞

Λ

dk
k4f2

λ(k)

(κ2
∞ + k2)2

− 2

∫ ∞
Λ

dk
k2f2

λ(k)

κ2
∞ + k2

]
×
[∫ ∞

0

dk
k2f2

λ(k)

(κ2
∞ + k2)2

]−1

=

[∫ ∞
Λ

dk f2
λ(k)

]
×
[∫ ∞

0

dk
k2f2

λ(k)

(κ2
∞ + k2)2

]−1

×
[
1 +O(κ2

∞/Λ
2)
]
. (19)

This agrees with Eq. (15) up to terms of order κ2
∞/Λ

2.
Note that an analogous application of first-order pertur-
bation theory fails if applied to the IR correction; one
finds the leading e−2k∞L dependence is found, but with
the wrong coefficient.
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3. Asymptotic expansion

It is instructive to look at the large Λ expansion of
Eq. (16) when fλ(k) has the form of a Gaussian or super-
Gaussian:

fλ(k) = e−(k/λ)2n . (20)

We can express ε in this case in terms of the incomplete
gamma function Γ(a, z) [14]:

∆EΛ ∝
∫ ∞

Λ

dk e−2(k/λ)2n

=
λ

4n

∫ ∞
2(Λ/λ)2n

dt (t/2)
1
2n−1e−t

=
λ

4n

1

2
1
2n−1

Γ

(
1

2n
, 2(Λ/λ)2n

)
, (21)

so that for Λ� λ,

ε(Λ) −→
Λ�λ

[const.]× λ
(

Λ

λ

)1−2n

e−2(Λ/λ)2n . (22)

Only for n = 1 does this have the Gaussian form used
in phenomenological methods for extrapolation, which is
further verification of the non-universality of UV correc-
tions. However, the asymptotic region where Λ � λ is
seldom reached in practice (if it were, convergence would
likely be sufficient without extrapolation). When Λ is the
same size or smaller than λ, and if the region over which
a fit is made is limited, then a Gaussian form can arise,
as shown in Sec. IV B.

4. Numerical calculations

We test the extrapolation law (16) with the specific
but arbitrary choice

fλ(k) = e−(k/λ)4 , (23)

with λ = 2.0 fm−1 and a = −0.1 fm. The solution of the
quantization condition (11) yields κ∞ ≈ 0.634 fm−1.

Figure 5 shows the numerical solution of the exact
quantization condition (11) plotted as κΛ vs. Λ (circles).
The line is the extrapolation with the function (16), i.e.,
we write

∆EΛ = κ2
Λ−κ2

∞ ≈ 2κ∞∆κΛ with ∆κΛ = κ∞−κΛ (24)

and determine κ∞ and the proportionality constant A
from a fit to

κΛ = κ∞ −∆κ = κ∞ −A
∫ ∞

Λ

dk f2
λ(k) . (25)

Note that κ∞ � Λ, and Λ > λ, as required. Despite
the approximations, the fit is very good, and in fact the

2.0 2.2 2.4 2.6 2.8 3.0 3.2

0.60

0.61

0.62

0.63

0.64

0.65

Λ (fm−1)

κ
Λ
(f
m

−
1
)

regularized contact a = −0.1 fm
quartic regulator with λ = 2.0 fm−1

LO,

FIG. 5. (Color online) Test of the extrapolation law (16) for a
contact a = −0.1 fm and quartic regulator (23) with λ = 2 fm.
Points: solution of the quantization condition (11). Line: Fit
of κ∞ and A from Eq. (25).

extracted value for A agrees to better than 10% with the
explicit result

A∞ =

(
2κ∞ ×

∫ ∞
0

dk k2 fλ(k)2

(κ2
∞ + k2)2

)−1

, (26)

which follows directly from combining Eqs. (15) and (24).
This simple test already suggests that the approxima-
tions in deriving the extrapolation law (16) are well under
control.

2.0 2.2 2.4 2.6 2.8 3.0 3.2

0.60

0.61

0.62

0.63

0.64

0.65

Λ (fm−1)

κ
Λ
(f
m

−
1
)

direct calc.
fit to direct calc.
osc. calc., Λ = Λ0

fit to osc. calc., Λ = Λ0

osc. calc., Λ = Λ2

fit to osc. calc., Λ = Λ2

regularized contact a = −0.1 fm
quartic regulator with λ = 2.0 fm−1

LO,

FIG. 6. (Color online) Oscillator calculations (with b = 2.5 fm
and n = 6, . . . , 16) and extrapolations a contact a = −0.1 fm
and quartic regulator (23) with λ = 2 fm. Circles and short-
dashed line: direct-quantization result and fit, same as in
Fig. 5. Squares: oscillator result with Λ = Λ0(n). Dotted line:
fit of Eq. (25) to squares. Diamonds: oscillator result with
Λ = Λ2(n). Long-dashed line: fit of Eq. (25) to diamonds.

Indeed, the extrapolation also works very well for cal-
culations in truncated oscillator bases, provided the ef-
fective UV cutoff is calculated according to Λ = Λ2 as de-
rived in Sec. II. Although the overall cutoff dependence is
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quite small for the simple regularized contact interaction,
one can clearly see a substantial improvement when one
uses Λ = Λ2 instead of the naive estimate Λ = Λ0. As
shown in Fig. 6, the difference between the two choices is
a horizontal shift of the oscillator data that moves them
almost right on top of the direct-quantization result ac-
cording to Eq. (11). If instead of Eq. (23) we use a Gaus-
sian regulator,

fλ(k) = e−(k/λ)2 , (27)

the overall cutoff dependence is somewhat stronger, but,
as shown in Fig. 7, the qualitative behavior is exactly the
same. In fact, the agreement is even somewhat better,
at least for the parameters chosen in the calculation.

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.32

0.34

0.36

0.38

0.40

0.42

Λ (fm−1)

κ
Λ
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−
1
)

direct calc.
fit to direct calc.
osc. calc., Λ = Λ0

fit to osc. calc., Λ = Λ0

osc. calc., Λ = Λ2

fit to osc. calc., Λ = Λ2

regularized contact a = −0.1 fm
Gaussian regulator with λ = 2.0 fm−1

LO,

FIG. 7. (Color online) Oscillator calculations (with b = 2.5 fm
and n = 6, . . . , 34) and extrapolations a contact a = −0.1 fm
and Gaussian regulator (27) with λ = 2 fm. Points and curves
are as in Fig. 6.

To get a more quantitative assessment of the agree-
ment, in Figs. 8 and 9 we plot the quantity

∆κΛ = |κ(m)− κΛ(m)| (28)

on a logarithmic scale for different choices of Λm. With
this notation we mean that for a given truncation param-
eter m we first calculate the corresponding effective cutoff
Λm and then apply Eq. (11) to obtain the exact binding
momentum for that cutoff. In these calculations we have
used a very large oscillator length b = 6.0 fm to suppress
infrared corrections and go up to very large truncation
parameters (up to n = 72) to still reach sizable UV cut-
offs. For both regulators discussed above (quartic and
Gaussian), the Λ = Λ2 curve clearly lies below the one
for Λ = Λ0.

In these plots we have also included the result with the
first subleading correction to Λ = Λ2 (see the Appendix).
It is reassuring to see that there is some small improve-

ment (the curves for Λ = Λ
(1)
2 lie consistently below those

for Λ = Λ2), but we conclude that these corrections can
safely be neglected for all present practical purposes.
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∆
κ
Λ
(f
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−
1
)

Λ = Λ0

Λ = Λ2

Λ = Λ
(1)
2

regularized contact a = −0.2 fm
quartic regulator with λ = 1.8 fm−1

LO,

FIG. 8. (Color online) Logarithmic plot of ∆κΛ as defined in
Eq. (28) for a contact a = −0.2 fm and quartic regulator (23)
with λ = 1.8 fm. Dotted line: result for Λ = Λ0. Thick
dashed line: result for Λ = Λ2. Thin dashed line: result for
Λ = Λ

(1)
2 (including the first subleading correction). The inset

shows the small improvement from Λ2 to Λ
(1)
2 .
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2

regularized contact a = −0.33 fm
Gaussian regulator with λ = 1.66 fm−1
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FIG. 9. (Color online) Logarithmic plot of ∆κΛ as defined
in Eq. (28) for a contact a = −0.33 fm and Gaussian regu-
lator (27) with λ = 1.66 fm. The curves and inset are as in
Fig.8.

B. Separable approximations

For a general rank-1 separable potential

V̂sep = g |η〉〈η| , (29)

which in momentum space simply becomes (with η(k) ≡
〈k|η〉)

Vsep(k, k′) = g η(k)η(k′) , (30)

the quantization condition (11) can be written as

− 1 = 4πg

∫ Λ

0

dk k2 η(k)2

κ2
Λ + k2

. (31)

This is, of course, merely a change of notation, a→ g and
fλ(k) → η(k) compared to Eq. (11). Most interactions
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used in practical calculations, however, do not have this
convenient simple form (at least not in nuclear physics).
Still, Eq. (31) can be put to some use.

Methods to obtain separable approximations for a
given potential have been known and used since quite
a while (see, e.g., Refs. [10, 15, 16] and further references
therein). We use the technique here in its simplest form,
also called the unitary pole approximation (UPA) [10, 17].

