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We report a determination of the n-3He scattering length difference ∆b′ = b′1 − b′0 = (−5.411 ±
0.031 (statistical) ± 0.039 (systematic) ) fm between the triplet and singlet states using a neutron
interferometer. This revises our previous result ∆b′ = (−5.610 ± 0.027 (statistical) ± 0.032 (sys-
tematic) ) fm obtained using the same technique in 2008 [M. G. Huber, Phys. Rev. Lett. 20, 102
(2009) & M. G. Huber, Phys. Rev. Lett. 17, 103 (2009)]. This revision is due to a re-analysis of the
2008 experiment that now includes a systematic correction caused by magnetic field gradients near
the 3He cell which had been previously underestimated. Furthermore, we more than doubled our
original data set from 2008 by acquiring six months of additional data in 2013. Both the new data
set and a re-analysis of the older data are in good agreement. Scattering lengths of low Z isotopes
are valued for use in few-body nuclear effective field theories, provide important tests of modern
nuclear potential models and in the case of 3He aid in the interpretation of neutron scattering from
quantum liquids. The difference ∆b′ was determined by measuring the relative phase shift between
two incident neutron polarizations caused by the spin-dependent interaction with a polarized 3He
target. The target 3He gas was sealed inside a small, flat windowed glass cell that was placed in one
beam path of the interferometer. The relaxation of 3He polarization was monitored continuously
with neutron transmission measurements. The neutron polarization and spin flipper efficiency were
determined separately using 3He analyzers and two different polarimetry analysis methods. A sum-
mary of the measured scattering lengths for n-3He with a comparison to nucleon interaction models
is given.

PACS numbers: 03.75.Dg, 28.20.Cz, 21.45.-v
Keywords: neutron interferometry, polarized 3He, few-body systems

I. INTRODUCTION

Understanding the properties of nuclei from the point
of view of a collection of individual interacting nucleons
is an important goal of nuclear physics [1, 2]. Unfortu-
nately, direct calculations of low-energy nuclear phenom-
ena using Quantum Chromodynamics (QCD) is currently
impractical. Instead properties of few-body nuclear sys-
tems are calculated using a variety of phenomenological
models. The prevailing two nucleon (NN) models, AV18
[3], CD-Bonn [4], and Nijmegen [5], incorporate a fit to
np and pp scattering data [6] for energies up to 350 MeV.
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Problems arise with NN models when applying them to
systems containing more than two nucleons. This is most
evident by their failure to accurately predict the binding
energy of the triton by 800 keV [7]. For this reason three
nucleon interactions (3N), which arise in lowest order in
the meson exchange model from the exchange of two pi-
ons between three separate nucleons, are included with
NN models to describe larger few-body systems. Three
nucleon interactions, including Urbana [8], Tucson Mel-
bourne [9], Brazil [10] or Illinois [7] potentials, can correct
for this and now accurately predict many nuclear levels
for atomic number up to 13 [7, 11, 12]. However, the
increase in the prediction accuracy of binding energies
has not meant that NN+3N models have accurately pre-
dicted low-energy scattering data in systems involving
more than two nucleons [13, 14].

Nuclear effective field theories[15, 16] have also been a
successful approach to understand few-body nuclear sys-
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tems. Effective field theories separate nucleon interac-
tions into two distinct energy regions that are separated
by the pion mass. Below the pion mass threshold interac-
tion diagrams are explicitly calculated. For higher-energy
processes, the interactions are described by using low-
energy observables such as scattering lengths to parame-
terize mean-field behavior. For instance using the triton
binding energy Kirscher et al. [17] predicted a value of
the scattering length for the singlet state in n-3He to 8 %
relative uncertainty. Although presently not as precise
as other approaches, effective field theories are attrac-
tive because they provide clear theoretical uncertainties
from estimates of the relative contribution of higher order
terms [18].

A final motivation for measuring the n-3He scattering
length to high precision is that it also arises in the study
of quantum liquids. Inelastic neutron scattering in liquid
3He for a momentum Q and energy transfer E is de-
scribed by a dynamic structure factor S(Q, E) [19]. The
dynamic structure factor can be separated into coherent
Sc and incoherent Si terms as [20, 21]

S(Q, E) = Sc(Q, E) +

∣∣√3∆b′
∣∣2

|b′0 + 3b′1|
2Si(Q, E). (1)

One can see that the incoherent density term is weighted
by a ratio composed of both the triplet b′1 and singlet b′0
scattering lengths where ∆b′ = b′1 − b′0. (The real part
of the scattering length is denoted by ′). For the n-3He
system the sum b′0 +3b′1 has been previously measured to
< 1 % relative uncertainty. An accurate determination
of Sc(Q, E) and Si(Q, E) from S(Q, E) relies on deter-
mining ∆b′ to similar precision.

Neutron scattering lengths can be determined very pre-
cisely using neutron interferometry. In the case of sil-
icon, neutron interferometry has been utilized to mea-
sure the scattering length to 0.005 % relative uncertainty
[22]. In the last few years, there have been several pre-
cision measurements using neutron interferometry with
light nuclei targets. These include measurements of the
spin-independent scattering length b′ of n-1H, n-2H [23],
and n-3He [24, 25] to less than one percent relative un-
certainty.

Here we report a determination of the scattering length
difference ∆b′ = b′1 − b′0 of n-3He using a neutron in-
terferometer that is based on a re-analysis of Huber et
al. [26, 27] and additional data. This effort was revis-
ited in order to quantify the phase shift due to a non-
uniform magnetic field near the target cell. Phase shifts
caused by a non-uniform magnetic field were previously
underestimated and only included in our analysis as an
overall systematic uncertainty. In this work we have more
thoroughly estimated the magnetic field gradient induced
phase shift and now include an additional correction for
this effect.

A review of the relevant neutron optical theory is cov-
ered in Sec. II. The experimental setup and measured
phase shift caused by the 3He target sample is discussed
in Sec. III. A discussion of the source of correction to

the 2008 data set can be found in Sec. IV. In Sec. V we
describe neutron polarimetry measurements using 3He
analyzers with two different analysis methods. System-
atically limiting this technique is the uncertainty in the
triplet absorption cross section of 3He. This limit in de-
termining ∆b′ and other non-statistical uncertainties are
discussed in Sec. VI. Finally, we compare world aver-
ages of the current experimental results of the coherent
and incoherent scattering lengths to various theoretical
predictions in Sec. VIII.

II. NEUTRON SCATTERING

Neutron scattering from a single target atom can be
described by the wave function [28]

Ψ = eik·r +
eikr

r
f(θ). (2)

The first term in Eq. (2) describes the incident neutron
where k is the incident wave vector and r is the posi-
tion of the neutron. The latter term corresponds to the
scattered wave in the first Born approximation with a
scattering amplitude f(θ) that can be expanded in terms
of k as [29]

f(θ) = −a+ ika2 +O(k2) + . . . ≈ −a, (3)

where a is called the free scattering length. The ap-
proximation in Eq. (3) is valid because the magnitude
of a is of O(1 fm) and for low energy neutrons k is
of O(10−4 fm−1). In general, a is complex such that
a = a′ + ia′′ where a′, a′′ are both real numbers. As
discussed later, neutron absorption by the target atom is
related to the imaginary term a′′. Most importantly a
represents a measurable quantity of the interaction that
is unique for each nuclear isotope. In neutron interfer-
ometry, even when considering a gas target, the forward
scattered momentum transfer is zero. For this reason,
it is more relevant to define everything using the bound
scattering length

b =

(
MN +mn

MN

)
a. (4)

Here MN and mn are the mass of the target atom and
neutron, respectively.

