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Abstract

Background: A primary goal of deuteron electro-disintegration is the possibility of extracting

the deuteron momentum distribution. This extraction is inherently fraught with difficulty, as

the momentum distribution is not an observable and the extraction relies on theoretical models

dependent on other models as input.

Purpose: We present a new method for extracting the momentum distribution which takes into

account a wide variety of model inputs thus providing a theoretical uncertainty due to the various

model constituents. To test the extraction, pseudo-data was generated, and the extracted “exper-

imental” distribution, which has theoretical uncertainty accounted by this extraction method, can

be compared to the theoretical distribution. This procedure can provide an upper bound on the

deuteron momentum distribution.

Method: The calculations presented here are using a Bethe-Salpeter like formalism with a wide

variety of bound state wave functions, form factors, and final state interactions. We present a

method to extract the momentum distributions from experimental cross sections, which takes into

account the theoretical uncertainty from the various model constituents entering the calculation.

Results: In the examples we compared, the original distribution was typically within the error

band of the extracted distribution. The input wave functions do contain some outliers which are

discussed in the text. Due to the reliance on the theoretical calculation to obtain this quantity

any extraction method should account for the theoretical error inherent in these calculations due

to model inputs.

Conclusions: The extraction method works well and provides a systematic way to investigate

the deuteron momentum distribution, while accounting for theoretical uncertainty and providing

a theoretical error band.

∗ wpford@jlab.org
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‡ vanorden@jlab.org
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I. INTRODUCTION

One of the primary reasons for measuring deuteron electrodisintegration at large miss-

ing momenta is the possibility of finding small (exotic) configurations of quarks which

are of small size and could possibly be examined by determining the deuteron momen-

tum distribution at large missing momenta. This requires that the momentum distribution

be extracted from the experimental cross sections. This is in general not possible since

the cross section is obtained from squares of the transition matrix element denoted by

< p1, s1; p2, s2; (−)|Jµem|P, λd > where |P, λd > is the state of the initial deuteron with total

momentum P and helicity λd, < p1, s1; p2, s2; (−)| is the proton-neutron scattering state

with incoming wave boundary conditions and Jµem is the electromagnetic current operator.

The relationship between the interactions producing the initial and final states and the elec-

tromagnetic current operator is constrained by the requirement of electromagnetic current

conservation, which may appear as a commutation relation between the hamiltonian and the

components of the current operator or in the case of Bethe-Salpeter based formulations, such

as the one used in this work, as two-body Ward identities[1]. As a result, construction of a

consistent description of the matrix element will result in different partitions into initial and

final states, and the current operator which depends on the basic formalism used to model

the matrix element. This implies that the momentum distribution of the initial deuteron is

model dependent[2] and can only be determined approximately if there are sound theoretical

grounds for ignoring final state interaction and two-body electromagnetic currents.

At relatively small momentum transfers the interactions and currents can be constructed

consistently by means of chiral perturbation theory, by traditional nonrelativistic potential

models with some input from meson exchange models or in terms of Bethe-Salpeter-like

models based on meson exchange. All of these models are constrained by fitting np scattering

to cross sections for energies up to slightly above pion production threshold. At present there

are no consistent calculations of matrix elements at the larger momentum transfers needed

to explore large missing momenta.

At large missing momenta it is therefore necessary to construct models of the matrix

elements and cross section based on a set of reasonable choices for initial and final states as

well as the electromagnetic current operator. This means that the available models do not

conserve current and that a large number of different theoretical models are available based
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on the number of possible reasonable choices that are available for initial wave functions

or their equivalent, for final state interactions and for the current operators, as well as

differences due to alternate theoretical choices used to produce the matrix elements.

The basic experimental approach to extracting an approximate momentum distribution

is to search for kinematic regions where the effects of final-state interactions and 2-body

currents are small[3]. This requires input from theory that may result in a certain amount

of model dependence based on the range of models that are used to select these regions.

The cross sections measured for the chosen kinematics are then divided by some kinematical

factors related to the deuteron cross section and a prescription for an off-shell ep cross

section. This results in a reduced cross section which is assumed to be close in size and

shape to the deuteron ground-state momentum distribution.

The objective of this work is to examine this procedure for extracting the deuteron mo-

mentum distribution by means of producing a large number of model calculations using

reasonable choices for initial state wave functions, final state interactions and nucleon elec-

tromagnetic form factors based on the Bethe-Salpeter-like approach of [4–7]. This allows

us to study the properties of the usual procedure and to generate a statistical treatment

of theoretical corrections which can be used to improve the description of the momentum

distribution along with a theoretical error band. In doing this we choose the kinematics

of the approved Jefferson lab experiment E1210003[8]. Similar calculations could be made

using different frameworks[9–11] and would in combination with those presented here help

to establish the possible variations in theoretical models.