Assuming that for an arbitrary potential V̂ we know a
(bound) eigenstate |ψ〉, we can construct a rank-1 sepa-
rable approximation in momentum space by setting

V̂sep =
V̂ |ψ〉〈ψ|V̂
〈ψ|V̂ |ψ〉

. (32)

In other words, we have

η(k) = 〈k|V̂ |ψ〉 (33)

for the momentum-space “form factor,” and the coupling
strength g = 〈ψ|V̂ |ψ〉 is, of course, independent of any
particular representation. From Eq. (32) one immedi-
ately sees that

V̂sep|ψ〉 = V̂ |ψ〉 . (34)

This means that the separable approximation is con-
structed in such a way that it exactly reproduces the
state |ψ〉 used for its construction. The potential (32) re-
produces the exact half off-shell T-matrix at the energy
corresponding to the state ψ, and more sophisticated ap-
proximations (separable potential of rank > 1) can be
constructed by using more than a single state [10]. Since
we are only interested in performing the UV extrapola-
tion for a single state here, however, the rank-1 approxi-
mation should be sufficient. In fact, based on our expec-
tation that the UV extrapolation we seek should depend
on short-range/high-momentum modes of the potential
and the state under consideration, Eq. (32) looks very
promising. To assess to what extent it actually reflects
the UV behavior of a calculation based on the original
potential, we first consider some examples where the sep-
arable approximation can be constructed analytically.

a. Spherical well. One of the simplest potentials
for which the bound-state wavefunctions can be written
down explicitly in closed form is the spherical well (step),

Vstep(r) = V0 Θ(R− r) , V0 < 0 . (35)

The eigenfunctions for this standard textbook example
are spherical Bessel functions. Separable approximations
for these potential have been discussed in Ref. [18]. If
Vstep supports an S-wave bound-state at energy E = −κ2,
we find from the results presented there that

ηstep(k) =
2

π
V0R

2Z(E;V0, kR)

K2 − k2
, (36a)

gstep =

(
2

π
V0R

2 F (E;V0, R)

)−1

, (36b)

with K ≡ K(E;V0) =
√
E − V0 and

L(E;V0, R) = K
j′0(KR)

j0(KR)
, (37)

Z(E;V0, kR) = k j′0(KR)− L(E;V0, R) j0(KR) , (38)

F (E;V0, R) =
1

2KR

[
R2L(E;V0, R) (39)

+RL(E;V0, R) +R2K
]
. (40)

In Fig. 10 we show how the separable approxima-
tion (36) (squares) performs compared to the original po-
tential (35) (circles) in an oscillator calculation. We use
V0 = −4 fm−1 and R = 1 fm, which produces a bound
state at κ∞ ≈ 0.638 fm−1 (determined numerically from
the quantization condition for attractive step potentials
and shown as a dotted line in Fig. 10). The dashed line
furthermore shows the result of a direct calculation based
on Eqs. (31) and (36) (see inset).
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Λ2 (fm−1)
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osc. calc. with full pot.

spherical well V0 = −4 fm−1, R = 1 fm

LO,

FIG. 10. (Color online) Oscillator calculations (with b =
2.0 fm and n = 4, . . . , 64) for a spherical step potential with
V0 = −4 fm−1 and R = 1 fm and its separable approximation.
Dashed line: direct-quantization result according to Eqs. 31
and (36). Squares: oscillator result with separable approxi-
mation (36). Circles: oscillator result with the original (full)
potential (35). The horizontal dotted line indicates the exact
result for the binding momentum.

The results of all three calculation agree remarkably
well. The fact that the separable approximation used
in the oscillator calculations follows the result from the
direct quantization according to Eq. (31) is primarily re-
assuring. More interestingly, the latter also traces the re-
sult of a “full” oscillator calculation based on the original
step potential—including the rather slow convergence to-
wards the exact result and even the peculiar step around
Λ ≈ 6 fm−1 in Fig. 10.

These features are due to the rather pathological (os-
cillatory) behavior of the step potential in momentum
space. In the next subsection, we avoid this complication
by studying another class of exactly solvable interactions,
which are smooth.
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b. Pöschl–Teller potential. It is convenient for us to
consider a so-called Pöschl–Teller potential of the form

VPT(r) = −α
2β(β − 1)

cosh2(αr)
(41)

Originally, this potential describes a one-dimensional
problem on the interval (−∞,∞). However, restricting
ourselves to S-waves (and to states with odd wavefunc-
tions), we can use it as a solvable problem in three dimen-
sions. For given values of α and β, this potential has an
analytically known bound-state spectrum. Labelling dif-
ferent states by an index ν, we have, for example, a single
bound state (ν = 0) with binding momentum κ = α for
β = 3. For β = 5, there are two bound states at κ = 3α
(ν = 0) and κ = α (ν = 1). The wavefunctions for this
potentials are known analytically as well, which allows
us to derive explicit expressions for the form factors η(k)
as well. These details are given in Appendix B.

2.0 2.5 3.0 3.5 4.0 4.5
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osc. calc. with sep. approx.
osc. calc. with full pot.

Pöschl–Teller α = 2/3 fm−1, β = 3

LO,

FIG. 11. (Color online) Oscillator calculations (with b =
2.5 fm and n = 4, . . . , 32) for a Pöschl–Teller potential with
β = 3 and α = 2/3 fm−1 and its separable approximation.
Dashed line: direct-quantization result according to Eqs. 31
and (B3). Squares: oscillator result with separable approxi-
mation (B3). Circles: oscillator result with the original (full)
potential (41). The horizontal dotted line indicates the exact
result for the binding momentum.

In Fig. 11 we show results for a Pöschl–Teller potential
with β = 3 and a bound-state at κ = α = 2/3 fm. The
curves are analogous to those shown in Fig. 10 for the step
potential. While the agreement between the calculations
with the original potential and the separable approxima-
tion is not as impressive as for the step potential, it is
still very good for cutoffs Λ2 & 2.5 fm−1 (n > 8).

In general, the regime where UV cutoff effects domi-
nate the energy correction can be found from plots like
the one shown in Fig. 12, where we plot the b-dependence
of κ for our Pöschl–Teller potential with β = 3 and
α = 2/3 fm. Recalling that large b correspond to

large configuration-space boxes L2 =
√

2(2n+ 3/2 + 2)b
and thus negligible IR correction, we identify the UV-
dominated region as the one with b & 2.
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Pöschl–Teller α = 2/3 fm−1, β = 3

LO,

n = 6

n = 12

n = 24

FIG. 12. (Color online) Binding momentum as a function of
b obtained from oscillator with different basis sizes. Circles:
n = 6. Boxes: n = 12. Diamonds: n = 24. The horizontal
dotted line indicates the exact result for the binding momen-
tum.

C. UV extrapolation for Pöschl-Teller potential

Based on these encouraging results, we now turn to
actual extrapolations. The simplest fit formula one can
write down for that purpose is

(fit “η”) κΛ = κ∞ −A
∫ ∞

Λ

dk η(k)2 , (42)

which is just Eq. (25) in a more general notation (fλ →
η). In the absence of an explicit scale λ associated with
the separable “form factor,” however, it is not a priori
clear that the various approximations made in Sec. III A
are rigorously justified. Without any of those approxi-
mations, the most general fit formula—based directly on
Eq. (14)—is

(fit “η, full”) κΛ = κ∞−A

∫ ∞
Λ

dk
k2 η(k)2

κ2
∞ + k2∫ Λ

0

dk
k2 η(k)2

(κ2
∞ + k2)2

. (43)

This is actually quite restrictive since for an exact calcu-
lation one would expect A ≈ 1/(2κ∞) here, and in a fit to
the binding energies instead of the binding momenta one
should expect a prefactor ∼ 1. As one more alternative,
one can choose a middle ground and write

(fit “η′”) κΛ = κ∞ −A
∫ ∞

Λ

dk
k2 η(k)2

κ2
∞ + k2

, (44)

which is obtained from Eq. (43) by extending the integral
in the denominator up to infinity—rendering it indepen-
dent of Λ—and then absorbing the whole term into the
fit constant A. In the next section, we will compare the
three approaches to one another and to phenomenologi-
cal fits (Gaussian, exponential).
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Of course, we are ultimately interested in performing
these fits for potentials for which we have no analytical
knowledge of the wavefunctions. Fortunately, the diag-
onalization calculation in the truncated oscillator basis
does provide us at least with approximate wavefunctions,
so it is natural to simply use the “best” solution avail-
able3 from a set of calculations, i.e., set

η(k) = 〈k|V̂ |ψ〉HO, best (45)

in what can be called a “bootstrap extrapolation”
because—aside from the original potential—it only uses
information that comes out of the numerical calculation.
If the interaction V̂ is already given on a momentum-
space mesh for the numerical calculation, Eq. (45) is very
simple (and fast) to implement. Using that wavefunc-
tion, one can perform a direct extrapolation to Λ → ∞
by simply using the corresponding η(k) in the separa-
ble quantization condition (31) without fitting a range
of data points. Below, we refer to this approach as “η,
direct.”

Possible phenomenological approaches for extrapola-
tion fits include a simple exponential,

(fit “E”) κΛ = κ∞ −A e−BΛ , (46)

or a Gaussian

(fit “G”) κΛ = κ∞ −A e−BΛ2

. (47)

We now investigate how well our separable extrapolations
perform in comparison to Eqs. (46) and (47). We point
out that they are quite a bit more constrained because
they use only two fit parameters (κ∞ and A) instead of
three (κ∞, A, and B). As described above, we follow the
bootstrap procedure and take the wavefunction from the
“best” numerical calculation available to construct the
η(k) used for the extrapolation. Since we have analytical
expressions for the wavefunctions, we additionally show
the extrapolation results obtained with those. This al-
lows us to get at least an idea of how much influence it
has on the extrapolation if the wavefunction is only given
in a truncated basis.