To describe neutrons scattering from a homogeneous
material one uses the time-independent Schrödinger
equation (

h̄2K2

2mn
+ Vopt

)
ψ =

h̄2k2

2mn
ψ, (5)

where K is the magnitude of the neutron wave vector in
the material. The optical potential

Vopt =
2πh̄2

mn
Nb, (6)
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FIG. 1. (Color online) A simplified schematic of an interfer-
ometer. A beam splitter separates a neutron wave function
into two paths that are recombined in a final analyzing beam
splitter before being detected. A sample placed in one path
causes a relative phase shift φsam because of a change in wave-
length due to the index of refraction of the material.

is the effective potential of the material with an atom
density N . The index of refraction

n =
K

k
=

√
1− λ2Nb

π
, (7)

of the material can be derived using Eqs. (5) and (6).
Here λ = 2π/k is the neutron wavelength in vacuum. The
index of refraction for neutron optics is conceptually the
same as for light optics with two subtle differences. For
one the index of refraction for neutrons is only a small
deviation from unity; ie. 1− n = O(10−6) and generally
n is less than one.

A neutron interferometer splits the neutron’s wave
function along two spatially separate paths labeled I and
II. When a sample of thickness D is introduced into beam
path II there is a phase difference relative to the path I
of

φsam = k(1− n)D = −λNDb′. (8)

This phase shift is due to the change of the neutron wave-
length as it passes through a material. A conceptual
illustration of this is provided in Figure 1. A neutron
interferometer is extremely sensitive to phase differences
between paths and therefore can be used to measure φsam

to high precision. Along with information of the quanti-
ties λ, N and D, often performed using individual auxil-
iary measurements, one can use Eq. (8) to determine the
scattering length of the material.

In the case of neutrons with spin σn incident on a
target with nuclear spin I the scattering length can be
written as

b = bc +
2bi√
I(I + 1)

σn · I, (9)

where bc and bi are called the coherent and incoherent
scattering lengths, respectively. Despite its name the in-
coherent scattering length is due to a coherent interaction
and corresponds to the spin-dependent part of the scat-
tering length. The scattering lengths for a given spin
channel, J = I ± σn, are defined as

b+ = bc +

√
g−
g+
bi (10a)

b− =bc −
√
g+

g−
bi. (10b)

Here g+ = (I+ 1)/(2I+ 1) and g− = 1−g+ = I/(2I+ 1)
are statistical weight factors. Eqs. (10a) and (10b) are for
general systems; for n-3He there is a triplet (J = 1) and
singlet (J = 0) channel allowing us to write the triplet
scattering length as b+ ≡ b1 and the singlet scattering
length as b− ≡ b0 (likewise, g+ → g1 and g− → g0).
Inverting Eqs. (10a) and (10b), the 3He coherent and
incoherent scattering lengths become

bc = g1b1 + g0b0 (11a)

bi =
√
g1g0(b1 − b0). (11b)

The total cross section for the n-3He interaction is σt =
σs + σa. Here σs is the scattering cross section given by

σs = σs,c + σs,i = 4π |bc|2 + 4π |bi|2 . (12)

The absorption cross section σa is related to the imagi-
nary part of the scattering length b′′ by the optical the-
orem [30]

σa =
4π

k
b′′. (13)

The measured unpolarized neutron absorption cross sec-
tion for 3He(n,p)3H is σun =(5333 ± 7) b [31] at the ref-
erence thermal neutron wavelength λth = 1.798 Å. The
uncertainty quoted for σun, as well as all other uncer-
tainties quoted below, is a standard uncertainty with a
confidence level of 68 %. For 3He(n,γ)4He the absorption
cross section is (54 ± 6) µb [32] at these energies and thus
for our purposes can be ignored.

The absorption cross section for polarized neutrons in-
cident on polarized 3He nuclei is given by

σa = σun ∓ P3σp, (14)

where P3 is the 3He polarization. The ∓ sign in Eq. (14)
represents the cases where the neutron and 3He spins
are aligned parallel (−) or anti-parallel (+). Similar to
Eqs. (11a) and (11b), σun and σp can be defined in terms
of singlet and triplet contributions as

σun = g1σ1 + g0σ0 (15a)

σp = g0 (σ0 − σ1) . (15b)

Since σa is dominated by the singlet channel it is often
assumed that σ1 = 0 so that σun = σp. Although σ1

is small there is no theoretical justification for assuming
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σ1 to be precisely zero. Neutron transmission measure-
ments are consistent with σ1 = 0 only at the level of a
few percent. The uncertainty in the triplet absorption
cross section leads to the largest systematic uncertainty
in both neutron interferometric and pseudomagnetic spin
precision measurements of ∆b′. This is discussed in more
detail in Section VI A.

III. EXPERIMENTAL PROCEDURE

We used a neutron interferometer to measure the phase
difference between two polarized neutron states that are
transmitted through a polarized 3He target cell. Neu-
trons are polarized in the vertical direction and can be
flipped by π radians using a precession coil spin flip-
per. The target 3He polarization direction stays constant
throughout a measurement, but its magnitude decreases
exponentially in time. For neutrons with spin state ↑ and
↓ incident on a polarized 3He sample we can insert the
effective scattering length for 3He (Eq. (9))

b′ = b′c ±
b′i√
3
, (16)

into Eq. (8) and find the phase difference

∆φ0 = φ↑sam − φ↓sam

= −λN3D3

[(
b′c +N+

b′i√
3
−N−

b′i√
3

)
−
(
b′c −N+

b′i√
3

+N−
b′i√
3

)]
(17)

where N3 is the 3He number density and D3 is the active
length of the target cell. Here N± = (1 ± P3)/2 is the
fraction of 3He nuclei in each polarization state. Using
Eqs. (11b) and (17) one finds that the phase difference
between opposite neutron spin states is related to the
triplet and singlet scattering lengths by

b′1 − b′0 =
−2∆φ0

N3λD3P3
, (18)

The factors in the denominator of Eq. (18) are deter-
mined simultaneously with ∆φ0 by measuring the spin-
dependent transmission of neutrons through the 3He
cell. This is an advantage over typical interferomet-
ric measurements of b′ in that none of the factors in
the denominator need to be determined individually;
the spin-dependent transmission asymmetry determines
their product directly.

A. Neutron Interferometer and Facility

This experiment was done at the National Institute
of Standards and Technology’s (NIST) Center for Neu-
tron Research (NCNR) in Gaithersburg, MD. A 20 MW
reactor produces a steady source of neutrons that are

moderated by a liquid hydrogen cold source [33]. These
moderated neutrons are transported from the cold source
to several neutron instruments by 58Ni coated glass
guides. At the Neutron Interferometer and Optics Fa-
cility (NIOF) a double monochromator assembly reflects
2.35 Å neutrons into an environmentally isolated enclo-
sure [34]. The first monochromator is a single pyrolytic
graphite PG(002) crystal that reflects neutrons out of
the neutron guide and toward a second monochromator
3 m away. This second monochromator vertically focuses
the beam using nine individually adjustable 1 cm x 5 cm
PG(002) crystals [35]. Further details of the facility can
be found in [36].

A schematic of the experiment inside the enclosure is
shown in Figure 2. After the double monochromator
assembly a pyrolytic graphite filter was used to remove
λ/2 = 1.175 Å neutrons from the beam. Neutrons passing
through the filter were polarized by a transmission-mode
supermirror polarizer [37]. The polarizer consisted of two
separate 0.64 m and 0.73 m long supermirrors that were
slightly offset so that no incoming neutrons had clear line
of sight to the interferometer. Neutrons in the incorrect
spin state were reflected from the supermirror and ab-
sorbed on cadmium shielding.