This paper is organized as follows: In Section II , we lay out the theoretical framework

for our calculations. In Section III we discuss our choices of wave functions, electromagnetic

form factors and final state interaction models that we use in this work. Finally in Section

IV we discuss the characteristics of the model calculations which are produced. The method

that we propose to provide theoretical corrections and error to the reduced cross sections

to obtain improved momentum distributions is presented in Section V. Section VI presents

several tests of this method obtained by using a selection of model calculations as pseudo-

data and comparing to the actual momentum distributions associated with the model. A

summary of this work and conclusions drawn from it are contained in VII.
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FIG. 1. (color online) Feynman diagrams representing the impulse approximation to deuteron

electrodisintegration. In all diagrams particle 1 is a proton and particle 2 is a neutron.

II. THEORETICAL FRAMEWORK

The calculations used in this work use the formalism of [4–7] which is based on approx-

imations to the Bethe-Salpeter equation. For large Q2 it is not possible at this point to

construct a consistent meson exchange model for the complete matrix elements for deuteron

electrodisintegration. For this reason the calculations are performed using bound states,

current operators and final state interactions from a variety of sources that will result in

a violation of current conservation. The current consensus is that two-body currents give

no substantial contribution at large Q2 and that they can safely be ignored. The calcula-

tions are therefore performed in impulse approximation as represented by Fig 1. Diagram

1 (a) represents the plane wave impulse approximation (PWIA). Diagrams 1 (a) plus 1 (b)

represent the plane wave born approximation (PWBA). The t matrices providing the final

state interactions (FSI) in diagrams 1 (c) and 1 (d) are properly antisymetrized assuming

that isospin is a good quantum number. In diagrams 1(a)-1(d) the initial bound state is

represented by the spectator equation deuteron vertex function (A1).

The unpolarized cross section for deuteron electrodisintegration can be written as

dσ5

dε′dΩedΩp

=
mpmn pp
8π3Md

σMott f
−1
rec [vLRL + vTRT + vTTRTT cos 2φp + vLTRLT cosφp] , (1)

where the Mott cross section is

σMott =

(
α cos(θe/2)

2ε sin2(θe/2)

)2

(2)
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and the recoil factor is

frec =

∣∣∣∣1 +
ωpp − Epq cos θp

Md pp

∣∣∣∣ . . (3)

The vi are kinematical factors defined as

vL =
Q4

q4
(4)

vT =
Q2

2q2
+ tan2 θe

2
(5)

vTT = −Q
2

2q2
(6)

vLT = − Q2

√
2q2

√
Q2

q2
+ tan2 θe

2
(7)

If the response tensor is defined as

W µν =
1

3

∑
s1,s2,λd

〈p1s1;p2s2| Jµ |Pλd〉∗ 〈p1s1;p2s2| Jν |Pλd〉 (8)

the response functions RK are defined by

RL ≡ W 00

RT ≡ W 11 +W 22

RTT cos 2φp ≡ W 22 −W 11

RLT cosφp ≡ 2
√

2<(W 01) , (9)

For convenience we define

σeD ≡
dσ5

dε′dΩedΩp

(10)

It is conventional to define a reduced cross section as

σred =
σeD
kσep

, (11)

where σep is an off shell electron proton cross section usually chosen to be either deForrest

cc1 or cc2[12] and k is some appropriate combination of factors obtained to reproduce the

deuteron electrodisintegration cross section under the assumption that the PWIA cross

section factorizes. A demonstration of how such a factorization can be obtained from the

formalism used here is contained in Appendix A.
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TABLE I. Model inputs to the calculation.

Final State Interactions Form Factors Deuteron Wave Function

Regge [7,

13, 14]

SAID

[15–17]

GKex05[18,

19]

AMT[20]

MMD[21]

IIB [22]

WJC 1[23]

WJC 2[23]

AV18 [24]

CD Bonn [25]

NIMJ 1 [26]

NIMJ 2[26]

NIMJ 3[26]

III. MODEL CONSTITUENTS

In extracting the momentum distributions one must rely on accurate theoretical models.

The primary objective of this work is to examine the variation in calculated cross sections

on a variety of reasonable choices for the constituents , and thereby provide the theoretical

uncertainty that can be expected when extracting the approximate momentum distributions.