In Table I we give a detailed account of the results
for a Pöschl–Teller potential with α = 2/3 fm−1 and
β = 3, which supports a single bound state with bind-
ing momentum κ∞,exact = α. Comparison plots for the
n = 4, . . . , 12 and b = 3.5, . . . , 5.5 fm datasets are shown
in Figs. 13 and 14 respectively. To avoid cluttering,
only the two phenomenological fits according to Eqs. (46)
and (47) and the simplest separable one—Eq. (42) with
η(k) constructed from the numerical data—are shown in

3 Typically, “best” would refer to the result from the largest avail-
able oscillator space and the most UV-converged (small b) calcu-
lation. In practice, one could also make several different choices
for the extrapolation and take the spread in the result as a lower
bound for the fit uncertainty.
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FIG. 13. (Color online) Comparison of UV extrapolations
for an oscillator calculation (fixed b = 4.0 fm, running n =
4, . . . , 12) with a β = 3, α = 2/3 fm−1 Pöschl–Teller po-
tential. Circles: oscillator results. Dotted line: exponential
extrapolation (fit “E”). Dashed line: Gaussian extrapolation
(fit “G”). Solid line: simplest separable extrapolation (fit
“η”). The horizontal dotted line indicates the exact result for
the binding momentum.
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FIG. 14. (Color online) Same as Fig. 13, but now with
fixed basis size n = 12 and running oscillator length b =
3.5, . . . , 5.5 fm.

the figures. Table II furthermore shows a detailed com-
parison for the excited state (at κ∞,exact = 1/3 fm−1) of

a Pöschl–Teller potential with β = 5 and α = 1/3 fm−1.4

From the results presented in the tables and plots, we
draw the following conclusions at this point:

• None of the fits produces the correct (exact) bind-
ing momentum right away, not even if the calcu-
lation is already converged to within only 2%. It
should be noted, however, that we made no effort

4 This potential has a deeper ground state with binding momen-
tum κ = 3α = 1 fm−1.
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TABLE I. Comparison of different extrapolations for a Pöschl–Teller potential with α = 2/3 and β = 3. For the calculations
where n is varied, it is increased in steps of 2, and b is held fixed at 4.0 fm. For the calculations with variable b (increasing
in steps of 0.5 fm), n is held fixed at 12. The dimension of κ∞ is always fm−1 and has been omitted in the columns. The
percentage values in parentheses give the relative difference, defined here as 100 × (1− |κ∞/κ∞,exact|), of the extrapolated
values to the exact answer κ∞,exact ≈ 0.6667 fm−1.

VPT with α = 2/3 fm−1, β = 3 → κ∞,exact ≈ 0.6667 fm−1

Calculation n = 2–8 n = 4–12 n = 6–16 b = 4.5–6.5 fm b = 3.5–5.5 fm

κΛmax 0.607 (8.9%) 0.639 (4.2%) 0.6530 (2.04%) 0.619 (7.2%) 0.6535 (1.97%)

Phenomenological fits

κ∞, “E” 0.694 (4.1%) 0.678 (1.7%) 0.6719 (0.79%) 0.685 (2.8%) 0.6726 (0.89%)

κ∞, “G” 0.650 (2.5%) 0.659 (1.2%) 0.6633 (0.51%) 0.656 (1.6%) 0.6633 (0.51%)

Separable fits with exact η

κ∞, “η” 0.651 (2.4%) 0.659 (1.2%) 0.6628 (0.59%) 0.655 (1.8%) 0.6620 (0.70%)

κ∞, “η′” 0.661 (0.9%) 0.662 (0.7%) 0.6642 (0.38%) 0.660 (1.0%) 0.6635 (0.47%)

κ∞, “η, full” 0.644 (3.4%) 0.658 (1.3%) 0.6631 (0.54%) 0.653 (2.1%) 0.6622 (0.67%)

Separable fits with η from best oscillator calculation

κ∞, “η” 0.633 (5.1%) 0.651 (2.4%) 0.6593 (1.11%) 0.642 (3.7%) 0.6585 (1.23%)

κ∞, “η′” 0.639 (4.2%) 0.654 (1.9%) 0.6604 (0.94%) 0.646 (3.1%) 0.6598 (1.03%)

κ∞, “η, full” 0.630 (5.5%) 0.651 (2.4%) 0.6596 (1.06%) 0.641 (3.9%) 0.6587 (1.19%)

Direct quantization with η from best oscillator calculation

κ∞, “η, direct” 0.652 (2.2%) 0.661 (0.9%) 0.6643 (0.36%) 0.655 (1.8%) 0.6644 (0.35%)

TABLE II. Comparison of different extrapolations for a Pöschl–Teller potential with α = 1/3 and β = 5. For the calculations
where n is varied, it is increased in steps of 2, and b is held fixed at 4.5 fm. For the calculations with variable b (increasing in
steps of 0.5 fm), n is held fixed at 16. See Table I and text for further explanation.

Excited state of VPT with α = 2/3 fm−1, β = 5 → κ∞,exact ≈ 0.3333 fm−1

Calculation n = 4–12 n = 6–16 n = 8–18 b = 5.5–7.5 fm b = 4.5–6.5 fm

κΛmax 0.313 (6.1%) 0.326 (2.2%) 0.3223 (3.31%) 0.301 (9.7)%) 0.3264 (2.08%)

Phenomenological fits

κ∞, “E” 0.348 (4.4%) 0.340 (2.0%) 0.3421 (2.63%) 0.357 (7.1%) 0.3394 (1.82%)

κ∞, “G” 0.332 (0.4%) 0.334 (0.2%) 0.3341 (0.23%) 0.335 (0.5%) 0.3339 (0.17%)

Separable fits with exact η

κ∞, “η” 0.328 (1.6%) 0.330 (1.0%) 0.3287 (1.39%) 0.324 (2.8%) 0.3297 (1.09%)

κ∞, “η′” 0.328 (1.6%) 0.330 (1.0%) 0.3291 (1.27%) 0.325 (2.5%) 0.3300 (1.00%)

κ∞, “η, full” 0.325 (2.5%) 0.329 (1.3%) 0.3282 (1.54%) 0.322 (3.4%) 0.3294 (1.18%)

Separable fits with η from best oscillator calculation

κ∞, “η” 0.317 (4.9%) 0.326 (2.2%) 0.3240 (2.80%) 0.310 (7.0%) 0.3267 (1.99%)

κ∞, “η′” 0.318 (4.6%) 0.327 (1.9%) 0.3243 (2.71%) 0.310 (7.0%) 0.3269 (1.93%)

κ∞, “η, full” 0.315 (5.5%) 0.326 (2.2%) 0.3237 (2.89%) 0.309 (7.3%) 0.3265 (2.05%)

Direct quantization with η from best oscillator calculation

κ∞, “η, direct” 0.327 (1.9%) 0.332 (0.4%) 0.3303 (0.91%) 0.322 (0.0%) 0.3316 (0.52%)

(e.g., weighting) here to improve the fits. The only
exception to this is the excited state of the β = 5
Pöschl–Teller potential (see Table II), where the
Gaussian fit works remarkably well. This may be
an accidental property of that potential and just
underlines our previous statement that in general
it is desirable to have an extrapolation approach

that really takes into account information from the
particular potential and state under consideration.

• On average, the Gaussian fit mostly produces the
best (closest to the exact answer) results. Ex-
cept for the least-converged oscillator calculations,
however, the separable fits based on our analytical
knowledge of the exact wavefunctions work as well
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as the corresponding Gaussian ones. This indicates
that the main limitation of the separable approach
is the incomplete knowledge of the wavefunction
that one gets from the numerical calculations.

• For the more converged calculations, however, the
completely numerical separable fits come close to
the Gaussian results—although, as we have already
pointed out, the latter approach uses one more fit
parameter.

• Reassuringly, there is little scatter in the different
separable fits, Eqs. (42), (43), and (44). Except for
the most converged calculations, the fit based on
Eq. (44) produces significantly better (in the above
sense) results than the other two. Coming back
to the discussion in Sec. III C, this might indicate
that the Eq. (42) is not rigorously justified, whereas
Eq. (43) is too constraining to fit the whole range
of data. While it may be tempting to thus sug-
gest Eq. (44) as the optimal fit strategy, it is not
clear that our speculation here is correct in general
or even for the specific potentials considered here.
Since the overhead of the analysis is small com-
pared to the original diagonalization, in practice it
should be useful to perform all three fits and take
the scatter as an indicator for the stability and/or
uncertainty of the method.

• Finally, it is interesting to see that the “direct”
extrapolation based on the separable quantization
condition (31) is able to produce results quite close
to the exact answer based on just a single oscillator
calculation with fixed n and b.

D. Separable deuteron extrapolation

At this point, we finally turn to extrapolations for
the deuteron bound state as it comes out from oscillator
calculations with realistic nucleon–nucleon interactions.
While for this simple system one can actually choose os-
cillator spaces which yield results converged so well that
no extrapolation is actually necessary, it is still the most
interesting two-body system we can look at here and pro-
vides a starting point for extrapolations of many-body
calculations to be looked at in the future.

1. Separable deuteron potential

The deuteron is the bound state in the 3S1–3D1

coupled-channel system of the n–p interaction. We write
this potential as

V̂SD =

(
V̂00 V̂02

V̂20 V̂22

)
, (48)

where V̂``′ are the angular momentum components of
a given realistic nucleon–nucleon potential (naturally,
V̂20 = V̂ †02). For simplicity, we have omitted here the
remaining quantum numbers and just note that for the
deuteron one has S = J = 1 and T = 0, for the spin,
total angular momentum, and isospin, respectively. If
we now write the deuteron wavefunction found from the
potential (48) as

|ψd〉 =

(
|ψ0〉
|ψ2〉

)
, (49)

we can construct a separable potential of the form

V̂SD,sep = g

(
|η0〉〈η0| |η0〉〈η2|
|η2〉〈η0| |η2〉〈η2|

)
= g

(
|η0〉
|η2〉

)(
〈η0|
〈η2|

)T
(50)

if we set

|η0〉 = V̂00|ψ0〉+ V̂02|ψ2〉 , (51a)

|η2〉 = V̂20|ψ0〉+ V̂22|ψ2〉 , (51b)

and

g =
(
〈ψ0|V̂00|ψ0〉+ 〈ψ2|V̂22|ψ2〉+ 2 Re 〈ψ0|V̂02|ψ2〉

)−1

.