Immediately downstream of the supermirror polarizer
was a precession coil spin flipper made from two orthog-
onal aluminum wire coils [38]. One coil provided a mag-
netic field opposite of the guide field that created, in the
absence of the other coil, a zero field region in the center
of the coils. A second coil created a magnetic field

Bf =
π2h̄2

µnmnλ
L−1 (19)

perpendicular to the neutron polarization direction. The
field Bf was tuned such that the neutron undergoes half
a Larmor precession cycle. Here L is the active length
inside the coils, mn is the neutron mass, µn = γh̄σn

is the neutron magnetic dipole moment, and γ is the
gyromagnetic ratio. When energized the precession coil
spin flipper allowed the neutron spin state to be rotated
π radians with nearly 100 % efficiency.

Helmholtz coils 56 cm in diameter were centered on
the target cell and provided a field of 1.5 mT. To pre-
serve the neutron polarization between the supermirror
polarizer and the Helmholtz coils a series of permanent
magnets provided a magnetic guide field with a min-
imum of 1 mT. The heat output from the Helmholtz
coils, which was not actively cooled, increased the tem-
perature variation for this experiment. The tempera-
ture around the interferometer was controlled with heat-
ing tape and calibrated platinum resistance sensors in
closed loop, proportional-integral-derivative (PID) oper-
ation and typically achieved a temperature stability of ±
5 mK [35]. For this experiment the interferometer enclo-
sure was stable to only ± 20 mK because of the increased
heat caused by the Helmholtz coils.

A neutron interferometer consists of a perfect silicon
crystal machined so that there are several parallel crystal
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FIG. 2. (Color online) The n-3He experiment (Not to Scale). (a) A monochromatic neutron beam entering from the left is
polarized by a supermirror. The polarization direction can be changed using a precession coil spin flipper. A 2 mm × 6 mm
slit provided collimation just before the interferometer. (b) Neutrons Bragg diffract in the first blade of the interferometer
coherently splitting the neutron into two separate paths. The two paths are diffracted in separate mirror blades so that they
mix and interfere at the analyzer blade of the interferometer. One neutron path contains the 3He target cell while the other
path contains 8 mm of boron-free glass to compensate for the phase shift caused by the target cell windows. A quartz phase
flag is rotated to vary the intensity in the two 3He filled proportional counters labeled the O- and H-beam detectors. The 3He
polarization was monitored by a third 3He detector labeled C4.

FIG. 3. The skew symmetric interferometer made by Cliff
Holmes and others at the University of Missouri-Columbia
machine shop (on loan from Dr. Samuel A. Werner).

blades on a common monolithic base. The interferome-
ter used here is shown in Fig. 3. Neutrons entering the
interferometer Bragg diffract in the first (splitter) blade
of the interferometer. This coherently separates the neu-
tron into two spatially separate paths labeled I and II
(see Fig. 2b). Both neutron paths are Bragg diffracted
in a second (mirror) blade and interfere in the final (an-

alyzer) blade of the interferometer. Conceptually, this
is analogous to a Mach-Zehnder interferometer in light
optics. The two beams exiting the interferometer are
historically labeled the O- and H-beams. Neutrons are
detected with near 100 % efficiency using 25.4 mm diam-
eter cylindrical 3He filled proportional counters.

The target was a sealed glass cell containing 3He gas
(see Fig. 4) placed in path I of the interferometer. A
phase flag, which consisted of 2 mm thick quartz, was
placed in both paths of the interferometer. Rotating the
phase flag by an angle ε varied the relative phase shift
between the two neutron paths and thus modulated the
intensity in the O- and H-beam detectors. For the O-
and H- beam detectors, the intensity can be written for
a neutron with spin state ↑ (↓) as

I0(ε) = c
↑(↓)
0 + c

↑(↓)
1 cos

[
φflag(ε) + φ↑(↓)

]
(20)

IH(ε) = c
↑(↓)
3 − c↑(↓)1 cos

[
φflag(ε) + φ↑(↓)

]
(21)

where I0 + IH = constant. (22)

The coefficients c
↑(↓)
i for i = 0, 1, . . . , n are treated as fit

parameters. Here [φflag(ε) + φ↑(↓)] is the relative phase

difference between the two paths. The phase φ↑(↓) in-
cludes both φsam and any initial relative phase difference
between paths I and II. The term φflag(ε) = c2f(ε) is the
phase shift due to the phase flag where

f(ε) =
sin (θB) sin (ε)

cos2 (θB)− sin2 (ε)
(23)

is the difference in optical path length for path I and II.
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Here θB = 37.73 ° is the Bragg angle for the interferom-

eter. Since 3He has spin-dependent absorption, c↑i 6= c↓i
for i = 0, 1, 3.

The contrast or fringe visibility C of the interferometer
is the ratio of the amplitude c1 and mean c0 in Eq. (20).
In practice the contrast for a typical neutron interferom-
eter is less than unity due to a host of reasons including
small crystal imperfections and temperature gradients.
Under the best experimental conditions neutron inter-
ferometers have demonstrated at most around 90 % con-
trast. In this experiment there are two losses of contrast
that, although not unique, are of particular interest.

The first case is due the interaction of the neutron as
it passes through the glass windows of the target cell.
As a neutron passes through the glass windows it ex-
periences a large phase shift φwin. Although this phase
shift φwin is spin-independent and is canceled when sub-
tracting the phase measured in both neutron spin states,
φwin does affect the measured contrast and hence overall
precision of the experiment. This is because the inci-
dent neutron beam contains a small wavelength spread
of σλ/λ = 1 %. Neutrons of slightly different wavelengths
will experience slightly different φwin which dephases the
detectable neutron beam after the interferometer. This
doesn’t affect the measured phase determined by Eq. (20)
but dephasing does decrease the contrast. Assuming a
Gaussian spectrum of λ, the measured contrast becomes
C = C0 exp [−(NwinDwinb

′
winσλ)2/2] where C0 is the ini-

tial contrast of the interferometer. Here Nwin, Dwin, and
b′win are the density, thickness, and effective scattering
length of the window, respectively. This effect is negli-
gible for the 3He itself because the density of the gas is
much lower. A more complete description of coherence
and subsequent contrast loss can be found in a number
of sources including [35, 39–43]. To minimize the loss
of contrast from the cell windows, 8 mm of compensating
glass made from 2 target cell windows was placed in path
I of the interferometer.

Another mechanism of contrast loss in this experiment
is due to the fact that the 3He sample is a neutron ab-
sorber; therefore both c0 and c1 are decreased from what
they would otherwise be in an empty interferometer. For
absorption we have [29],

c0′ =
c0
2

(1 + e−σaN3D3) (24)

c1′ = c1e
−σaN3D3/2 (25)

C =
c1′

c0′
= C0 sech(σaN3D3/2) (26)

Absolute contrast during this experiment was a function
of the environment, effectiveness of compensation glass,
neutron spin-state and the 3He polarization and varied
between 30 % and 75 %.

FIG. 4. Two 3He cells. The larger of the two cells, called
Skylight, was used in the polarimetry measurements. The
smaller flat-window cell called Pistachio was used as a target
cell. Rubidium deposits can be seen as dark spots along the
walls of the cell.

