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We present lattice Monte Carlo calculations of fermion-dimer scattering in the

limit of zero-range interactions using the adiabatic projection method. The adiabatic

projection method uses a set of initial cluster states and Euclidean time projection

to give a systematically improvable description of the low-lying scattering cluster

states in a finite volume. We use Lüscher’s finite-volume relations to determine the

s-wave, p-wave, and d-wave phase shifts. For comparison, we also compute exact

lattice results using Lanczos iteration and continuum results using the Skorniakov-

Ter-Martirosian equation. For our Monte Carlo calculations we use a new lattice

algorithm called impurity lattice Monte Carlo. This algorithm can be viewed as a

hybrid technique which incorporates elements of both worldline and auxiliary-field

Monte Carlo simulations.

I. INTRODUCTION

The adiabatic projection method is a general framework for calculating scattering and
reactions on the lattice. The method constructs a low-energy effective theory for clusters
which becomes exact in the limit of large Euclidean projection time. Previous studies of
this method [1, 2] have used exact sparse matrix methods. In this work we demonstrate the
first application using Monte Carlo simulations. As we will show, the adiabatic projection
method significantly improves the accurate calculation of finite-volume energy levels. As we
also will show, the finite-volume energy levels must be calculated with considerable accuracy
in order to determine the scattering phase shifts using Lüscher’s method. We give a short
summary of Lüscher’s method later in our discussion.

The goal of this analysis is to benchmark the use of lattice Monte Carlo simulations
with the adiabatic projection method. The example we consider in detail is fermion-dimer
scattering for two-component fermions and zero-range interactions. Our calculation also
corresponds to neutron-deuteron scattering in the spin-quartet channel at leading order in
pionless effective field theory. In our interacting system there are two components for the
fermions. We call the two components up and down spins, ↑ and ↓. The bound dimer state
is composed of one ↑ and one ↓, and our fermion-dimer system consists of two ↑ and one
↓. While s-wave scattering has been considered previously [2–5], we will present the first
lattice calculations of p-wave and d-wave fermion-dimer scattering.

As discussed in Ref. [2], the adiabatic projection method starts with a set of initial cluster
states. By clusters we mean either a single particle or a bound state of several particles. In
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our analysis here we consider fermion-dimer elastic scattering where there are two clusters. In
Ref. [2], the initial fermion-dimer states were parameterized by the initial spatial separation

between clusters, ~R. The initial cluster states can be written explicitly as

|~R〉 =
∑
~n

b†↑(~n)b†↓(~n)b†↑(~n+ ~R)|0〉, (1.1)

where the spatial volume is a periodic cubic box of length L in lattice units. The initial
states are then projected using Euclidean time to form dressed cluster states,

|~R〉t = e−Ĥt|~R〉. (1.2)

The adiabatic method uses these dressed cluster states to calculate matrix elements of the
Hamiltonian and other observables. The result is a low-energy effective theory of interacting
clusters which becomes systematically more accurate as the projection time t is increased.
An estimate of the residual error is derived in Ref. [2].

For our calculations here we follow the same general process except that we build the
initial cluster states in a different manner. Instead of working with the relative separation
between clusters, we work with the relative momentum between the clusters. We find that
this change improves the efficiency of the Monte Carlo calculation by reducing the number
of required initial states. The new technique involves first constructing a dimer state with
momentum ~p using Euclidean time projection and then multiplying by a creation operator
for a second ↑ particle with momentum −~p. For example, we can write the initial fermion-
dimer state explicitly as

|~p〉 = b̃†↑(−~p)e
−Ĥt′ b̃†↑(~p)b̃

†
↓(~0)|0〉 . (1.3)

From these states we produce dressed cluster states by Euclidean time projection,

|~p〉t = e−Ĥt/2|~p〉 . (1.4)

We then proceed in the same manner as in Ref. [2] and calculate the matrix elements of the
Hamiltonian in the basis of the dressed cluster states.

For our Monte Carlo simulations we introduce a new algorithm which we call the im-
purity lattice Monte Carlo algorithm. Credit for developing this algorithm is to be shared
with Ref. [6], where applications to impurities in many-body systems are being investigated
using the same method. It can be viewed as a hybrid algorithm in between worldline and
auxiliary-field Monte Carlo simulations. In worldline algorithms, the quantum amplitude is
calculated by sampling particle worldlines in Euclidean spacetime. In auxiliary-field Monte
Carlo simulations, the interactions are recast as single particle interactions, and the quan-
tum amplitude is computed exactly for each auxiliary field configuration. In impurity Monte
Carlo, we handle the impurities using worldline Monte Carlo simulations while all other par-
ticles are treated using the auxiliary-field formalism. Furthermore, the impurity worldlines
themselves are acting as additional auxiliary fields felt by other particles in the system. We
have found that for our system of two ↑ and one ↓ particles, impurity lattice Monte Carlo
method is computationally superior to other methods such as the auxiliary-field Monte Carlo
due to its speed and efficiency as well as control over sign oscillations. We will derive the
formalism of impurity Monte Carlo simulations in detail in our discussion here.