The three major uncertainties that can influence the calculation stem from form factors,

the deuteron wave function, and final state interactions. Our approach is to perform our

calculation using as many possible variations of each of these in order to understand the

way each can influence the calculation. The final result is represented as the mean and the

standard deviation is treated as the theoretical uncertainty due to input model dependencies.

The various models we use as input are given in Table I.

All of these form factors and wave functions are widely used in the literature. Clearly,

they introduce deviations in the calculations, and these deviations vary in size from tiny to

significant, depending on the kinematics.

A. Wave Functions

In the calculations performed here we use eight different wave functions. Those labeled

IIB[22], WJC 1 and WJC 2[23] are the results of fitting the spectator or Gross equation
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FIG. 2. (color online)Momentum density distributions for the eight wave functions used in the

calculations presented in this work.

to NN scattering data. WJC 1 and WJC 2 are associated with fits with χ2 per degree

of freedom of approximately 1. IIB is the result of earlier fits with larger χ2 but was

used successfully in calculating electron-deuteron elastic scattering and has a momentum

distribution comparable to that of the majority of non-relativistic potentials and is used

here to provide continuity with earlier results. These are technically not wave functions but

are the result of calculating the spectator equation vertex functions. The remaining wave

functions are the nonrelativistic potentials AV18[24], CD Bonn[25], NIJM 1, NIJM 2 and

NIJM 3[26]. All of these potentials produce fits to the NN data with χ2 per degree of

freedom of approximately 1. As a result, all of the wave functions but IIB produce on-shell

equivalent scattering amplitudes but differ off shell. The nonrelativistic wave functions are

used in the calculations presented here by replacing u and w in (A2) the s- and d-state wave

functions for the nonrelativistic wave functions and setting vs and vt in (A2) to zero. As can

be seen from Appendix A, this results in the commonly used factorization of the PWIA.

The momentum distributions for the eight sets of initial states are shown in Fig. 2

using the normalization given by (A15). From Fig. 2 it can be seen that the momentum

distribution for CD Bonn is the softest (has the smallest high-momentum tail) and the

next softest is NIJM 2. The hardest distribution is for WJC 1. This wave function has

the largest relativistic p-wave contributions that result from the presence of negative-energy
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projections in the spectator equation. These negative-energy projections provide a repulsive

contribution to the NN force resulting in a stronger repulsive core and thus a larger high-

momentum tail. The remaining wave functions provide momentum distributions which fall

within a relatively narrow band.

B. Form Factor Parameterizations

We use the standard Dirac-plus-Pauli form of the single nucleon current operator

Γµ(q) = F1(Q
2)γµ +

F2(Q
2)

2m
iσµνqν . (12)

in the calculations presented here. We choose three different parameterizations of the form

factors. The form factors GKex05 are the result of a vector meson dominance model (VMD)

to the nucleon electromagnetic form factor data including the rapidly falling Gp
E data ob-

tained from electron-proton scattering with either polarized initial of final states. The form

factors AMT are a fit to the new proton scattering data only with the usual Galster pa-

rameterization of the neutron form factors. The form factors MMD and VMD model fit to

the form factor data prior to the availability of the data from polarized protons. This is

included for continuity with earlier calculations and to provide a sense of the importance

of the new parameterizations of Gp
E at the kinematics chosen for the calculations presented

here. Figure 3 shows the Sachs form factors divided by the equivalent simple dipole forms

for 0 < Q2 < 10 GeV2 for the three chosen parameterizations.

We choose the kinematics of experiment E1210003, which is approved for running in Hall

C at Jefferson Lab. These are specified by ε = 12 GeV, Q2 = 4.25 GeV2, x = 1.35 and

φp = 180◦. Figure 4 shows the PWIA cross section calculated at these kinematics using

the IIB wave functions and the three parameterizations of the electromagnetic form factors.

Although Fig. 3 shows that the different parameterizations vary considerably at this point,

Fig. 4 shows that variation in the PWIA cross section due to the form factors is relatively

small but non-negligible. Note however that the PWIA uses only the proton form factors.

C. Final State Interactions

For the E1210003 kinematics the square of the invariant mass of the final state is s =

5.5568 Gev2 which is well above the pion-production threshold and beyond the range where
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FIG. 3. (color online)A comparison of three different parameterizations of the electric and magnetic

form factors of the proton and neutron, divided by the corresponding dipole form factors. dipole

form factor. In each case the vertical line corresponds to Q2 = 4.25 GeV2 which is the value for

the chosen kinematics.

meson exhange models have been capable of reproducing the NN cross sections and spin

observables. This means that it is only possible to describe the final state interactions

in terms of fits of parameterized amplitudes that are fit to available NN scattering data.