B. Glass Target Cells

The NIST optical shop fabricated four geometrically
identical flat-windowed 3He cells. Two of these cells,
named Cashew and Pistachio (Pistachio is shown in
Fig. 4) were used in this experiment. Each cell was made
from boron-free aluminosilicate glass [44] and consisted
of two flat 25 mm diameter, 4 mm thick windows fused
onto a 34 mm long cylindrical base. Before the cells were
sealed they were filled with between 1.7 bar and 1.9 bar of
3He gas. Nitrogen and rubidium were also added in order
to polarize the 3He using spin exchange optical pumping
(SEOP) [45]. Properties of the cells can be found in Table
I.

The environmental constraints at the NIOF required
that the cells be polarized at a separate facility. In this
facility SEOP was employed to polarize the 3He gas over
a period of 2 days to an initial 3He polarization between
65 % and 75 %. It was also possible at the SEOP facility
to monitor and flip the 3He polarization by nuclear mag-
netic resonance (NMR) techniques [46]. The cells were
transported to the NIOF using a portable battery pow-
ered solenoid. Losses in 3He polarization from transport-
ing the cell between the two facilities were measured to
be < 2 %. Helmholtz coils placed around the interferom-
eter provided a uniform magnetic field which minimized
the loss of 3He polarization due to magnetic field gradi-
ents. Cell relaxation times at the interferometer varied
per cell with a maximum of 150 h.
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TABLE I. The 3He cells properties. Quoted spin relaxation
times are for the interferometer facility which had magnetic
field gradients. N3σpD3 is the opacity of the cell. The pres-
sure at 26 °C was determined assuming that the transmission
through the cell windows was 88 % [47]. The cell Cashew’s
relaxation time was 135 h in 2008 and 150 h in the 2013 data
set. Pistachio was used only in 2008.

Relaxation N3σpD3 Pressure

Cell Name time [h] at 2.35 Å [bar] Function

Cashew (’08) 135 1.1 1.9 Target

Cashew (’13) 150 1.1 1.9 Target

Pistachio 35 1.0 1.7 Target

Skylight 110 3.1 3.1 Polarimetry

Haystack 80 3.0 2.94 Polarimetry

Whiteface 35 3.6 3.50 Polarimetry

C. Phase Data

The phase shift caused by the spin-dependent interac-
tion with the target 3He was measured by rotating the
phase flag from an angle of ε = 0 mrad to εmax and then
from ε = εmin to 0 mrad in 2.18 mrad steps. The angles
εmax and εmin varied slightly per run with εmax − εmin =
56.68 mrad. Each run lasted 4 h to 9 h with a statisti-
cal mode of 4.4 h. At each angle of the phase flag the
spin flipper was operated in a off-on-on-off sequence to
reduce the effect of linear drifts. Two simultaneous inter-
ferograms, one for each precession coil spin flipper state,
were constructed from the background subtracted off-on-
on-off data. A typical pair of interferograms are shown

in Fig. 5. Figure 6 shows the measured phases φ↑1 and φ↓1
over a span of a month that includes five cell transfers.

Comparing the two interferograms yields a measured
phase shift ∆φM . A correction must be applied to

∆φM = φ↑1−φ
↓
1 in order to determine ∆b′ using Eq. (18).

This is because the incident beam is an incoherent mix-
ture of both spin-up and spin-down neutrons (the neu-
tron polarization Pn 6= 1). The measured interferogram
is actually a sum of two different interferograms.

I0(off) = c↑1 cos
(
φflag + φ↑1

)
= cos (φflag + φ2) + η− cos (φflag + φ3) (27)

where

η− =
(1− Pn)

(1 + Pn)
e−N3σpD3P3 (28)

is the ratio of the number of minority-spin neutrons to
the number of majority-spin neutrons that exit the 3He
target cell. In Eq. (27) the mean intensity has been sub-
tracted but this does not affect the overall result below.
When the precession coil spin flipper is energized

I0(on) = c↓1 cos
(
φflag + φ↓1

)
= η+ cos (φflag + φ2) + cos (φflag + φ3) (29)
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where

η+ =
(1− sPn)

(1 + sPn)
e+N3σpD3P3 (30)

is again the ratio of the number of minority-spin to
majority-spin neutrons. We can now write the measured
phase shift ∆φM in terms of ∆φ0 = φ2−φ3 which is the
phase shift if the neutron polarization had been perfect
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(100 %) using

∆φM = arctan

(
sin ∆φ0

η+ + cos ∆φ0

)
− arctan

(
η− sin ∆φ0

1 + η− cos ∆φ0

)
. (31)

No correction is necessary for the fact that the helium
polarization P3 6= 1 because each individual neutron in-
teracts with multiple 3He atoms.

We have collected two sets of n-3He phase shift data
taken in separate years. The first run of this experiment
done in 2008 and has previously been reported in Huber
et al. [26, 27]. A second data set consisting of six months
of additional phase measurements was taken in the spring
and summer of 2013.

D. Measuring cell relaxation

Target cell transmission was measured in situ during
each scan using the C4 detector (see Fig 7). For each run
the asymmetry

A =
I↑ − I↓

I↑ + I↓
(32)

was calculated from the individual off-on spin flipper
asymmetries. The asymmetry is related to the neutron
polarization Pn and spin flipper efficiency

s =

∣∣∣∣Pn(on)

Pn(off)

∣∣∣∣ , (33)

where on(off) refers to the state of the precession coil
spin flipper [48], by

A =
(1 + s)PnPA

2 + (1− s)PnPA
. (34)

The values of s and Pn are known from the polarime-
try measurements. For each interferogram an averaged
asymmetry A was calculated. The analyzing power PA
of a 3He cell can be written [49]

PA = tanh (ξ) (35)

where

ξ = N3σpD3P3 (36)

is the product of the opacity of the cell N3σpD3 and 3He
polarization. One can use Eqs. (34) and (35) to write ξ
in terms of the measured asymmetry A as

ξ = tanh−1

(
2A

(s+ 1)Pn + (s− 1)PnA

)
. (37)
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IV. PHASE SHIFT DUE TO A NON-UNIFORM
MAGNETIC FIELD

When a magnetic field B in the direction of the neutron
polarization is present, the additional magnetic potential
VM = −µn ·B experienced by the neutron creates a phase
shift

φmag = ±µnmnλD

2πh̄2 B = ±κDB. (38)

where κ = −545 mrad/(cm-mT). The distance D is the
path length inside the interferometer. The (+) and (−)
signs correspond to neutron polarization parallel and
anti-parallel to the magnetic field, respectively. When
calculating the phase difference between precession coil
spin flipper states off and on the ± sign in Eq. (38) re-
verses, hence in the absence of polarized 3He gas this
difference is 2φmag for each path of the interferometer.
Since the length of both interferometer paths are equal,
φmag can only be nonzero if the magnetic field in the two
paths are different. In this case, the phase shift difference
will be

2φmag = 2κ(B1 −B2)D (39)

where B1 and B2 are the magnetic field strengths av-
eraged over paths 1 and 2, respectively. For this inter-
ferometer the longer, parallel part of the beam paths,
which contained both the cell and compensating glass,
was 6.4 cm with a total path length of 8.6 cm. A mag-
netic field gradient will be manifested as a non-zero phase
shift in the absence of polarized gas and a non-zero y-
intercept for a fit of the variation of phase shift with 3He
polarization.

By direct measurements without the cell inside the in-
terferometer Huber et al. [26, 27] determined 2φmag =(2
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FIG. 8. (Color online) The difference between the maximum
magnetic field in mT and the magnetic field Bz in the region
of the target cell’s center (0,0) measured using a fluxgate mag-
netometer. Contour lines show a 7×10−4 cm−1 field gradient.