(52)

2. Coupled-channel separable extrapolation

To derive the extrapolation formula for this coupled-
channel separable potential, we start by writing the
Schrödinger equation as

(
k̂2 0

0 k̂2

)(
|ψ0〉
|ψ2〉

)
+

[
g

(
|η0〉
|η2〉

)(
〈η0|
〈η2|

)T ]( |ψ0〉
|ψ2〉

)
= −κ2

(
|ψ0〉
|ψ2〉

)
. (53)

Just like in the single-channel case (cf. Sec. III A), it is
straightforward to solve as(

|ψ0〉
|ψ2〉

)
= c∞

(
k̂2 + κ2 0

0 k̂2 + κ2

)−1( |η0〉
|η2〉

)
(54)

with a constant

c∞ = g
[
〈η0|ψ0〉+ 〈η2|ψ2〉

]
. (55)

Noting that the operator inversion in Eq. (54) can be
carried out for the two diagonal terms individually and
inserting the result back into Eq. (53), we get
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1 0
0 1

)
+ g

(
〈η0|

(
k̂2 + κ2

)−1|η0〉 0

0 〈η2|
(
k̂2 + κ2

)−1|η2〉

)]
×
(
|η0〉
|η2〉

)
= 0 . (56)

Finally, by multiplying from the left with (〈η0|, 〈η2|), we
arrive at a simple quantization condition for the binding
momentum κ, which in momentum space reads

− 1 = 4πg

∫ ∞
0

dk k2 η0(k)2 + η2(k)2

κ2
∞ + k2

. (57)

Repeating the whole procedure with appropriate projec-
tion operators to enforce a momentum cutoff Λ, we find

− 1 = 4πg

∫ Λ

0

dk k2 η0(k)2 + η2(k)2

κ2
Λ + k2

. (58)

This is just Eq. (31) with the replacement

η(k)2 −→ η0(k)2 + η2(k)2 , (59)

so it is simple to read off the coupled-channel extrapola-
tion formulas from Eqs. (42) to (44). For example, the
analog of Eq. (42) is just

κΛ = κ∞ −A
∫ ∞

Λ

dk
[
η0(k)2 + η2(k)2

]
. (60)

3. Extrapolation results

In Fig. 15 we show results obtained with the Entem–
Machleidt N3LO (500 MeV cutoff) potential. For the
interaction SRG-evolved down to a resolution scale λ =
2.0 fm−1 (left panel), the picture is similar to what
we found for the Pöschl–Teller potential in Sec. III C.
With the oscillator calculation (performed at fixed Ω =
4 MeV → b ≈ 4.55 fm), the Gaussian fit actually yields
the exact answer κd = 45.702 (for the given interaction)
to within 0.01%. The separable fits, however, also work
very well and give the right answer to within 0.15 to 0.55
percent. The simple exponential fit does not perform well
at all in this case.

Seeing how all three curves actually fit the data points
very well with negligible residuals, however, the “dan-
ger” of purely phenomenological extrapolations becomes
quite evident. If one does not use a known answer as
guideline—as clearly one should not in a completely rig-
orous approach—it would be hard to judge which fit
should be trusted.

For the results based on the “bare” (unevolved) in-
teraction (right panel in Fig. 15), the situation is even
more dramatic: in this case, both phenomenological ap-
proaches fail badly (based on comparing their results to
the known answer), whereas the separable approximation
still works remarkably well (better than 1% agreement
with exact answer). This should finally serve to underline

the true value of this physically motivated extrapolation
approach.

We find the same situation also for other nucleon–
nucleon interactions. As a further example, we show in
Fig. 16 results for the Epelbaum et al. N3LO potential
(550/600 MeV cutoff). For the SRG-evolved interaction
we see an interesting feature at Λ2 ∼ 2.0 fm−1. The curve
for the separable fit has a “bump” structure around this
cutoff, but it ends up almost exactly at the converged
value. To prove that this is not a peculiar artifact of the
separable fit, we show in Fig. 17 results for the same po-
tential but up to larger cutoffs. To also demonstrate once
more the validity of identifying Λ2 = Λ2(N,Ω) as the rel-
evant UV cutoff, we use in this case data points obtained
at fixed N and varying Ω for the fits. The data points
from Fig. 16 are shown at the same time for comparison.
The plot shows that the bump structure really is a fea-
ture that is in the oscillator data. We point out that the
simple exponential and Gaussian fits shown for compar-
ison cannot possibly capture this kind of behavior. We
hence claim that the separable fit approach is superior to
the phenomenological ones also for SRG-softened inter-
actions (at least for fits over a large cutoff range, cf. the
following section).

Finally, to look at one more NN potential, we show
in Fig. 18 results for the Epelbaum et al. interaction
at N2LO. Since the overall situation is the same, we fo-
cus in this case on assessing the stability of the sepa-
rable fits alone. To this end, we show now fit curves
for the three different versions—Eqs. (42) to (44) with
η(k)2 → η0(k)2 + η2(k)2—obtained from oscillator cal-
culations with n = 5, 7, 9 (instead of using just the one
with largest n). Although the overall spread is remark-
ably small, we suggest this procedure in order to assess
the stability of the fit. Since the band generated this way
does unfortunately not cover the exact answer for this po-
tential (κ∞ ≈ 45.3 MeV), it is clear that this obviously
gives a lower bound on the overall theoretical uncertainty
of the calculation. Note, however, that the best oscilla-
tor result shown in the plot is only converged to within
about 20%. We also point out that the separable fits
still perform better than the phenomenological ones (not
shown in the plot).

IV. RE-EXAMINING SRG-BASED
EXTRAPOLATIONS

In the last section we showed that the separable ex-
trapolation applied to the deuteron worked very well for
bare potentials and SRG-evolved potentials. In this sec-
tion, we re-examine prior results in the literature for SRG
interactions. These include the phenomenological result
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FIG. 15. (Color online) Comparison of UV extrapolations for a deuteron state calculated with the Entem–Machleidt N3LO
(500 MeV cutoff) potential, (a) SRG-evolved down to a resolution scale λ = 2.0 fm−1 and (b) with the “bare” (unevolved)
interaction. Circles: oscillator results. Dotted line: exponential extrapolation (fit “E”). Dashed line: Gaussian extrapolation
(fit “G”). Solid line: simplest separable extrapolation (fit “η”). The horizontal dotted lines indicate the exact result for the
binding momentum.
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FIG. 16. (Color online) Comparison of UV extrapolations for a deuteron state calculated with the Epelbaum et al. N3LO
(550/600 MeV cutoff) potential, (a) SRG-evolved down to a resolution scale λ = 2.0 fm−1 and (b) with the “bare” (unevolved)
interaction. The symbols and curves are as in Fig. 16.

that a Gaussian ansatz for the UV correction,

∆E∞ ∝ e−b1Λ2
2 , (61)

gives good fits with b1 ≈ 4/λ2 at resolution scale λ [5,
11].5

5 Note: these earlier works used an oscillator parameter b defined
with the nucleon mass rather than the reduced mass as used
here. Thus the numerical values of the effective IR and UV
cutoffs differ by a factor of

√
2 compared to SRG results given

in here.

A. Perturbation theory for SRG potentials

Here we reconsider evaluating the UV correction in
perturbation theory as in Sec. III A 2, but instead of a
separable potential we only assume that we have a poten-
tial Vλ(k, k′) with a UV scale λ, the (dominant) behavior
of which is known when one argument is small (< λ) and
one argument is large (> λ). In particular, we expect the
dominant dependence for SRG evolved potentials to be
roughly [19, 20]

Vλ(k, k′)
k>λ−→
k′�λ

V∞(k, k′)e−k
4/λ4 ≈ V∞(k, 0)e−k

4/λ4

,

(62)
where V∞(k, 0) varies relatively slowly compared to

e−k
4/λ4

in the relevant range of k. Equation (62) follows
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FIG. 17. (Color online) Comparison of UV extrapolations for
a deuteron state calculated with the Epelbaum et al. N3LO
(550/600 MeV cutoff) potential. Circles: oscillator results
with fixed Ω = 4 MeV and n = 4, . . . , 12. Squares: oscillator
results with fixed n = 10 and Ω = 3, . . . , 12 MeV (in steps of
1.5 MeV. The curves are as in Fig. 16 and show fits to the
squares only.
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FIG. 18. (Color online) Comparison of UV extrapolations for
a deuteron state calculated with the Epelbaum et al. N2LO
(550/600 MeV cutoff) potential. Circles: oscillator results.
Solid line: simplest separable extrapolation (fit “η”). Long-
dashed line: general separable extrapolation (fit “η, gen.”).
Short-dashed line: modified general separable extrapolation
(fit “η, gen.′ ”). The horizontal dotted line indicates the exact
result for the binding momentum.

from the SRG flow equations because of the dominance
of the kinetic energy for far off-diagonal matrix elements
(see Eq. (12) in Ref. [19]), together with an expansion
about k′ = 0. Another class of potentials with analogous
behavior are smooth Vlow k potential with super-Gaussian
regulators with a cutoff λ [21], for which the regulator de-
pendence is strongly imposed on the potential.

The momentum space Schrödinger equation with Λ =

∞ is

k2φ∞(k) +

∫
d3k′ Vλ(k, k′)φ∞(k′) = −κ2

∞φ∞(k) . (63)

So the analog equation to (17) for the unperturbed wave-
function is

φ∞(k) =

−
∫

d3k′ Vλ(k, k′)φ∞(k′)

k2 + κ2
∞

. (64)

If we look at this wavefunction where k > λ, then we can
take advantage of the integral being dominated by where

φ∞(k′) is large, which is at low k′, to expand Ṽ (k, k′)
about k′ = 0 (here keeping only the leading term):

φ∞(k)
k>λ−→ − Vλ(k, 0)

k2 + κ2
∞

∫
d3k′ φ∞(k′) . (65)

Given that the integration over the wavefunction is now a
constant, and given Eq. (62) for Vλ(k, 0), which looks like
fλ(k) (with some weaker k dependence), we see a close
correspondence to the expression for the wavefunction in
a pure separable potential given by φ(k) in Eq. (9).