Two methods are available that contain the full spin dependence of the amplitudes. The

first of these is the use of the helicity amplitudes that are available from SAID. For the

pn amplitudes these are reliable only up to about Tlab = 1.3 GeV or s = 5.9675 GeV2.

The second method is a fit to NN cross sections and spin observables from s = 5.4 GeV2

to s = 4000 GeV2 using a Regge model parameterization. The E1210003 kinematics are

therefore in a region where both methods may be used. Figure 5 shows the c.m. differential

pn elastic cross sections at the value of s for the E1210003 kinematics. Some care should

be taken in judging the relative quality of the two methods based on this single figure. In

fitting the differential cross sections the normalizations are generally allowed to float due to
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FIG. 4. (color online)PWIA cross sections calculated for the E121003 kinematics with the IIB wave

functions and the three form factor parameterizations. Cross sections are plotted as a function of

the missing momentum pm.

the difficulty of experimentally determining absolute normalization. The data shown have

been rescaled as required by the Regge model fit. A careful comparison would also include

comparisons of spin observables. At this point it is reasonable to assume that either method

produces results that can be reasonably used in calculating the deuteron electrodisintegration

cross sections.

IV. CALCULATIONS

We now have 8 possible choices of wave function, 3 choices of electromagnetic form factors

and 2 choices for the final state interaction as summarized in Tab. I. This means that there

are 24 possible calculations for the PWIA given by diagram Fig. 1(a) and 48 possible

calculations for the complete IA given by all of the diagrams in Fig. 1.

Since the number of calculations in each case is large we choose to plot the envelopes

containing all 24 of the PWIA calculations and all 48 of the full IA calculations for the

E1210003 kinematics in Fig. 6. That is in each case for each pm we determine the largest

and smallest values given by the set of calculations giving the boundaries of the shaded

areas or envelopes. Note that the envelope for the PWIA calculatons, Fig. 6(a) increases
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FIG. 5. (color online) Center of momentum pn elastic cross sections calculated using both SAID

and Regge methods. Data close to the chosen value of s are also displayed.

in width with increasing pm and covers a range of more than an order of magnitude at

pm = 1 GeV which is in agreement with the range of momentum distributions shown in Fig.

2. We would like to point out that the inclusion of FSIs reduces the width of the envelope

at high missing momenta as the FSIs redistribute strength from the low-momentum part

of the wave function to high momenta, and the PWIA envelope is narrower at low missing

momentum.

Figure 6(b) shows the envelope containing the 48 cross section calculations with FSI.

Note that above approximately pm = 0.65 GeV the envelope for the FSI calculations begins

to narrow and covers a significantly smaller range at pm = 1 GeV.

A. Choice of Kinematics

To argue that the reduced cross section is a rough representation of the deuteron momen-

tum distribution requires that a region of kinematics must be found where the role of FSI

is minimal. This is the approach used in [3] and for the E1210003 kinematics. The ability

to do this using the IIB wave functions, the GKex05 electromagnetic form factors and the

Regge model FSI is shown in Fig. 7. Here we show the ratio of the cross section for the full

IA to the corresponding PWIA. In this figure the incident electron energy is ε = 11 GeV2,
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FIG. 6. (color online) The envelope containing all 24 calculations of the cross section in PWIA

is shown in panel (a). The corresponding envelope containing all 48 of the complete calculations

represented by the diagrams of Fig. 1 is shown in panel (b).

Q2 = 4.25 GeV2 and x is allowed to vary from 1 to 1.35 in steps of 0.05. A ratio of 1 would

indicate that the FSI had no effect at a given kinematics. For all values of x this ratio is

below 1 for pm <∼ 0.3 GeV. The ratios then increase to above 1 for 1 ≤ x ≤ 1.2 with the

magnitude decreasing as x increases. For x ≥ 1.25 the ratio remains below 1. In this case,

it would seem that the choice of x = 1.25 would tend to minimize the role of FSI while the

E1210003 kinematics, at x = 1.35, would increase the role of FSI. Since the choice of optimal
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FIG. 7. (color online) The ratio of FSI to PWIA cross sections for wave function IIB, the GKex05

electromagnetic form factors at ε = 11 GeV, Q2 = 4.25 GeV2 and a range of values for x.
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FIG. 8. The envelope containing the ratio FSI to PWIA cross sections for all 48 calculations is

shown by the shaded band.