± 10) mrad hence consistent with zero but with a rela-
tively large uncertainty. Both the phase shift data versus
helium polarization and an estimate of 2φmag from 3He
relaxation also yielded 2φmag consistent with zero. How-
ever, after applying the incoherent beam correction of
Eq. (31) a fit of the phase shift data versus helium polar-
ization yielded a nonzero value of (16± 4) mrad. Further-
more, we found an error in the estimate of 2φmag from
3He relaxation in Ref. [27]. This led us to directly map
the magnetic field, revisit the estimate from 3He relax-
ation, and perform a better evaluation of the y-intercept
of ∆φ/P3 (see Sec. VII). In addition to this re-analysis of
our 2008 data, we obtained new data in 2013 with a focus
on a better evaluation of the intercept. In particular we
obtained data for both directions of the 3He polarization
and substantially more data at P3 = 0.

Figure 8 shows a map of the magnetic field obtained
with the Helmholtz coils, which revealed a fairly lin-
ear gradient (1/Bz)dBz/dy ≈ 7×10−4 cm−1. The two
paths of the interferometer are separated by 2.2 cm, hence
this gradient yields B1 − B2 ≈ 2.3 × 10−3 mT and thus
2φmag ≈ 16 mrad. Although magnetic parts were avoided
near the 3He cell, there was a rotation stage with mag-
netic components below the coils. This stage was neces-
sary so that the interferometer could be aligned to satisfy
the Bragg condition.

The observed relaxation time T1 of the 3He gas re-
sults from contributions from dipole-dipole relaxation
[50], wall relaxation [51], and magnetic field gradients.
The first two components yield the “intrinsic” relaxation
time of the cell, Ti. The observed relaxation time in the
interferometer in the presence of a field gradient is

1

T1
=

1

Ti
+

1

Tfg
(40)

where the gradient contribution is given by[52]

1

Tfg
=

6700

p

(
|∇Bx|2

B2
+
|∇By|2

B2

)

=
6700β2

p
h−1 (41)

Here p is the pressure in bar and Bx,y are the perpendic-
ular components of the magnetic field where the applied
field is in the z direction. For the cell Cashew, T1 =
135 h and Ti = 330 h which yields β = 1.1× 10−3 cm−1.
Whereas β includes several components, by using ∇ ×
B = 0 and by assuming the gradient is dominated by
the linear gradient observed in the field map, one ob-
tains (1/Bz)dBz/dy ≈ 1.0 × 10−3 cm−1, B1 − B2 ≈
3.6 × 10−3 mT and thus 2φmag ≈ 25 mrad. It is likely
that this value is an upper limit because several gradi-
ent components contribute to relaxation. As discussed
in Sec. VII, we obtained y-intercepts of (16 ± 4) mrad in
the 2008 run and (21 ± 3) mrad in the 2013 run, con-
sistent with the estimates from the field map and 3He
relaxation.

Between 2008 and 2013 other interferometry exper-
iments were performed at the NIOF. Changes to the
NIOF included different shielding, changes to the polar-
izer, wavelength changes, the use of different interferome-
ters and mounting, stages, and a change in the monochro-
mator crystal [36]. Despite these changes the experimen-
tal conditions were reasonably well reproduced. Plan-
ning for additional phase data at P3 = 0 was started
almost immediately after 2008 as the magnetic field gra-
dient became more of a concern. The Helmholtz coils
and spin flipper were at identical positions in 2008 and
2013. Other components of the experiment like the elec-
tronics, detectors, the interferometer, cell mounting, and
other system components were the same between the two
runs as they were reserved for this work and not other-
wise used. Initial P3 was 10 % higher in 2013 because of
advances in helium polarization techniques [53]. Another
difference was that in 2008 the polarization direction of
P3 was keep fixed; whereas in 2013 P3 was twice polarized
in the reversed direction. Lastly, the neutron polarization
was 3 % lower (see Section V B) in 2013 due to changes
in the supermirror alignment.

V. AUXILIARY MEASUREMENTS

A. Neutron Wavelength

Because the skew symmetric interferometer uses a
(220) reflection in silicon, it is necessary to eliminate
higher order n = 2, 3, . . . reflections from the incident
beam. Neutrons with wavelengths of λ < 2.35 Å are
poorly polarized by the supermirror and could poten-
tially affect the phase and polarimetry measurements.
Neutrons with wavelengths corresponding to n ≥ 3 are
suppressed by the liquid hydrogen cold source. However
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a non-negligible amount (5 %) of λ/2 = 1.175 Å neutrons
are present in the incident beam. To eliminate these
neutrons a pyrolytic graphite filter [54] consisting of nine
separate PG crystals of varying thickness (50 mm overall)
was placed upstream of the supermirror polarizer. Neu-
trons of wavelength 1.175 Å are preferentially reflected
by the (114) plane of the graphite and are absorbed by
a surrounding boron shield.

A measurement of the fraction of λ/2 neutrons was
performed with the interferometer removed and a nearly-
perfect silicon analyzer crystal (NPC) placed in the direct
beam before the interferometer. This crystal analyzer is
denoted as “nearly-perfect” because it contains a small
mosaic spread (a small variation in lattice vector direc-
tion throughout the crystal) of 3.5 × 10−4 rad. The mo-
saic of the crystal allows a greater fraction of incident
neutrons to satisfy the Bragg condition; thus more re-
flect from the crystal and increase the overall reflected
intensity. The relative intensity of (Iλ/2)/Iλ was mea-
sured by rotating the “nearly-perfect” crystal ±θB and
examining the reflected beams. In addition to the NPC,
a disk chopper made from a rotating, neutron absorbing
cadmium disk with a small slit was used as well. The
disk chopper allows time-of-flight analysis of the neu-
tron spectrum. Both techniques placed an upper limit
of (Iλ/2)/Iλ < 0.1% that was determined by compar-
ing the relative intensities with and without the filter in
place. This ratio is mainly limited by the accuracy in
determining the small background signal. The presence
of 1.175 Å neutrons at this level had a negligible effect on
∆φM and polarimetry measurements.

B. Polarimetry

Several neutron polarimetry measurements were made
throughout the experiment to verify that the neutron
polarization was stable over the duration of the exper-
iment. Each polarimetry measurement took place during
pauses in collection of the phase data. Common tech-
niques to measure neutron polarizations and spin flip-
per efficiencies along with their difficulties are described
in Ref. [55]. In this experiment the neutron polariza-
tion Pn was measured with 3He cells and by using two
analysis methods, which we refer to as the asymmetry
and normalized transmission methods. Polarimetry cells
are physically larger than target cells and one of them is
shown in Fig. 4. Properties of the cells are listed in Table
I.

A 3He analyzer had two advantages over crystal or su-
permirror analyzers. First, the analyzing power PA of the
cell was determined from unpolarized neutron transmis-
sion measurements. Second, we could flip the cell’s po-
larization by π radians using nuclear magnetic resonance
(NMR) at the SEOP facility. This NMR induced flip
eliminated the need for a second spin flipper to uniquely
determine Pn, PA, and spin flipper efficiency. These cells
had three times the opacity of the target cells and thus

provided high analyzing powers that were relatively in-
sensitive to variations in 3He polarization.