The cutoff Hamiltonian is

HΛ =

[
k2 δ(k − k′)

kk′
+ Vλ(k, k′)

]
Θ(Λ− k)Θ(Λ− k′) ,

(66)
so the perturbation is δH(k, k′) = HΛ − H∞. Using
Θ(Λ− k) = 1−Θ(k − Λ), we find (cf. Eq. (18))

δH(k, k′) = −
[
k2 δ(k − k′)

kk′
Θ(k − Λ)Θ(k′ − Λ)

+ Vλ(k, k′)[Θ(k − Λ) + Θ(k′ − Λ)]

]
. (67)

The δ-function makes the second Θ function multiply-
ing the kinetic energy redundant, while again we have
dropped the −Θ(k − Λ)Θ(k′ − Λ) term. The first-order
energy shift is

∆E∞ =
〈φ∞|δH|φ∞〉
〈φ∞|φ∞〉

= −
[∫ ∞

Λ

dk k2 k2φ2
∞(k)

+ 8π

∫ ∞
0

dk′ k′2
∫ ∞

Λ

dk k2

× φ∞(k′)Vλ(k′, k)φ∞(k)

]
×
[∫ ∞

0

dk k2φ2
∞(k)

]−1

. (68)

Now Λ > λ in the present discussion, so we can apply
Eq. (65) twice in the first (kinetic energy) integral and
once in the second of the double integrals, also taking
V (k′, k)→ V (0, k) at the same level of approximation:
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∆E∞ ≈ −4π

[∫
d3k′ φ∞(k′)

]2 [∫ ∞
Λ

dk
k4 Vλ(0, k)Vλ(k, 0)

(κ2
∞ + k2)2

− 2

∫ ∞
Λ

dk
k2 Vλ(0, k)Vλ(k, 0)

κ2
∞ + k2

]
×
[∫ ∞

0

d3k φ2
∞(k)

]−1

≈ 4π

[∫
d3k′ φ∞(k′)

]2

[∫
d3k φ2

∞(k)

] × [∫ ∞
Λ

dk Vλ(0, k)Vλ(k, 0)

]
×
[
1 +O(κ2

∞/Λ
2)
]
. (69)

In the second line we have again just kept the leading
term in κ2

∞/Λ
2, which lets us combine the integrals.
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FIG. 19. (Color online) Relative error for the deuteron energy
from HO basis truncation as a function of (Λ2/λ)4 for (N,Ω)
values for which the IR correction can be neglected. Several
different SRG-evolved potentials are used, all with the same
initial potential as in Fig. 15. The dashed line shows the
expected slope (up to prefactors) for Λ2/λ � 1 according to
the analysis in Sec. III A 3. In the inset the relative error is
plotted against the unscaled Λ2.

Several observations can be made based on Eqs. (69)
and (62). First, we have additional confirmation that
the UV energy correction is not universal in the sense
that unitarily equivalent potentials (such as SRG poten-
tials at different λ values) will give different corrections,
unlike the case for the IR correction (e.g., see Fig. 21 in
Ref. [7]). We see the same Λ dependence at this level as in
the separable case. Therefore, the same analysis should
go through when looking at the dependence of the energy
correction in the asymptotic regime where Λ > λ. Note
also that at leading order (at least) we should find the
correction is a function of Λ/λ. Both of these are consis-
tent with numerical studies of the SRG-evolved deuteron
energy in this regime with the SRG Hamiltonian cut off

at Λ > λ. For example, in Fig. 19, the relative error
in the deuteron is plotted as a function of (Λ2/λ)4 for
SRG-evolved potentials ranging from λ = 2.6 fm−1 to
λ = 1.6 fm−1. The inset shows how different the cor-
rections are as a function of unscaled Λ2. When scaled,
the errors largely coincide for Λ2 ≤ λ for all three po-
tentials but up to much higher cutoffs for the two lower
values (and for any λ below about 2.2 fm−1). Apparently
a sufficient degree of evolution is needed to modify the
high-momentum tail of the potential so that it follows
the universal SRG asymptotic form for the correction

(∝ e−2(Λ2/λ)4).

B. Gaussian ansatz for UV extrapolations

Based on the results in the last section, if we are in the
asymptotic region where Λ � λ, we would not expect
to find that the energy behaves like Eq. (61), but for

SRG-evolved potentials roughly like e−2(Λ/λ)4 times some
slower-varying function of Λ. This is verified by Fig. 19.
More generally the separable extrapolation has the form
of an integral and not a simple functional form; so how
might an approximate Gaussian dependence on Λ2 arise?

The key is that in practice UV extrapolations have
typically been applied in a limited, non-asymptotic re-
gion Λmin < Λ < Λmax for which Λ/λ is about unity
(e.g., past NCSM fits were in the range 0.7 < Λ/λ < 1.1
and the fit was primarily determined by the points at
the lower end [5, 11]). While we expect ∆EΛ to decrease
rapidly with increasing Λ, log ∆EΛ should be well ap-
proximated by a low-order Taylor expansion in a small
region. If ∆EΛ is a function only of Λ2 rather than Λ,
then by keeping only through the linear term we will have
the phenomenological Gaussian ansatz for ∆EΛ, with a
prediction for b1 possible from our separable expansion
formalism.

We first consider separable potentials and demonstrate
that ∆EΛ = ∆EΛ(Λ2) for any fλ(k) that is a function
of k2. (For ` > 0, we expect fλ(k) will be of the form k`

times a function of k2, and the demonstration is trivially
generalized.) We start with Eq. (14), which we expect to
be quantitatively accurate in the region of interest. We
first make the Λ dependence explicit in the limits and



18

0.0 0.5 1.0 1.5 2.0 2.5

(Λ
2
/λ)

2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

∆
E

d
 /

 E
d

0.5 1.0

0.05

0.1

0.5

N
3
LO (500 MeV)

SRG λ = 2 fm
−1

3e
−4(Λ/λ)

2

FIG. 20. (Color online) Relative error for the deuteron en-
ergy from HO basis truncation as a function of (Λ2/λ)2 for
(N,Ω) values for which the IR correction can be neglected.
The potential is the same as in Fig. 15. The solid line is an
approximate fit to a region near Λ2/λ = 1.

then change variables to u = k/Λ:

∆EΛ =

∫
d3k

f2
λ(k)Θ(k − Λ)

κ2
∞ + k2∫

d3k
f2
λ(k)Θ(Λ− k)

(κ2
∞ + k2)2

=

∫ ∞
Λ

dk
k2f2

λ(k)

κ2
∞ + k2∫ Λ

0

dk
k2f2

λ(k)

(κ2
∞ + k2)2

=

∫ ∞
1

du
u2f2

λ(uΛ)

κ2
∞/Λ

2 + u2

1

Λ2

∫ 1

0

du
u2f2

λ(uΛ)

(κ2
∞/Λ

2 + u2)2

. (70)

But by assumption fλ(uΛ) depends only on the argu-
ment squared and therefore only on Λ2, so we have shown
∆EΛ = ∆EΛ(Λ2). Next we write:

g(Λ2) ≡ log ∆EΛ(Λ2)

= log

∫ ∞
Λ

dk
k2f2

λ(k)

κ2
∞ + k2 − log

∫ Λ

0

dk
k2f2

λ(k)

(κ2
∞ + k2)2 , (71)

and expand about Λ2 = Λ2
∗,

g(Λ2) = g0 + g1(Λ2 − Λ2
∗) +

1

2
g2(Λ2 − Λ2

∗)
2 + · · · . (72)

Truncating at the linear term, we obtain (with b1 = −g1)

∆EΛ = [e(g0−g1Λ2
∗)] eg1Λ2

= (const.)× e−b1Λ2

, (73)

which is the Gaussian form we are looking for. We can
directly evaluate the gi for i > 0 using

d

dΛ2
=

1

2Λ

d

dΛ
. (74)

Thus,

g1 =
dg

dΛ2

∣∣∣∣
Λ2
∗

=
1

2Λ∗


−f2

λ(Λ∗)
Λ2
∗

κ2
∞ + Λ2

∗∫ ∞
Λ∗

dk
k2f2

λ(k)

κ2
∞ + k2

−
f2
λ(Λ∗)

Λ2
∗

(κ2
∞ + Λ2

∗)
2∫ Λ∗

0

dk
k2f2

λ(k)

(κ2
∞ + k2)2

 < 0 . (75)

Note that this is a negative-definite function of Λ2
∗ (e.g.,

change variables again to u = k/Λ∗), so b1 > 0. Finally,
let us consider g2. We need the second derivative of g:

d

dΛ2

(
1

∆EΛ

d∆EΛ

dΛ2

)
=

d

dΛ2

(
d log ∆EΛ

dΛ2

)
= − 1

∆E2
Λ

(
d∆EΛ

dΛ2

)2

+
1

∆EΛ

d2∆EΛ

d(Λ2)2
. (76)

Now the first term on the right side of the last equality is
negative definite. In the other term, ∆EΛ(Λ2) is positive
definite and the curvature with respect to Λ2 is positive.
So we expect cancellation here for Λ∗ ≈ λ, which is veri-
fied numerically. With g2 small, the linear approximation
and therefore the Gaussian ansatz are valid. An exam-
ple showing the Gaussian region for an SRG potential is
given in Fig. 20, for which b1 = 4/λ2 is found to be a
good fit, with g2 ≈ 0. This same value works with other
light nuclei. Note that when fitting to the functional

form E(Λ) = E∞ + B0e−b1Λ2

, the choice of Λ∗ is made
implicitly by the fit to B0 and b1.