The organization of our paper is as follows. We first start with the basic continuum and
lattice formulations of our interacting system with zero-range two-component fermions. We
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then take a short detour to derive the connection between normal-ordered transfer matrices
and lattice Grassmann actions. Using our dictionary between lattice Grassmann actions
and quantum operators, we derive the transfer matrix induced by a given single impurity
worldline. We then describe the implementation of the adiabatic projection method and the
details of our Monte Carlo simulations for computing finite-volume energy levels.

In order to determine scattering phase shifts, we then discuss Lüscher’s finite-volume
method. As part of this discussion we discuss for the first time, the character of topological
volume corrections for fermion-dimer scattering in the p-wave and d-wave channels. By
topological volume corrections, we are specifically referring to momentum-dependent finite-
volume corrections of the dimer binding energy [3, 7]. Previous studies looking at topological
volume corrections had only considered s-wave scattering [2–5]. The extension to higher
partial waves is given in the appendix. We then conclude with a comparison of Monte Carlo
results as well as exact lattice calculations and continuum calculations.

II. LATTICE HAMILTONIAN

We consider a three-body system of two-component fermions with equal mass, m↑ =
m↓ = m. We consider the limit of large scattering length between the two components
where the the interaction range of the fermions is taken to be negligible. We start with the
free non-relativistic Hamiltonian,

Ĥ0 =
1

2m

∑
s=↑,↓

∫
d3~r ~∇b†s(~r) · ~∇bs(~r) , (2.1)

In the low-energy limit the interaction can be simplified as a delta-function interaction
between the two spin components,

Ĥ =
1

2m

∑
s=↑,↓

∫
d3~r ~∇b†s(~r) · ~∇bs(~r) + C0

∫
d3~r ρ̂↑(~r) ρ̂↓(~r) , (2.2)

where ρ̂↑,↓(~r) are density operators,

ρ̂↑(~r) = b†↑(~r)b↑(~r) , (2.3)

ρ̂↓(~r) = b†↓(~r)b↓(~r) . (2.4)

The ultraviolet physics of this zero-range interaction must be regulated in some manner.
In our case the lattice provides the needed regularization. We denote the spatial lattice
spacing as a and the temporal lattice spacing as at. We will write all quantities in lattice
units, which are physical units multiplied by the corresponding power of a to render the
combination dimensionless. We define the free non-relativistic lattice Hamiltonian as

Ĥ0 = Ĥ↑0 + Ĥ↓0 (2.5)

where

Ĥs
0 =

1

2m

3∑
l=1

∑
~n

[
2b†s(~n)bs(~n)− b†s(~n)bs(~n+ l̂)− b†s(~n)bs(~n− l̂)

]
, (2.6)
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and the contact interaction potential is

V̂ = C0

∑
~n

ρ̂↑(~n) ρ̂↓(~n) . (2.7)

Here l̂ denotes a lattice unit vector in one of the spatial directions, l̂ = 1̂, 2̂, 3̂. The unknown
interaction coefficient C0 is tuned to reproduce the desired binding energy of the dimer at
infinite volume.

III. LATTICE PATH INTEGRALS AND TRANSFER MATRICES

In this section we introduce the transfer matrix formalism that we use in both the Monte-
Carlo simulations and exact lattice calculations. We use the same action as in Ref. [8, 9].
We start by defining the lattice action in terms of Grassmann variables. We then we give
the exact connection between the Grassmann path integral and normal-ordered transfer
matrices. Let θ and θ∗ be anti-commuting Grassmann variables. Our lattice action can be
decomposed into three parts,

S[θ, θ∗] =
∑
nt

{St[θ, θ∗, nt] + SH0 [θ, θ
∗, nt] + SV [θ, θ∗, nt]} , (3.1)

where St and SH0 contain temporal hopping and spatial hopping terms of the free lattice
action respectively,

St[θ, θ
∗, nt] =

∑
s=↑,↓

∑
~n

[
θ∗s(nt + 0̂, ~n) θs(nt, ~n)− θ∗s(nt, ~n) θs(nt, ~n)

]
, (3.2)