The setup for both methods was the same. Low neu-
tron fluence rates in the H-beam prevented any practical
polarization analysis behind the interferometer. Instead,
the interferometer was removed from its cradle and re-
placed with one of the analyzing cells. Because the neu-
tron polarization produced by the supermirror polarizer
should depend very weakly on wavelength and the beam
spectrum was sufficiently narrow (σλ/λ = 1 %), the dif-
ference between the measured Pn of the direct beam and
the neutron polarization of paths I and II of the interfer-
ometer is believed to be negligible. The neutron trans-
mission through the cell was measured using a 3He de-
tector located directly behind the analyzer.

For both methods the analyzing power of the cell was
determined by the transmission of unpolarized neutrons.
The analyzing power of a 3He cell is given by Eq. (35).
For the polarimetry cells the range of initial PA was be-
tween 86 % and 99 % but was typically around 97 %
depending on the cell and its initial 3He polarization.
Eq. (35) can be rewritten as a ratio of two unpolarized
neutron transmission measurements as

PA =

√
1−

(
Tun

Tpol

)2

(42)

where Tpol(Tun) is the transmission of unpolarized neu-
trons through a polarized (unpolarized) 3He cell. These
transmissions are discussed later in Sec. V B 2. Unpolar-
ized neutrons were obtained by translating the supermir-
ror out of the beam using an encoded linear stage. The
position of the supermirror was reproducible to within
1 µm. To measure Tun the analyzer cell was depolarized
by temporarily connecting the Helmholtz coils to an al-
ternating current voltage supply.

1. Asymmetry Method

The asymmetry method used the difference in count
rates for the two neutron spin states, I↑ and I↓, to deter-
mine the neutron polarization and spin flipper efficiency.
Here I↑(↓) is the intensity when the neutron and 3He po-
larization are aligned parallel (anti-parallel). The asym-
metry A is related to the neutron polarization and spin
flipper efficiency by

A =
I↑ − I↓

I↑ + I↓
=

(1 + s)PnPA
2 + (1− s)PnPA

. (43)

To uniquely determine Pn and s using this method it is
necessary to have two separate asymmetries A and A∗

where one reverses the direction of the 3He polarization.
Similar to Eq. (43) we have

A∗ =
(1 + s)PnPA∗

2− (1− s)PnPA∗
(44)

The analyzing powers PA and PA∗ were not the same
because of a few percent loss in P3 caused by performing
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an NMR induced spin flip and transporting the cell to
and from the SEOP facility. Using Eqs. (43) and (44)
the spin flipper efficiency is

s =
A [1 +A∗]PA∗ + PA [A− 1]A∗

A [A∗ − 1]PA∗ + PA [1 +A]A∗
. (45)

With knowledge of s, Pn can be determined via

Pn =
2A

PA [(s− 1)A+ (1 + s)]

=
2A∗

PA∗ [(1− s)A∗ + (1 + s)]
. (46)

Measurements of Pn and s that were obtained using the
asymmetry method are shown in Fig. 9.

The intensities I↑ and I↓ for both this method and nor-
malized transmission method discussed in Section V B 2
were performed symmetrically around measurements of
Tpol and hence PA and PA∗ . Specifically, I↑ (and like-
wise I↓) was measured twice, once before and once after
a measurement of Tpol. The averages of I↑ and I↓ were
then used in Eqs. (43) and (44). This was done to com-
pensate for the decay of P3 while the measurements were
being performed to a level where no correction for P3

decay was needed.

2. Normalized Transmission Method

When Pn = 1 the transmission of neutrons through a
polarized 3He cell is

Toff(on) = Tg exp (−N3σaD3)

= Tg exp (−N3σunD3) exp (±ξ), (47)

where Eqs. (14) and (36) have been used to relate the ab-
sorption cross section σa to ξ. The signs (+) and (−) is
for ‘off’ and ‘on’ states of the precession coil spin flipper,
respectively. Here we have taken that the initial neutron
polarization and 3He polarization is in the same direc-
tion. Tg is the transmission of neutrons through the cell
windows.

For a neutron beam with Pn ≤ 1 the transmission Toff

becomes

Toff =

(
Tg

2

)
e−N3σunD3

×
[

(1 + Pn) eξ + (1− Pn) e−ξ
]
. (48)

Eq. (48) can be expressed more compactly as

Toff = Tge
−N3σunD3 [cosh (ξ) + Pn sinh (ξ)] . (49)

The transmission of unpolarized neutrons through a
polarized 3He cell is given by

Tpol = Tun cosh (ξ) , (50)

where

Tun = Tge
−N3σunD3 (51)
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FIG. 9. (Color online) The neutron polarization (circles) and
spin flipper efficiency (diamonds) measured in 2008 (solid)
and 2013 (open) determined using the asymmetry method.
The uncertainties shown are purely statistical. Fits of the
data are shown as solid lines for 2008 and dotted lines for
2013. Points with larger uncertainties were taken when the
cell had lower polarization.

is the transmission of unpolarized neutrons through an
unpolarized 3He cell. Dividing Eq. (49) by Eq. (50) yields

Toff

Tpol
= 1 + Pn tanh (ξ) . (52)

It follows from Eqs. (35), (42), and (52) that

Pn =

Toff
Tpol

− 1√
1−

(
Tun

Tpol

)2
. (53)

When one energizes the spin flipper one has the anti-
parallel case where,

sPn =
1− Ton

Tun√
1−

(
Tun

Tpol

)2
. (54)

It should be noted that the uncertainty associated with
determining the polarimetry from Eq. (53) is different
than that for Eq. (54). Propagating the uncertainty σ of
the polarization product Zoff = PAPn and Zon = PAsPn
we find

σ2
Zoff

=

(
1

Tun

)2

σ2
Toff

+

(
Toff

T 2

un

)2

σ2
Tun

(55)

σ2
Zon

=

(
1

Tun

)2

σ2
Ton

+

(
Ton

T 2

un

)2

σ2
Tun

. (56)
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FIG. 10. (Color online) The neutron polarization (circles) and
neutron polarization when energizing the precession coil spin
flipper (squares) measured in 2008 (solid) and 2013 (open)
determined using the normalized transmission method. The
uncertainties shown are purely statistical. All points shown
were taken in the anti-parallel state of n-3He (see text). Fits
of the data are shown as solid lines for 2008 and dotted lines
for 2013. Points with larger uncertainties were taken when
the cell had lower polarization.

For this experiment Zoff ≈ Zon ≈ 0.9 and Ton ≈ 0.05Toff .
Using Eqs. (55) and (56) we find that

σZon
≈ 0.05σZoff

. (57)

So despite the relative uncertainties of Toff and Ton be-
ing comparable the overall uncertainty in determining Pn
versus sPn differs by a factor of twenty. The contribution
to the overall uncertainty of Pn from the uncertainty in
PA is small because of higher statistics without the su-
permirror in the neutron beam. By reversing the 3He
spin using NMR we can invert Eq. (57) so that

σZoff
≈ 0.05σZon

(58)

when the 3He polarization has been flipped. It follows
that using the anti-parallel state to determine Pn or sPn
is advantageous despite a much smaller Toff(on) being
measured because the overall uncertainty is better. Thus
we have chosen to use only the anti-parallel measure-
ments for the normalized transmission method (shown in
Figure 10).

3. Polarimetry Result

Both the asymmetry and normalized transmission
methods yield neutron polarizations and spin flipper effi-
ciencies to less than 0.1 % relative standard uncertainty.
These results are shown in Table II. For the 2008 data set
there was a 2σ disagreement in measured neutron polar-
ization between the two methods. To handle this discrep-
ancy, the uncertainties for the 2008 polarimetry results

TABLE II. Results of the polarimetry for the various methods
used. σR is the relative standard uncertainty.