Let us briefly speculate, why the Gaussian fit does not
work well in general, see, e.g., the right panel of Fig. 15
and both panels of 16. For the Gaussian fit to be appli-
cable, g2 needs to be sufficiently small so that g1 domi-
nates for an accessible range of Λ. This condition is not
met in general: Figure 21 shows the relative error of the
deuteron binding energy as a function of (Λ2/λ)2, and
the shaded regions indicate where the Gaussian fit was
attempted (compare to Fig. 15).

V. FURTHER REMARKS

Before we summarize our results in the next section
and conclude, we come back here to some general remarks
about the separable-approximation approach introduced
in Sec. III.

A. More general derivation

While it was instructive to derive our general extrap-
olation formulas based on writing down a separable ap-
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proximation for the original potential and then taking
over the results obtained for explicitly separable interac-
tions from Sec. III A, we can actually also take a more di-
rect approach. If we consider a Hamiltonian H = H0 +V
giving rise to a bound state |ψ〉 with binding energy
−EB = −κ2

∞, we can write the Schrödinger equation
as

|ψ〉 = G0(−κ2
∞)V |ψ〉 , (77)

where G0 is the Green’s function (free resolvent)

G0(z) = (z −H0)−1 . (78)

Acting with V on both sides and taking the matrix ele-
ment with 〈ψ|, we get

1 =
〈ψ|V G0(−κ2

∞)V |ψ〉
〈ψ|V |ψ〉 . (79)

This already looks similar to our UPA potential (32).
Indeed, if we define g ≡ 〈ψ|V |ψ〉−1 and |η〉 ≡ V |ψ〉, we
get

1 = g × 〈η|G0(−κ2
∞)|η〉 , (80)

or, explicitly in momentum space,

−1 = 4πg

∫
dk

k2 η(k)2

κ2
∞ + k2

. (81)

Our extrapolation formulas follow from this if we assume
that cutting off the integral at a cutoff Λ can be compen-
sated by shifting κ2

∞ → κ2
Λ = κ2

∞ −∆EΛ.

Equation (80) is furthermore interesting because it
might be possible to use it for deriving extrapolation rela-
tions for bound states of more than two particles by con-
sidering appropriate many-body Green’s functions. Note
also that as an alternative to Eq. (79) we can obtain from
Eq. (77) a quantization condition of the form

1 =
〈ψ|G0(−κ2

∞)V |ψ〉
〈ψ|ψ〉 . (82)

This could be used to derive alternative extrapolation
relations that involve ψ(k)η(k) instead of η(k)2. From
the discussion in the following subsection, however, it
will become clear that Eq. (81) is the better choice.

B. The form factors

If we look at the definition of the form factors η(k)
and assume that the state |ψ〉 is an exact solution of the
Schrödinger equation (without truncation artifacts), it is
clear that we can rewrite

η(k) = 〈k|V |ψ〉 = 〈k|G0(−κ2
∞)−1|ψ〉
= (−κ2

∞ − k2)ψ(k) . (83)

Using this, our extrapolation formulas can be rewritten
in terms of ψ(k) instead of η(k), thus eliminating the ex-
plicit dependence on the potential. In our numerical cal-
culations, however, we only have approximate solutions
to the Schrödinger equation. While in principle one can
carry out the above manipulations before making the ap-
proximation of using the numerically-determined wave-
functions, it turns out that in practice it works much
better to use the extrapolations based on η(k) unless the
calculation is pretty much converged already.

The reason for this is likely that while the momentum-
space wavefunction that comes out of a non-UV-
converged oscillator calculation exhibits some unphysical
structure due to truncation artifacts, the form factors cal-
culated from it are still very smooth; integrating ψ with
the potential V essentially removes the truncation arti-
facts. The effect is shown in Figs. 22 and 23 where we
plot wavefunctions u(k) and the corresponding separa-
ble form factors η(k) as functions of k. The results were
obtained using a Pöschl–Teller potential with α = 2/3
and β = 3 in truncated oscillator bases with b = 4.0 fm.
Clearly, even if the wavefunction is far from being con-
verged, the corresponding η(k) is smooth and close in
shape to the known exact function (dashed curve). Note
also that the UV cutoffs Λ2 ≈ 1.2 fm−1 (n = 4, Fig. 22)
and Λ2 ≈ 1.6 fm−1 (n = 8, Fig. 23) are clearly visible
in the oscillator-based wavefunction. Beyond the cutoff,
they are essentially zero, which means that they are not
suitable for extrapolations to larger cutoffs. This is differ-
ent for the form factors, which still have high-momentum
tails.

Finally, this analysis also shows that an extrapola-
tion formula based on Eq. (82), featuring the product
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FIG. 22. (Color online) (a) Wave functions and (b) corresponding separable form factor for a Pöschl–Teller potential with
α = 2/3 and β = 3. Solid lines: results from oscillator calculation with b = 4.0 fm and n = 4. Dashed lines: exact (analytically
known) results for comparison.
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FIG. 23. (Color online) (a) Wave functions and (b) corresponding separable form factor for a Pöschl–Teller potential with
α = 2/3 and β = 3. Solid lines: results from oscillator calculation with b = 4.0 fm and n = 8. Dashed lines: exact (analytically
known) results for comparison.

u(k)η(k) would not work well with wavefunctions ob-
tained from the truncated oscillator calculation.

VI. SUMMARY AND OUTLOOK

In this paper, we developed a theoretical basis for ul-
traviolet errors in truncated harmonic oscillator (HO)
spaces. We used the two-particle system with model po-
tentials and deuteron calculations with realistic poten-
tials as solvable theoretical laboratories to develop and
test extrapolation schemes. By studying the two-body
system in great detail, we follow the successful strategy
of Refs. [7, 8], which has recently lead to successful exten-
sions to the many-body sector [9]. First we established
that the spectrum of the squared position operator in
a finite oscillator basis is the same as that of a system
with a hard cutoff in momentum. This is the dual re-

sult to the IR, where the spectrum of the squared mo-
mentum operator in a truncated oscillator basis coincides
with that of a spherical box with a hard wall at radius
L2. Matching the lowest eigenvalues establishes the cut-
off Λ2, which was determined in a 1/N expansion. By
duality, it is the same as L2 (and beyond in 1/N) when
expressed in dimensionless units. The appropriateness
of Λ2 was verified by model and deuteron calculations,
which showed a smooth curve with little scatter com-
pared to other choices.

Having transferred the problem from calculations in a
truncated basis to calculations with an imposed sharp
momentum cutoff, we turned to rank-one separable po-
tentials. For these potentials, we could directly derive
an analytic formula for the correction to a bound-state
eigenvalue in terms of integrals over the potential that
relied on the correction being small. This formula was
shown to be amenable to perturbation theory and asymp-
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totic expansions when Λ2 is greater than the intrinsic UV
scale of the potential. This is useful for general tests and
to establish that the UV correction depends on the high-
momentum behavior of the potential.

But the true region of interest is when Λ2 is compa-
rable to or smaller than this scale. In this case, the in-
tegral expressions can be used to parametrize extrapo-
lation formulas to fit. A new procedure was developed
to generalize this extrapolation method to any potential
by adapting the unitary pole approximation. Tests for
model potentials as well as for the deuteron with realis-
tic potentials are very encouraging. Finally, we showed
how the simple Gaussian phenomenological extrapolation
widely used in the past can be recovered from an expan-
sion of the separable potential.

The IR and UV corrections exhibit a complementary
mix of universal and non-universal characteristics. The
IR corrections are dictated by asymptotic behavior and
are consequently determined by observables, independent
of the details of the interaction. So unitarily equivalent
potentials—such as those generated by RG running—will
have the same corrections. In contrast, because they
probe short-range features, UV corrections depend on
the details of the interaction (and the state under con-
sideration). This was manifested here by the different
corrections for the deuteron from SRG interactions at
different resolutions as well as the explicit formulas with
dependence on the high momentum behavior of the in-
teraction.

On the other hand, the IR corrections are non-
universal with respect to the number of nucleons A, de-
pending for example on the separation energy of the nu-
cleus. The dependence on A for the UV corrections is
not yet established theoretically, but fits of the Gaussian
ansatz Eq. (73) to energies from the same SRG-evolved
potential for different A have been found to have roughly
the same value of b1 (approximately equal to 4/λ2, where
λ is the SRG flow parameter [5, 11]). Thus the Λ2 de-
pendence is the same with ∆EΛ just scaled by an A-
dependent overall constant. For A = 2, ∆EΛ is deter-
mined by the short-distance or high-momentum behav-
ior. For A > 2, the many-body wave function is expected
to factorize into a two-body part and a remainder when
those two particle coordinates are sufficiently close. This
can be understood from general considerations of short-
range correlations [22] or more systematically using the
operator product expansion [20, 23]. If there is a common
two-body part, it may determine the dominant Λ2 depen-
dence (using the separable-approximation approach or at
the level of the Gaussian approximation) with the rest
providing the A-dependent scale factor. This behavior
would be consistent with the observation of a universal
shape for high-momentum tails in momentum distribu-
tions (or the corresponding short-distance behavior) [24].
This potential UV universality as well as more direct ap-
proaches building on the discussion in Sec. V are the
subject of on-going investigations.
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Appendix A: UV cutoff details

In this appending, we give a detailed derivation of the
effective ultraviolet cutoff Λeff as a function of the har-
monic oscillator parameters (basis size N and frequency
Ω) that we stated in Sec. II.