kinematics relies on calculation, it is not surprising that the choice is model dependent. The

extent of this problem can be shown by plotting the envelope containing the ratio FSI to

PWIA cross sections for all 48 cases at the E1210003 kinematics. This envelope is shown by

the shaded area in Fig. 8. The large upper value of the ratio at pm = 1 GeV is the result
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of calculations using the CD Bonn wave functions which produce the lower values of the

PWIA and FSI calculations at large pm. Since the final state interactions tend to raise the

cross section in this region and the PWIA cross sections for CD Bonn are small, the ratio

of cross sections then becomes large.

The cause of the narrowing of the range of FSI cross sections at large pm is illustrated by

Fig. 9. In this figure the ratio of FSI to PWIA cross sections for the IIB wave function and

the AMT electromagnetic form factors is shown for the E1210003 kinematics. The curves

labeled SAID (a)+(c) or Regge (a)+(c) have contributions only from diagrams (a) and (c)

of Fig. 1 where the electron scatters from the proton only. The curves labeled SAID or

Regge have contributions from all of the diagrams in Fig. 1 including contributions where

the electron scatters from both the proton and the neutron. While the inclusion of the

neutron contributions is relatively small at lower pm, at larger pm they have the effect of

causing the ratios for the SAID and Regge FSI to become very close in value. The neutron

contributions are then responsible for narrowing the range of the FSI calculations at large

pm. This indicates that the complete IA must be used in calculation of cross sections at the

E1210003 kinematics.

The model dependence of the choice of optimal kinematics along with the substantial

range in the values of the cross sections at large pm implies that a method for obtaining

momentum distributions from data be found that is less sensitive to the choice of opti-

mal kinematics and includes information about the range of possible calculations. We will

describe one possible approach to this problem in the following section.

V. A NEW METHOD FOR EXTRACTING THE DEUTERON MOMENTUM

DISTRIBUTION

In formulating a new approach to obtaining the deuteron momentum distribution it

should include information about how well the reduced cross section for each represents

the actual momentum distribution calculated directly from the wave functions used in the

model. It should also include an estimate of the theory error associated with the wide range

of possible calculations that can be produced by the acceptable range of wave functions,

electromagnetic form factors and final state interactions that can be combined to produce

the calculations. It should then take into account the fact that the momentum distribution
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FIG. 9. (color online) Ratio of FSI to PWIA cross sections for wave function IIB and the AMT

electromagnetic form factors at the E1210003 kinematics for both SAID and Regge FSI. Curves

labeled with (a)+(c) contain only the proton contributions to the IA (diagrams (a)and (c) of Fig.

1, while those without the label also contain contributions of from the neutron given by diagrams

(b) and (d) of Fig. 1.

is not an observable quantity. To accomplish this we propose the following procedure.

Our goal is to provide a procedure for the extraction of an experimental momentum

distribution, nexp(p). It can be obtained in the following way:

nexp(p) =
σexp(p)

kσep(p)
− 〈ξth(p)〉 ± δξth(p)± δσred(p) . (13)

Here, σexp(p) is the experimentally measured cross section, and kσep is the factor that is

used to extract the reduced cross section, see our description of the method in Appendix

A. The reduction factor contains the (off-shell) electron-proton cross section σep, which

requires an electromagnetic form factor. This form factor is chosen from one of the available

parameterizations. The term δσred(p) is the experimental error.

The other two terms account for the theoretical difference between the calculated reduced

cross section and the corresponding calculated momentum distribution, and its theoretical

error, δξth(p). These two quantities are obtained as follows: for each of the N = 48 possible
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calculations, labeled i, we calculate the theoretical quantity

ξthi(p) =
σeDi

(p)

kσep(p)
− nthi(p) (14)

for a range of values of p. The first term is the calculated reduced cross section which we

calculate here using the method presented in Appendix A with the same electromagnetic

form factors used in σep for the extraction of the experimental reduced cross section, for all

48 variations of the theoretical calculation. This quantity therefore represents the difference

between the reduced cross section and the actual momentum distribution for the wave

functions used in the calculation. The average value of this difference for all calculations

can be calculated as

〈ξth(p)〉 =
1

N

N∑
i=1

ξthi(p) (15)

and the average of the square of the difference as

〈
ξ2th(p)

〉
=

1

N

N∑
i=1

ξ2thi(p) . (16)

The standard deviation of this difference is

δξth(p) =

√
〈ξ2th(p)〉 − 〈ξth(p)〉

2 (17)

and can be taken as an approximate measure of the theory error.