2008 2013

Var. Method Value (σ) σR, [%] Value (σ) σR, [%]

Pn

Asy. 0.92874(33) 0.04 0.90260(36) 0.04

N.T. 0.92941(17) 0.02 0.90184(41) 0.05

Asy. + N.T. 0.92908(75) 0.09 0.90227(55) 0.06

s
Asy. 0.99502(31) 0.03 0.99444(63) 0.06

N.T. 0.99516(23) 0.02 0.99506(63) 0.06

Asy. + N.T. 0.99510(34) 0.03 0.99475(89) 0.09

are determined by adding the largest uncertainty of the
two methods in quadrature with the difference between

the methods, for example σPn
=
√
σ2

largest + (∆Pn)2 =√
(0.0033)2 + (0.92874− 0.92941)2. In 2013 the po-

larimetry (see Figs. 9 and 10) data were more consistent
and this expansion of their uncertainty was not done. An
equal weighted average of the asymmetry and normalized
transmission methods yields

Pn = 0.92908± 0.00075 in 2008 (59)

= 0.90227± 0.00055 in 2013

and

s = 0.99510± 0.00034 in 2008 (60)

= 0.99475± 0.00089 in 2013

The differences between the 2008 and 2013 neutron polar-
ization is believed to be due to non-reproducible changes
in the angular separation between the two mirror surfaces
of the supermirror polarizer that is often varied between
experiments. In both 2008 and 2013 the neutron preces-
sion coil spin flipper was the same device, was located in
the same place, and showed much better agreement.

VI. SYSTEMATIC EFFECTS

A. Absorption Cross Section

The quantity ξ is a function of λ and can be written
as

ξ = N3σpD3P3 = N3

[
1

4
(σ0 − σ1)

]
λ

λth
D3P3, (61)

where λth = 1.798 Å is the reference thermal neutron
wavelength. To extract N3λD3P3 from ξ, one needs the
singlet and triplet absorption cross sections σ0 and σ1.
The experimental value of σun ≈ σ0/4 is well known from
transmission measurements as (5333 ± 7) b at λth [31].
However, the triplet absorption cross section is poorly
known experimentally. Passell and Schermer [56] mea-
sured neutron transmission through 3He and determined
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the ratio of singlet to total absorption cross section to be
g0σ0/σun = (1.010± 0.032) . An indirect measurement
of the same quantity was made by Borzakov et al. [57]
where they determined g0σ0/σun = (0.998 ± 0.010) by
examining deviations from a purely “1/v” absorption law
for neutron energies up to 150 keV. Both of these exper-
iments support σ1 ≈ 0 but only at the 1 % level. Due to
the lack of precision measurements of σ1, we used a theo-
retical prediction of the imaginary part of the scattering
length to estimate σ1.

Calculations performed by Hofmann and Hale [58, 59]
of the imaginary free scattering length a′′1 using R-matrix
and AV18+3N interactions give a range of values a′′1 of
between 0.0012 fm and 0.0051 fm. However as noted in
the same paper, AV18+3N models under-predict the ex-
perimentally measured a′′0 by up to 30 %. To be con-
servative we used a′′1 = (0.005 ± 0.005 ) fm. This allowed
for the possibility that theoretical calculations are low by
as much as a factor of two. With a′′1 and the measured
thermal absorption cross section for unpolarized 3He we
have

σ0 − σ1 = (21236 ± 100) b. (62)

With Eqs. (37) and (62) one may extract N3λD3P3 from
the asymmetry measurements of ξ.

B. Polarimetry Effects

The effect of uncertainties in Pn and s on calculating
∆φ0 is complicated by the fact that they affect both η−
and η+ directly and also indirectly through ξ. To deter-
mine the systematic uncertainty in ∆φ0 contributed by
the uncertainties σPn and σs we studied a simulated set of
[∆φM ]sim and [ξ]sim data. This simulated data was gener-
ated using a fixed value ∆b′ =−5.400 fm and a randomly
distributed set of [ξ]sim to generate a [∆φM ]sim. ∆φ0 was
then calculated using the simulated [∆φM ]sim and [ξ]sim
while varying Pn and s by their respective uncertainties.
The variance in ∆φ0, and hence ∆b′, resulting from the
uncertainties σPn

and σs was taken as the systematic un-
certainty due to the polarimetry measurements.

VII. RESULTS

Figure 11a shows the measured ∆φ0 versus ξ for the
2008 data set which was collected over several reactor
cycles for a total of 12 weeks. From Eq. (18) the value
of ∆b′ can be determined by the slope of ∆φ0 in Figure
11a. There are two significant changes in determining ∆b′

from what was done previously in Huber et al. [26, 27].
The first and most significant is that in Refs. [26, 27]
the slope of ∆φ0 versus ξ was determined using a one
parameter fit. This fixed the y-intercept of the fit to be
precisely zero corresponding to ∆φ0 = 0 at P3 = 0. In the
presence of a magnetic field gradient, this approach is no
longer valid. Instead we now perform a two parameter

fit of ∆φ0 versus ξ. The fitted y-intercept of the data
shown in Fig. 11a yields 2φmag = (16 ± 4) mrad.

The other change we have made has been in the
manner in which we cut individual data points. In
Refs. [26, 27] we cut the data based on the reduced
chi squared χ2

red of the interferogram fit. All fits with
χ2

red ≥ 1.5 were discarded and not included in our 2008
results. This was done to account for phase instabilities
especially those seen immediately following a cell transfer
which introduced temporary temperature and mechani-
cal instabilities lasting 12 h or more. However, discarding
interferograms based on χ2

red values included eliminating
points taken in the middle of runs where the phase was
more stable. As discussed below, a systematic uncer-
tainty of 0.012 fm attributed to phase instabilities was
also applied to the result in Ref. [26]. Since we already
incorporate an uncertainty due to phase instabilities, for
this result we make no cut based on the χ2

red in either the
2008 or 2013 data set. Phase instabilities were greater in
2013 as the temperature stability that we had in 2008 was
not reproduced. This is contrary to 2008 where temper-
ature drifts were highly correlated to opening the facility
doors to perform a cell transfer (since P3 ≈ 0 in most of
2013, transfers were infrequent in that data run). The
inclusion of data points with χ2

red ≥ 1.5 does not affect
the values determined by a fit of ∆φ0 versus ξ but does
decrease the statistical uncertainty.

A two parameter fit of Fig. 11a gives ∆b′ = (−5.381 ±
0.053) fm with χ2/d.o.f. = 530/(435 − 2) = 1.2. This
χ2 represents a low probability of fit (< 1 %) and is
due to random phase instabilities that were most likely
caused by small temperature fluctuations. To estimate
the systematic uncertainty due to this effect the uncer-
tainty of ∆φ0 was inflated by 0.016 rad in quadrature
with the statistical uncertainty for each point so that the
χ2/d.o.f. = 1. The average statistical uncertainty for
∆φ0 was ≈ 0.033 rad but varied strongly with P3. A his-
togram of the residual of the fit with a reduced χ2 = 1 is
shown in the inset of Fig. 11a. The distribution of points
in the figure closely follows a Gaussian function centered
at zero.