SH0 [θ, θ
∗, nt] =

αt
2m

∑
s=↑,↓

∑
~n

3∑
l=1

θ∗s(nt, ~n)
[
2 θs(nt, ~n)− θs(nt, ~n+ l̂)− θs(nt, ~n− l̂)

]
. (3.3)

Here 0̂ denotes the lattice unit vector in the forward temporal direction and αt is the di-
mensionless ratio of the temporal lattice spacing to the spatial lattice spacing, at/a. We can
also write SH0 [θ, θ

∗, nt] as

SH0 [θ, θ
∗, nt] = αtH

↑
0 [θ↑, θ

∗
↑, nt] + αtH

↓
0 [θ↓, θ

∗
↓, nt], (3.4)

where

Hs
0 [θs, θ

∗
s , nt] =

1

2m

∑
~n

3∑
l=1

θ∗s(nt, ~n)
[
2 θs(nt, ~n)− θs(nt, ~n+ l̂)− θs(nt, ~n− l̂)

]
. (3.5)

The interaction term has the form

SV [θ, θ∗, nt] = αtC0

∑
~n

θ∗↑(nt, ~n) θ↑(nt, ~n) θ∗↓(nt, ~n) θ↓(nt, ~n) . (3.6)

We take our system to reside in a cubic box of length L units in the spatial directions and
Lt in the temporal direction. Our Grassmann variables are chosen to be periodic along the
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spatial directions and antiperiodic in the temporal direction. The antiperiodic boundary
conditions in time are necessary for the trace formula to come later in Eq. (3.8). The
Grassmann path integral has the form

Z =

∫  ∏
nt,~n,s=↑,↓

dθs(nt, ~n)dθ∗s(nt, ~n)

 e−S[θ,θ∗] . (3.7)

While the Grassmann formalism is convenient for deriving the lattice Feynman rules, the
transfer matrix formalism is more convenient for numerical calculations. In order to make
the connection between the two formulations, using the materials given in Appendix A we
write the following exact relation between the Grassmann path integral formula and the
transfer matrix formalism. For any function f ,

Tr
{

: fLt−1[as(~n), a†s′(
~n′)] : · · · : f0[as(~n), a†s′(

~n′)] :
}

=

∫  ∏
nt,~n,s=↑,↓

dθs(nt, ~n)dθ∗s(nt, ~n)

 e−
∑
nt
St[θ,θ∗,nt]

Lt−1∏
nt=0

fnt [θs(nt, ~n), θ∗s′(nt, ~n
′)] , (3.8)

where the symbol : : signifies normal ordering. Normal ordering rearranges all operators so
that all annihilation operators are moved to the right and creation operators are moved to
the left with the appropriate number of anticommutation minus signs. Then the desired
transfer matrix formulation of the path integral is

Z = Tr M̂Lt , (3.9)

where M̂ is the normal-ordered transfer matrix operator,

M̂ = : exp

[
−αtĤ0 − αtC0

∑
~n

ρ̂↑(~n)ρ̂↓(~n)

]
: . (3.10)

Here Ĥ0 is the free lattice Hamiltonian given in Eq. (2.5).

IV. IMPURITY LATTICE MONTE CARLO: SINGLE IMPURITY

In this section we derive the formalism for impurity lattice Monte Carlo for a single
impurity. In impurity Monte Carlo the impurities are treated differently from other parti-
cles. The assumption is that there are only a small number of impurities and these can be
sampled using worldline Monte Carlo without strong fermion sign oscillation problems from
antisymmetrization. In our case there is exactly one ↓ particle, and we treat this as a single
impurity for our system.

Let us consider the occupation number basis,

∣∣χ↑nt , χ↓nt〉 =
∏
~n

{[
b†↑(~n)

]χ↑nt (~n) [
b†↓(~n)

]χ↓nt (~n)
}
|0〉 (4.1)
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where χsnt(~n) counts the occupation number on each lattice site at time step nt and has
values which are either 0 or 1. Let us define the Grassmann functions,

X(nt) =
∏
~n

[
eθ
∗
↑(nt,~n)θ↑(nt,~n) eθ

∗
↓(nt,~n)θ↓(nt,~n)

]
, (4.2)

and
M(nt) = e−SH0

[θ,θ∗,nt]e−SV [θ,θ∗,nt]. (4.3)

From the relations given in Appendix A the transfer matrix element between time steps nt
and nt + 1 can be written in terms of these lattice Grassmann functions as

〈χ↑nt+1, χ
↓
nt+1|M̂ |χ↑nt , χ

↓
nt〉

=
∏
~n


[ −→

∂

∂θ∗↓(nt, ~n)