VI. RESULTS

Preliminary examples of how this method may work can be obtained by using selected

cross sections from the 48 used in this work as pseudo-data and determining how well the

procedure reproduces the corresponding theoretical momentum distributions.

In Fig. 10 the pseudo-data are represented by the calculated cross section for the WJC

2 wave function, the GKex05 electromagnetic form factors and the Regge model FSI. The

reduced cross section is calculated using the factorization procedure of Appendex A with

the AMT proton form factors used in the reduction factor σep. The reduced cross section is

represented by the dotted line and the central value of the extracted momentum distribution

using the procedure of Section V is represented by the dashed line and the theoretical error is

represented by the shaded band. The calculated momentum distribution for the WJC 2 wave
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FIG. 10. (color online) This figure uses the calculation of the cross section with the WJC 2 wave

functions, the GKex05 electromagnetic form factor and the Regge FSI as pseudo-data. The dotted

line is the reduced cross section using the AMT form factor in σep, the dashed line is the extracted

momentum distribution using the procedure described above with a shaded band representing the

theoretical error. The solid line is the momentum distribution for the WJC 2 wave functions.

functions is given by the solid line. At momenta above 0.7 GeV the extracted momentum

distribution and the calculated distribution agree within the theoretical error.

Figure 11 uses the calculation for the AV18 wave function, with the same electromagnetic

form factors and FSI as the previous figure, as pseudo-data. In this case the extracted and

calculated momentum distributions are in excellent agreement for large momenta and are

well within the theoretical error.

The calculations are repeated using the CD Bonn wave functions in Fig. 12. In this case

the extracted momentum distribution is much larger than the calculated distribution. The

CD Bonn potential is by far the softest of those used here. The integration over the FSI

moves strength from lower momentum to higher momentum which causes a much larger

effect for the softer wave functions. As a result, the reduced cross section is much larger at

large momentum indicating that the ratio of the full calculation to the PWIA is much larger

than 1. This means that the approach presented here will tend to give an upper bound on

the momentum distribution for all but the softest of potentials. As a contrast to the case of

the CD Bonn wave functions, Fig. 13 uses the WJC 1 wave function which is the hardest

18



p (GeV)
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

dist
ribu
tion
s (G
eV-3 )

100

101

102

103
error band
σrednextracted(p)n(p)

FIG. 11. (color online) Same as Fig. 10 but using the AV18 wave function.
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FIG. 12. (color online) Same as Fig. 10 but using the CD Bonn wave function.

of those used in this work. In this case the calculated momentum distribution is larger than

the extracted momentum distribution, but is well within the range implied by statistics. In

contrast to the previous case the effect of the FSI on the extracted momentum distribution

is much smaller than is the case for the CD Bonn wave functions.
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FIG. 13. (color online) Same as Fig. 10 but using the WJC 1 wave function.

VII. SUMMARY AND CONCLUSIONS

The goal of this paper is to find a measure of the theoretical uncertainties in the extraction

of momentum distributions from experimental data that are due to model inputs. Model

inputs — electric and magnetic form factors, wave functions, and nucleon-nucleon scattering

amplitudes — are necessary for all theoretical calculations. There are several versions of

these available in the literature, and all of them are widely used. So, completely apart from

the theoretical model used to describe the reaction mechanism of the 2H(e, e′p) reaction,

there will be uncertainties involved that stem from these inputs.

We have mimicked the experimental data with a set of calculations, and then used all 48

possible input combinations to extract the momentum distribution, leading to an error band.

We performed our calculations at the kinematics for the planned Jefferson Lab E1210003

experiment. In all studied cases, the error band has a reasonable width that tends to

increase with higher missing momentum. The increase in uncertainty at higher momentum

can in part be attributed to the contribution of graphs with final state interactions and

contributions from virtual photon absorption on the neutron.

In most of our examples, the band that represents the theory input error around the

extracted momentum distribution includes the momentum distribution nth consistent with

the calculation used to generate the pseudo-data in the first place. The approach presented
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a b

FIG. 14. (color online) Diagram representing the half-onshell deuteron vertex function.

here will tend to give an upper bound on the momentum distribution for all but the softest of

potentials. We are confident that the method for a calculation of the theoretical error band

provided in this paper will be very helpful for the analysis of the forthcoming high-precision

data from Jefferson Lab’s 12 GeV upgrade.
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Appendix A: Cross section factorization and the momentum distribution

The extraction of the deuteron momentum distribution from measured cross sections

depends upon the assumption that the cross section can be factored into a factor due to

scattering on an off-shell proton and a factor equal to the momentum density distribution.