Figure 11b shows ∆φ0 versus ξ for the 2013 data set.
In 2013 we polarized the 3He gas only four times focus-
ing instead on measuring ∆φ0 at low P3. Twice we po-
larized the 3He in the opposite direction with respect
to the neutron polarization defined by the supermirror
polarizer. In this case there is more neutron absorp-
tion when the precession coil spin flipper is off. This
reversed-polarized data is shown in the lower left quad-
rant of Fig. 11b. Again applying a two parameter fit
of Fig. 11b gives ∆b′ = (−5.439 ± 0.038) fm with a
χ2/d.o.f. = 1120/(507 − 2) = 2.2. To fix χ2/d.o.f. = 1
the uncertainty of ∆φ0 was inflated in quadrature by
0.043 rad. For 2013 we find that 2φmag = (21 ± 3) mrad
which is consistent with both the 2008 data and the field
gradient measurement.
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FIG. 11. (Color online) ∆φ0 vs ξ values for (a) 2008 and (b) 2013. The solid line is a weighted average with a χ2/d.o.f. = 1
(see text). Insets: Histograms of the residual distribution with Gaussian fits (solid lines). The residual is defined by R = yi − y
where y is the fit function and yi is the ith data point. (a) The Gaussian fit is centered at −0.001 rad with a full width half
maximum (FWHM) of 0.091 rad. (b) The Gaussian fit is centered at +0.002 rad with FWHM of 0.117 rad.

The weighted average of both data sets gives

∆b′ = (63)

(−5.411 ± 0.031 (Stat.) ± 0.039 (Syst.) ) fm.

This corresponds to a 4σ shift of ∆b′ compared to our
previous result reported in Ref. [26]. This shift is entirely
due to the inclusion of phase shifts from magnetic field
gradients in our fitting. Allowing our fit of ∆φ0/ξ an ad-
ditional degree of freedom increased the statistical uncer-
tainty in the scattering length by a factor of 2. However,
tripling the original data set yielded a final statistical un-
certainty only 20 % larger than that reported in Ref. [26].
The uncertainty budget for ∆b′ for each individual data
set is given in Table III. The weighted average is per-
formed by weighting both the statistical and systematic
uncertainties unrelated to neutron absorption on 3He in
quadrature. The systematic uncertainty related to 3He
absorption was added to the total systematic uncertainty
in Eq. (63).

VIII. CONCLUSIONS AND DISCUSSION

We have performed a precision measurement of the
difference ∆b′ = (−5.411 ± 0.031 (Stat.) ± 0.039
(Syst.) ) fm between the triplet and singlet scattering
lengths of n-3He using neutron interferometry to 0.9 %
relative standard uncertainty. The ultimate precision of
this technique is systematically limited by the triplet ab-
sorption cross section corresponding to a relative uncer-
tainty of 0.5 %. This result is in good agreement with
the only previous direct measurement of ∆b′ = (-5.462
± 0.046) fm performed by Zimmer et al. at the Institut
Laue-Langevin (ILL) [60]. Ref. [60] used a spin echo ap-
paratus to measure the relative difference in the pseudo-

TABLE III. The uncertainty budget for ∆b′. Uncertainties
related to 3He absorption cross section that are identical for
both data sets are summed in quadrature.

2008 2013

σ, [fm] Parameter σ, [fm]

0.053 ∆φ0/ξ Fit (Statistical) 0.038

0.028 Triplet absorption cross section σ1 0.028

0.007 Total absorption cross section σun 0.007

0.029 Total systematic from cross sections 0.029

0.025 Phase instabilities 0.040

0.005 Neutron polarization Pn 0.004

0.002 Spin flipper efficiency s 0.004

0.026 Total non-cross section systematic 0.040

0.053 Total statistical 0.038

0.039 Total systematic 0.049

magnetic spin-precession [61, 62] between a neutron pass-
ing though a polarized 3He cell compared to an empty
reference beam. That technique is fundamentally differ-
ent than the technique applied here. One can state the
results independent of the triplet absorption cross section
and total absorption cross section from our results and
that of Ref. [60]. This is done for two reasons: (i) both
groups estimated σ1 differently and (ii) in the event of fu-
ture more accurate measurements of the absorption cross
sections, one can immediately update the spin-dependent
n-3He scattering length. Zimmer et al. determined σ1

from an average of the experimental results of Refs. [56]
and [57] with the limitation that σ1 ≥ 0. Whereas, as de-
scribed in Section VI A, we used a theoretically predicted
σ1 but with an inflated uncertainty. Our result stated in-
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FIG. 12. (Color online) An ideogram of the coherent scatter-
ing length measurements for n-3He taken from Refs. [24, 25,
63–66]. The blue band represents the weighted average ±σ
of the three experiments with smallest quoted uncertainties.
Techniques used were neutron interferometry (NI), total cross
section (CS), and reflectivity (RE).

dependent of the triplet absorption cross section is

∆b′(this work) =[
(−10.1929± 0.0760)× 10−4 fm/b

]
×
(

1− σ1

σun

)
σun (64)

This is in disagreement with the result of Zimmer et al. of

∆b′(Ref. [60]) =[
(−10.3628± 0.0180)× 10−4 fm/b

]
×
(

1− σ1

σun

)
σun (65)

by 2σ when factoring out the absorption cross sections.
There have been a number of experiments measur-

ing the coherent scattering length of n-3He defined by
Eq. (11a) using techniques such as measuring neutron
reflectivity, relative phase shifts, and neutron transmis-
sions. The three most precise measurements of b′c were
done with neutron interferometry; Kaiser et al. [64], Huff-
man et al. [24], and Ketter et al. [25]. However, the two
most recent results differ by more than 7σ. Figure 12
shows an ideogram of the coherent scattering length mea-
surements. Each measurement is represented by a Gaus-
sian centered about their result with a normalized area
equal to 1/σ [67]. The uncertainty of the weighted aver-
age has been inflated in the manner described in Ref. [67].

Calculations employing models AV18+UIX,
AV18+UIX+V∗3 [58, 59], and AV18+LL2 [17] have
all predicted similar values for the triplet and singlet

scattering lengths. For example ∆b′(AV 18 + UIX) =
(-5.753 ± 0.002) fm. Neither this work nor the work
of Zimmer et al. agrees with NN+3N calculations.
Figure 13 shows a selection of measured values of
b′1 and b′0 beside some theoretical predictions. Four
nucleon interactions have yet to be included into the
theoretical models due to the difficulty in handling
long-range Coulomb forces, but should constitute only a
tiny correction to NN + 3N predictions. A calculation
of pion-less effective field theory to Next to Leading
Order (NLO) shows promise [17], but the uncertainty
of the predicted value is still too large to compare to
high-precision measurements. A recent measurement
of the total scattering cross section [68] that suggests
a much larger scattering cross section and would lie
outside of Fig. 13 is omitted for space.

The recent work on the n-3He interaction can lead to
further understanding of low energy nucleon systems. Al-
though there are several discrepant measurements, scat-
tering length measurements do not match theoretical
models. Taken alone, the coherent scattering length by
[24] agrees with AV18+UIX, but doesn’t intersect a mea-
surement of the spin-dependent difference in triplet and
singlet states. This work and [60] agrees with the R-
matrix prediction. More work needs to be done to resolve
the discrepancy between different n-3He coherent scatter-
ing length measurements. The uncertainty in the triplet
absorption cross section needs to be experimentally de-
termined to better precision, if other measurements of
the spin-dependent quantity ∆b′ are to be made. The
authors hope that this work along with the previous scat-
tering length measurements can improve future NN+3N
models, and is part of the ongoing exploration into few-
body systems at the NIOF.

FIG. 13. (Color online) Current experimental data on the
n-3He system from this work, ILL 2006 [25], NIST 2004 [24],
ILL 2002 [60], ILL 1979 [65] compared to theoretical predic-
tions [58, 59]. Bands represent the experimentally determined
values ±1σ.
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