1. Notation and conventions

Consider the three-dimensional isotropic harmonic os-
cillator described by the Hamiltonian (in natural units
with ~ = c = 1)

HHO =
p2

2µ
+
µΩ2r2

2
, (A1)

where µ is the reduced mass and Ω denotes the oscillator
frequency. The eigenstates |n`m〉 of HHO are degenerate
in the quantum number m,

HHO|n`m〉 = En`m|n`m〉 (A2)

with

En`m =

(
2n+ `+

3

2

)
Ω . (A3)

We use a slightly modified version of the conventions and
notation from Ref. [25]. The full three-dimensional wave-
function in configuration space is

ψn`m(r) = 〈r|n`m〉 =
un`(b; r)

r
Y`m(r̂) (A4)

with the reduced radial wavefunction

un`(b; r) = Nn`(b)× (r/b)`+1e−(r/b)2/2L`+
1/2

n

(
(r/b)2

)
,

(A5)
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where

Nn`(b) =

√
2n!

bΓ(n+ `+ 3/2)
, (A6)

and

b = (µΩ)−1/2 (A7)

is the oscillator length. The Fourier transform of
Eq. (A4) is

ψ̃n`m(k) = (2π)−
3/2

∫
d3r e−ik·rψn`m(r) . (A8)

It can be written as

ψ̃n`m(k) = (−i)`
ũn`(b; k)

k
Y`m(k̂) , (A9)

such that ũn`(b; k) is the Fourier–Bessel transform of
un`(b; r), i.e.,

ũn`(b; k) =

√
2

π

∫ ∞
0

dr′ kr′j`(kr
′)un`(b; r

′) . (A10)

This gives

ũn`(b; k) = (−1)nÑn`(b)× (kb)`+1e−(kb)2/2L`+
1/2

n

(
(kb)2

)
(A11)

with

Ñn`(b) =

√
2n! b

Γ(n+ `+ 3/2)
. (A12)

2. Smallest eigenvalue of r2

In the following derivation of Λeff , we directly consider
subspaces with an arbitrary (but fixed) angular momen-
tum `, but quote S-wave (` = 0) results explicitly for
the sake of illustration. Denoting the square root of

the smallest eigenvalue of r2 in the truncated oscillator
subspace with angular momentum ` by ρ,6 the localized
momentum-space eigenfunction for a hard-wall (Dirich-
let) boundary condition in momentum space is

ψ̃ρ,`(p) =

{
pρ j`(pρ) , 0 ≤ p ≤ x`/ρ ,
0 , p > x`/ρ ,

(A13)

where x` denotes the smallest positive zero of the spher-
ical Bessel function j`. For S-waves, one simply has

ψ̃ρ,`(p) = sin(pρ) and x0 = π. The eigenfunction can
be expanded in terms of oscillator functions as

ψ̃ρ(p) =

∞∑
k=0

c̃k(ρ)ũk(p) , (A14)

6 Strictly, we should write ρ` here, but we omit the additional
subscript for notational simplicity.

without basis truncation so far. We have used the short-
hand notation

ũn(p) ≡ ũn`(1; p) . (A15)

In particular, we set the oscillator length b to unity for
the time being. Exactly as in Ref. [7], the eigenvalue
problem [

r2 − ρ2
]
ψ̃ρ(p) = 0 (A16)

becomes a set of coupled linear equations. For S-waves,
one can use the fact that the three-dimensional oscilla-
tor wavefunctions are directly related to the (odd) one-
dimensional oscillator states and write

r2 = a†a+
1

2
+

1

2

[
a2 + (a†)2

]
, (A17)

where a and a† are ladder operators, to obtain (after
shifting some indices)

[
r2 − ρ2

]
ψ̃ρ(p) = 0 ⇐⇒

∞∑
k=0

[
(2k + 3/2− ρ2)c̃k(ρ)− 1

2

√
2k + 1

√
2k + 3 c̃k+1(ρ)

− 1

2

√
2k
√

2k + 1 c̃k−1(ρ)

]
ũk(p) = 0 (` = 0) . (A18)

More generally, a direct evaluation yields (cf. the analogous results for p2 given in Ref. [8])

〈k`m|r2|j`m〉 = (2k + `+ 3/2)δjk +
√
k + 1

√
k + `+ 3/2 δj+1

k +
√
k
√
k + `+ 1/2 δj−1

k , (A19)
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and thus we get

[
r2 − ρ2

]
ψ̃ρ(p) = 0 ⇐⇒

∞∑
k=0

[
(2k + `+ 3/2− ρ2)c̃k(ρ)−

√
k + 1

√
k + `+ 3/2 c̃k+1(ρ)

−
√
k
√
k + `+ 1/2 c̃k−1(ρ)

]
ũk(p) = 0 (A20)

for arbitrary angular momentum `.
If the basis—and thus the sum in Eq. (A20)—is now

truncated at some maximum k ≡ n, the last equation of
the coupled set reads

(2n+ `+ 3/2−ρ2) c̃n(ρ)−√n
√
n+ `+ 1/2 c̃n−1(ρ) = 0 .

(A21)
Further following Ref. [8], we introduce the Fourier–

Bessel transform of ψ̃ρ(p) as

ψ̃ρ(p) =

√
2

π

∫ ∞
0

dr ψρ(r) pr j`(pr) , (A22)

and use

pr j`(pr) =

√
π

2

∞∑
n=0

ũn`(b; p)un`(b; r) for arbitrary b

(A23)
to infer

c̃n(ρ) =

∫ ∞
0

dr ψρ(r)un(r) (A24)

from Eq. (A14). To proceed, we use the asymptotic ap-
proximation [8, 26]

un`(b; r) ≈
21−n

π1/4

√
(2n+ 2`+ 1)!

b (n+ `)!n!
(4n− 2`+ 3)−

`+1
2

×
√

4n+ 2`+ 3 (r/b) j`

(√
4n+ 2`+ 3 (r/b)

)
, (A25)

valid for n� 1. Defining

β` =
√

4n+ 2`+ 3 (A26)

and still setting b = 1 at this point, we get

c̃n(ρ) ≈ 21−n

π1/4

√
(2n+ 2`+ 1)!

(n+ `)!n!

× β−`−1
`

∫ ∞
0

dr ψρ(r)β`r j`(β`r)

=
21−n

π1/4

√
(2n+ 2`+ 1)!

(n+ `)!n!
× β−`−1

`

√
π

2
ψ̃ρ(β`)

=
π1/4

2n−1/2

√
(2n+ 2`+ 1)!

n!(n+ `)!
× β−`` ρ j`(β`ρ) .

(A27)

The intermediate and final steps here follow from
Eqs. (A22) and (A13), respectively, and we have the con-
straint ρ < x`/β`. Inserting Eq. (A27) into the quanti-
zation condition (A21) gives an equation that is formally
exactly the same as given in Ref. [8] for the infrared case.7

3. Cutoff identification

If we make the ansatz

ρ =
x`√

4n+ 2`+ 3 + 2∆
, (A28)

we get ∆ = 2 in the limit n� 1 and n� `, independent
of `. As we discuss in the Appendix, it is possible to
derive subleading corrections to this result, which then
depend on the angular momentum `, but turn out to be
numerically insignificant for all present practical applica-
tions.

With N = 2n + `, and restoring the oscillator length
b by dimensional analysis, our result can also be written
as

ρ =
x`b√

2

(
N +

3

2
+ 2

)−1/2

. (A29)

This implies that the UV cutoff Λeff corresponding to the
basis truncation at N is not given by the naive estimate

Λ0 =
√

2(N + 3/2)/b (A30)

that follows from k =
√

2µE and Eq. (A3), but rather by

Λ2 =
x`
ρ

=
√

2(N + 3/2 + 2)/b , (A31)

completely dual to the configuration-space box size L2

given in Eq. (1).

4. Subleading corrections to L2 and Λ2

It is possible to derive subleading corrections to the
result ∆ = 2 that was derived in the previous sub-
section. Because of the duality of configuration-space

7 Some relative minus signs—compare, for example, Eq. (A21) to
Eq. (31) in Ref. [8]—have dropped out along the way. Note
also that Ref. [8] uses a slightly different convention for the
momentum-space oscillator wavefunctions that does not involve
the phase (−1)n in our Eq. (A11).
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and momentum-space oscillator wavefunctions, the re-
sults derived in the following apply directly also to the
effective box size L2 used to calculate infrared correc-
tions.

For the smallest eigenvalue ρ2 of the operator r2 in
the (truncated) oscillator basis we now wish to make the
general ansatz

ρ =
x`√

4n+ 2`+ 3 + 2

(
∆0 +

∆1

n
+

∆2

n2
+ · · ·

) .

(A32)
In principle, there is an infinite sum of terms with in-
creasing inverse powers of n in Eq. (A32), but we only
give explicit results here up to O(1/n2).

In Sec. II A, the result ∆ = ∆0 = 2 was found by in-
serting (A27) into the quantization condition (A21) and
then considering the limits n � 1 and n � `. In prac-
tice, this is done by inserting the ansatz for ρ = ρ(n) into
c̃n(ρ) ∼ ρ j`(β`ρ) and keeping only the leading term in
an asymptotic expansion around n =∞.

To obtain the desired subleading corrections, it is how-
ever not sufficient to simply keep higher-order terms in
this asymptotic expansion. Instead, one first has to go
back a few steps and also keep higher-order corrections
to the leading asymptotic approximation for the oscil-
lator wavefunctions given in Eq. (A25). Note that this
approximation follows from using Eq. (15) of Ref. [26],
which states that the generalized Laguerre polynomials
have the asymptotic expansion

Lαn(z) =
Γ(n+ α+ 1)

n!
ez/2

∞∑
m=0

(z
2

)m
Pm(α+ 1, z)

× (κz)−
m+α

2 Jm+α(2
√
κz) (A33)

with

κ = n+
α+ 1

2
(A34a)

= n+
3

4
for α = 1/2 (A34b)

and

P0(c, z) = 1 , P1(c, z) = z/6 , · · · . (A35)

Using this in Eq. (A5) and keeping only the first (m = 0)
term gives Eq. (A25). More generally, one finds that for
large n the oscillator wavefunctions un`(r) can be ex-
pressed as a sum

un`(r) = u
(0)
n` (r) + u

(1)
n` (r) + · · · , (A36)

where the individual terms involve (spherical) Bessel
functions of increasing order. Recalling Eq. (A24), it
then follows that also

c̃n(ρ) = c̃(0)
n (ρ) + c̃(1)

n (ρ) + · · · . (A37)

We already know that

c̃(0)
n (ρ) = C(n)β−`` × ρ j`(β`ρ) (A38)

with

C`(n) =
π1/4

2n−1/2

√
(2n+ 2`+ 1)!

n!(n+ `)!
. (A39)

The key step in deriving Eq. (A38) was to express c̃
(0)
n (ρ)

in terms of ψ̃ρ by using the Fourier–Bessel transform,

which could be done since asymptotically u
(0)
n` (r) is sim-

ply proportional to j`(β`ρ). More generally, for the indi-
vidual terms in the expansion (A36) we have

u
(k)
n` (r) =

21−n

π1/4

√
(2n+ 2`+ 1)!