This factorization becomes more complicated when FSI are introduced and becomes some-

what dependent upon the theoretical formalism used. The factorization procedure used here

can be obtained directly from consideration of the PWIA contribution described by Fig. 1a.

For this diagram both of the final state nucleons are on-shell which implies that the vertex

function has particle 2 on shell as well. This is represented by Fig. 14. For either the

21



full Bethe-Salpeter equation or the spectator, or Gross equation, the half-off-shell vertex

function can be written as

Γλd(p2, P ) =

[
g1(p

2
2, p2 · P )γ · ξλd(P ) + g2(p

2
2, p2 · P )

p · ξλd(P )

m

−
(
g3(p

2
2, p2 · P )γ · ξλd(P ) + g4(p

2
2, p2 · P )

p · ξλd(P )

m

)
γ · p1 +m

m

]
C . (A1)

where ξλd(P ) is the deuteron polarization four-vector, C is the charge conjugation matrix

and the invariant functions gi(p
2
2, p2 · P ) are given by

g1(p
2
2, p2 · P ) =

2EpR −Md√
8π

[
u(k)− 1√

2
w(k) +

√
3

2

m

pR
vt(pR)

]

g2(p
2
2, p2 · P ) =

2EpR −Md√
8π

[
m

EpR +m
u(pR) +

m(2EpR +m)√
2pR2

w(pR) +

√
3

2

m

pR
vt(pR)

]

g3(p
2
2, p2 · P ) =

√
3

16π

mEpR
pR

vt(pR)

g4(p
2
2, p2 · P ) = − m2

√
8πMd

[
(2EpR −Md)

(
1

EpR +m
u(pR)− EpR + 2m√

2pR2
w(pR)

)
+

√
3Md

pR
vs(pR)

]
,

(A2)

Here, the scalar pR is defined as

pR =

√
(P · p2)2
P 2

− p22 (A3)

and is the magnitude of the neutron three-momentum in the deuteron rest frame and the

corresponding energy is

EpR =
√
pR2 +m2 . (A4)

The functions u(pR), w(pR), vs(pR) and vt(pR) are the s-wave, d-wave, singlet and triple

p-wave radial wave functions of the deuteron in momentum space.

For convenience, the half-off-shell deuteron wave function can be defined as

ψλd,s2(p2, P ) = G0(P − p2)ΓTλd(p2, P )ūT (p2, s2) . (A5)

We choose to normalize this wave function such that in the deuteron rest frame

∑
s2

∫
d3p2
(2π)3

m

Ep2
ψ̄λd,s2(p2, P )γ0ψλd,s2(p2, P ) = 1 , (A6)
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which is correct only in the absence of energy-dependent kernels. This results in the nor-

malization of the radial wave functions given by∫ ∞
0

dpp2

(2π)3
[
u2(p) + w2(p) + v2t (p) + v2s(p)

]
= 1 . (A7)

The plane wave contribution to the current matrix element represented by Fig. 1a can

then be written as

〈p1s1;p2s2| Jµ(1) |Pλd〉a = −ū(p1, s1)Γ
µ(q)ψλd,s2(p2, P ) , (A8)

where the one-body nucleon electromagnetic current operator is chosen to be of the Dirac-

plus-Pauli form

Γµ(q) = F1(Q
2)γµ +

F2(Q
2)

2m
iσµνqν . (A9)

The PWIA response tensor is then

W µν
aa =

1

3

∑
s1,s2,λd

ψλd,s2(p2, P )Γµ(−q)u(p1, s1)ū(p1, s1)Γ
ν(q)ψλd,s2(p2, P )

=Tr[Γµ(−q)Λ+(p1)Γ
ν(q)N(p2, P )] , (A10)

where the momentum distribution operator is given by

N(p2, P ) =
1

16π

[
P · p2
M2

dmN

γ · Pntv(pR)−
(
γ · p2
mn

− P · p2
M2

dmN

γ · P
)
nsv(pR) + ns(pR)

]
(A11)

with three scalar momentum distributions defined as

ntv(pR) =u2(pR) + w2(pR) + v2t (pR) + v2s(pR) (A12)

nsv(pR) =u2(pR) + w2(pR)− v2t (pR)− v2s(pR)