(n+ `)!n!
β
−(`+k)
`

× Pk(`+ 3/2, r2)rk+1j`+k(β`r) . (A40)

This means that to obtain a generalization of Eq. (A27),
we have to calculate expressions of the form

c̃(k)
n (ρ) ∼ β−(`+k)

`

∫ ∞
0

dr ψρ(r)Pk(`+ 3/2, r2)

× rk+1j`+k(β`r) . (A41)

To evaluate these integrals, it is more convenient to work
with Riccati–Bessel functions,

̂ν(z) = zjν(z) , (A42)

in terms of which we have

c̃(k)
n (ρ) ∼ β−(`+k+1)

`

∫ ∞
0

dr ψρ(r)Pk(`+ 3/2, r2)

× rk ̂`+k(β`r) . (A43)

For the Riccati–Bessel functions one has the derivative
relation [27]

∂̂ν(z)

∂z
=
ν + 1

z
̂ν(z)− ̂ν+1(z) , (A44)

from which it follows straightforwardly that

̂ν+1(βr) =
1

r

[
ν + 1

β
− d

dβ

]
̂ν(βr) . (A45)

Using this relation k times in Eq. (A41), we can elim-
inate the prefactor rk in favor of a differential operator
with respect to a variable β,

c̃(k)
n (ρ) ∼ β−(`+k+1)

`

∫ ∞
0

dr ψρ(r)Pk(`+ 3/2, r2)

×
(
`+ k

β
− d

dβ

)(
`+ k − 1

β
− d

dβ

)
· · ·
(
`

β
− d

dβ

)
× ̂`(βr)

∣∣∣
β=β`

. (A46)
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At this point, we have also conveniently reduced the or-
der of the Riccati–Bessel functions so that we have the
same function for each c̃

(k)
n (ρ); all remaining additional

r-dependence comes from the Pk(` + 3/2, r2), which are
polynomials in r2. This can also be eliminated by noting
that

r2̂`(βr) =

(
− d2

dβ2
+
`(`+ 1)

β2

)
̂`(βr) , (A47)

which follows immediately from the differential equations
that defines the Riccati–Bessel functions and is formally
just the free radial Schrödinger equation if one inter-
changes the variables r and β. Altogether, we have found
that we can write

c̃(k)
n (ρ) ∼ β−(`+k+1)

`

∫ ∞
0

dr ψρ(r)D(k)
β,` ̂`(βr)

∣∣∣
β=β`

,

(A48)

where D(k)
β,` is some differential operator (with respect to

β) which can be pulled out of the integral. The precise
form of this operator can be obtained from the equations
above, but it is actually not important here. For at this
point we can proceed exactly as in Eq. (A27) and write,
restoring the full prefactor,

c̃(k)
n (ρ) =

21−n

π1/4

√
(2n+ 2`+ 1)!

(n+ `)!n!
β
−(`+k+1)
`

×D(k)
β,`

∫ ∞
0

dr ψρ(r) ̂`(βr)
∣∣∣
β=β`

=
21−n

π1/4

√
(2n+ 2`+ 1)!

(n+ `)!n!
β
−(`+k+1)
`

×
√
π

2
D(k)
β,` ψ̃ρ(β)

∣∣∣
β=β`

= C`(n)β
−(`+k+1)
` ×D(k)

β,` ̂(βρ)
∣∣∣
β=β`

= C`(n)β−`−k` × Pk(`+ 3/2, ρ2) ρk+1j`+k(β`ρ) .

We have used here that ψ̃ρ(β) = βρ j`(βρ) = ̂(βρ) for
β ≤ x`/ρ, and that we can ultimately apply the operator

D(k)
β,` to get back the original expression as in Eq. (A41),

only with r replaced by ρ. The coefficients C`(n) have
been defined in Eq. (A39).

With these general expressions for all terms in the ex-
pansion of c̃n(ρ), we can now write the quantization con-
dition (A21) as

(2n+ `+ 3/2− ρ2)×
kmax∑
k=0

c̃(k)
n (ρ)

−√n
√
n+ `+ 1/2×

kmax∑
k=0

c̃
(k)
n−1(ρ) = 0 . (A49)

The appropriate truncation index kmax in this equation
depends on both ` and the desired order for the sub-
leading corrections. To solve for these, we insert an

ansatz of the form (A32) into Eq. (A49) and solve for
the coefficients ∆0, ∆1, etc. by performing an asymp-
totic expansion around n = ∞. To do this consistently,
it is important to keep all terms that can contribute to
the maximum order we are interested in. In general,
there are cancellations between the polynomial prefac-
tors Pk(`+ 3/2, ρ2)×ρk+1 and the spherical Bessel func-
tions j`+k(β`ρ) since the latter contribute inverse powers
of β`ρ, which become more prominent with increasing
`. At least for ` = 0 and ` = 1 we find that kmax = 2
is sufficient to get the corrections up to and including
O(1/n2). The results, obtained with computer algebra
software (Wolfram Mathematica), are

` = 0 : ∆1 =
3− 2π2

48
, ∆2 =

−7(3− 2π2)

192
,

(A50)

` = 1 : ∆1 =
1

48
(3− 2π2) , ∆2 =

3(5 + 2x2
1)

64
.

(A51)

One always has ∆0 = 2, independent of `.

TABLE III. Comparison of the smallest distance scale ρ at
different orders in the 1/n expansion to the exact answer for
several n. S-wave results (` = 0).

n ρ, O(1/n0) ρ, O(1/n1) ρ, O(1/n2) ρ, exact

1 0.94723 0.97876 0.92548 0.95857

2 0.81116 0.82075 0.81234 0.81629

3 0.72073 0.72518 0.72258 0.72355

4 0.65507 0.65756 0.65647 0.65681

5 0.60460 0.60617 0.60562 0.60576

6 0.56425 0.56531 0.56500 0.56507

7 0.53103 0.53178 0.53159 0.53163

8 0.50306 0.50362 0.50350 0.50352

9 0.47909 0.47952 0.47944 0.47945

10 0.45825 0.45859 0.45853 0.45854

11 0.43991 0.44018 0.44014 0.44015

12 0.42361 0.42384 0.42380 0.42381

In Tables III and IV we show (for ` = 0 and ` = 1,
respectively) how subsequent inclusion of the correction
terms makes the values for ρ as defined in Eq. (A32)
converge to the exact results, which have been calculated
numerically.

Appendix B: Pöschl–Teller states and form factors

In this appendix we provide some details about the
wavefunctions and separable form factors η(k) for the
Pöschl–Teller potential used in Sec. III B. In the con-
ventions of Flügge’s textbook [28], this potential can be
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TABLE IV. Comparison of the smallest distance scale ρ at
different orders in the 1/n expansion to the exact answer for
several n. P-wave results (` = 1).

n ρ, O(1/n0) ρ, O(1/n1) ρ, O(1/n2) ρ, exact

1 1.2462 1.3481 1.1464 1.2764

2 1.0898 1.1214 1.0860 1.1047

3 0.98054 0.99560 0.98424 0.98920

4 0.89868 0.90730 0.90242 0.90423

5 0.83441 0.83990 0.83741 0.83821

6 0.78220 0.78596 0.78455 0.78495

7 0.73871 0.74142 0.74055 0.74077

8 0.70175 0.70378 0.70321 0.70334

9 0.66984 0.67141 0.67101 0.67110

10 0.64192 0.64316 0.64288 0.64293

11 0.61722 0.61822 0.61802 0.61805

12 0.59517 0.59599 0.59584 0.59586

written as8

VPT(r) = −α
2β(β − 1)

cosh2(αr)
(B1)

Labeling different states by an index ν, we can write their
wavefunctions as

ψβν(α; r) =

√
2

r
coshβ(αr) sinh(αr)

× 2F1

(
ν +

3

2
, β − ν − 1

2
,

3

2
;− sinh2(αr)

)
,

(B2)

where 2F1 is the hypergeometric function [14]. The first
odd bound state with nonzero energy occurs for β =
3, ν = 0, and has a binding momentum κ = α. For
β = 4, there are two odd bound states, one of which has
zero energy. For β = 5 one finds two odd bound states at
κ = 3α (ν = 0) and κ = α (ν = 1). With Eq. (B2) it is
straightforward to obtain the separable approximations
for these states. We find

ηPT(k) = −
√

2 (k2 + α2)

α2 cosh
(
πk
2α

) ,

gPT = − 5π

16α
for β = 3 and ν = 0 , (B3)

8 Compared to Ref. [28] we have slighly changed the notation here
by writing “β” instead of “λ” (to avoid confusion with the scale
λ of Sec. III A), and “ν” instead of “m” to label the states.

and

ηPT(k) = −
√

2 (k2 + α2)(k2 + 9α2)

6α4 cosh
(
πk
2α

) , gPT = − 63π

256α

for β = 5 and ν = 0 , (B4a)

ηPT(k) = −
√

2 (k2 + α2)(−7k2 + 17α2)

18α4 cosh
(
πk
2α

) , gPT = − 81π

256α

for β = 5 and ν = 1 . (B4b)

It is straightforward to obtain results also for higher val-
ues of β, but we restrict ourselves to these representative
examples here.
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