− 2mN√
3pR

((u(pR) +
√

2w(pR))vs(pR)− (
√

2u(pR)− w(pR))vt(pR)) (A13)

ns(pR) =u2(pR) + w2(pR)− v2t (pR)− v2s(pR)

+
2pR√
3mN

((u(pR) +
√

2w(pR))vs(pR)− (
√

2u(pR)− w(pR))vt(pR)) . (A14)

Note that only the time-like-vector momentum distribution ntv is related to the normaliza-

tion condition such that ∫ ∞
0

dpp2

(2π)3
ntv(p) = 1 . (A15)
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In the absence of relativistic p-wave contributions all three momentum distributions are

the same and we can define

n+(pR) = ntv(pR) = nsv = ns(pR) = u2(pR) + w2(pR) . (A16)

which is the usual nonrelativistic momentum distribution. In this case the momentum

density operator becomes

N+(p2, P ) =
1

8π
Λ+(p)n+(p) , (A17)

where

p = (
√
p2 +m2

N ,p) . (A18)

The PWIA response tensor then becomes

W µν
aa =

1

8π
Tr[Γµ(−q)Λ+(p1)Γ

ν(q)Λ+(p)]n+(p) , (A19)

which clearly factors into a contribution composed of an off shell single-nucleon contribution

and the positive-energy momentum distribution.

The off-shell four momentum of the struck proton is given in the rest frame, by

k = P − p2 = (Md,0)− (Ep,−p) = (Md − Ep,p) = p+ (Md − 2Ep,0) = p+ ∆ , (A20)

where

∆ = (Md − 2Ep,0) = (δ,0) . (A21)

Four-momentum conservation requires that

k + q = p+ ∆ + q = p1 (A22)

If we define

q̃ = q + ∆ = p1 − p (A23)

It can be seen that the factorization prescription given by (A19) is the same as the deForrest

cc2 prescription[12] with modification for the covariant normalization of the Dirac spinors.

Factored response functions defined by Ri = rin+(p) can then be written as

rL =
1

64πm4
N

{−4F 2
1 (Q2)m2

NQ
2 − 8F1(Q

2)F2(Q
2)m2

N(ν2 +Q2) + 4E2
p(4F

2
1 (Q2)m2

N

+ F 2
2 (Q2)Q2) + 4Epν(4F 2

1 (Q2)m2
N + F 2

2 (Q2)Q2) + F 2
2 (Q2)(ν2Q2 − 4m2

N(ν2 +Q2))

− 2δ(2Ep + ν)(−4F 2
1 (Q2)m2

N + F 2
2 (Q2)(2Epν + ν2 −Q2))

+ δ2[−4E2
pF

2
2 (Q2) + 4F 2

1 (Q2)m2
N − 12EpF

2
2 (Q2)ν + F 2

2 (Q2)(−5ν2 +Q2)]

− 4δ3F 2
2 (Q2)(Ep + ν)− δ4F 2

2 (Q2)} , (A24)
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rT =
1

64πm4
N

{4[4F1(Q
2)F2(Q

2)m2
NQ

2 + F 2
2 (Q2)(2m2

N + p2⊥)Q2 + 2F 2
1 (Q2)m2

N(2p2⊥ +Q2)]

− 16δF1(Q
2)(F1(Q

2) + F2(Q
2))m2

Nν + δ2(8E2
pF

2
2 (Q2)− 8F 2

1 (Q2)m2
N + 8EpF

2
2 (Q2)ν

− 2F 2
2 (Q2)Q2) + 4δ3F 2

2 (Q2)(2Ep + ν) + 2δ4F 2
2 (Q2)} , (A25)

rTT =
−4p2⊥(4F 2

1 (Q2)m2
N + F 2

2 (Q2)Q2)

64πm4
N

(A26)

and

rLT =
1

64πm4
N

4
√

2{(2Ep + ν)p⊥(4F 2
1 (Q2)m2

N + F 2
2 (Q2)Q2)

+ δp⊥[4F 2
1 (Q2)m2

N + F 2
2 (Q2)(−2Epν − ν2 +Q2)]− δ2F 2

2 (Q2)νp⊥} , (A27)

where p⊥ is the magnitude of the component of p perpendicular to q.

The reduction factor can then be written as

kσep =
mpmn pp
8π3Md

σMott f
−1
rec [vLrL + vT rT + vTT rTT cos 2φp + vLT rLT cosφp] . (A28)
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