]χ↓nt+1(~n) [ −→
∂

∂θ∗↑(nt, ~n)

]χ↑nt+1(~n)
X(nt)M(nt)

×
∏
~n′


[ ←−

∂

∂θ↑(nt, ~n′)

]χ↑nt (~n′) [ ←−
∂

∂θ↓(nt, ~n′)

]χ↓nt (~n′)
∣∣∣∣∣∣
θ′↑ = θ′↓ = 0

θ↑ = θ↓ = 0

. (4.4)

This result can be verified by checking the different possible combinations for the occupation
numbers. Since we have only one ↓ particle, the right hand side is nonzero only if∑

~n

χ↓nt(~n) =
∑
~n

χ↓nt+1(~n) = 1 . (4.5)

We now derive the transfer matrix formalism for one spin-↓ particle worldline in a medium
consisting of an arbitrary number of spin-↑ particles. The impurity worldline is to be consid-
ered fixed. To provide a simple visual representation of the worldine, we draw in Fig. 1 an
example of a single-particle worldline configuration on a 1+1 dimensional Euclidean lattice.

We now remove or “integrate out” the impurity particle from the lattice action. We
consider first the case when the ↓ particle hops from ~n′′ to some nearest neighbor site. In
other words, χ↓nt(~n

′′) = 1 and χ↓nt+1(~n′′ ± l̂) = 1 for some unit vector l̂. In this case we have〈
χ↑nt+1, χ

↓
nt+1

∣∣∣ M̂ ∣∣∣χ↑nt , χ↓nt〉
=
∏
~n


[ −→

∂

∂θ∗↑(nt, ~n)

]χ↑nt+1(~n)
 /X(nt) /M~n′′±l̂,~n′′(nt)

∏
~n′


[ ←−

∂

∂θ↑(nt, ~n′)

]χ↑nt (~n′)
∣∣∣∣∣∣
θ′↑ = 0

θ↑ = 0

,

(4.6)

where

/X(nt) =
∏
~n

[
eθ
∗
↑(nt,~n)θ↑(nt,~n)

]
, (4.7)

and

/M~n′′±l̂,~n′′(nt) =
( αt

2m

)
exp

{
−αtH↑0 [θs, θ

∗
s , nt]

}
. (4.8)
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FIG. 1: (Color online) A segment of a worldline configuration on a 1+1 dimensional Euclidean lattice.

See the main text for derivations of the reduced transfer-matrix operators.

Next we consider the case when χ↓nt(~n
′′) = 1 and χ↓nt+1(~n′′) = 1 which corresponds to no

spatial hopping of the impurity worldline. Then we have〈
χ↑nt+1, χ

↓
nt+1

∣∣∣ M̂ ∣∣∣χ↑nt , χ↓nt〉
=
∏
~n


[ −→

∂

∂θ∗↑(nt, ~n)

]χ↑
n′t

(~n)
 /X(nt) /M~n′′,~n′′(nt)

∏
~n′


[ ←−

∂

∂θ↑(nt, ~n′)

]χ↑nt (~n′)
∣∣∣∣∣∣
θ′↑ = 0

θ↑ = 0

, (4.9)

where

/M~n′′,~n′′(nt) =

(
1− 3αt

m

)
exp

{
−αtH↑0 [θs, θ

∗
s , nt]−

αtC0

1− 3αt
m

θ∗↑(nt, ~n
′′)θ↑(nt, ~n

′′)

}
. (4.10)

From these Grassmann lattice actions with the impurity integrated out, we can write
down the corresponding transfer matrix operators. When the impurity makes a spatial hop,
the reduced transfer-matrix operator is

/̂M~n′′±l̂,~n′′ =
( αt

2m

)
: exp

[
−αtĤ↑0

]
: . (4.11)

When the impurity worldline remains stationary the reduced transfer-matrix operator is

/̂M~n′′,~n′′ =

(
1− 3αt

m

)
: exp

[
−αtĤ↑0 −

αtC0

1− 3αt
m

ρ↑(~n
′′)

]
: . (4.12)

We note that these reduced transfer matrices are just one-body operators on the linear space
of ↑ particles.
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V. ADIABATIC PROJECTION METHOD

In this section we describe our application of the adiabatic projection method using a
set of cluster states constructed in momentum space. As already described in Eq. (1.3) in a
simplified notation, we let |Ψ~p〉 be the fermion-dimer initial state with relative momentum
~p,

|Ψ~p〉 = b̃†↑(−~p)M̂
L′t b̃†↑(~p)b̃

†
↓(~0)|0〉, (5.1)

where we use the transfer matrix operator M̂ given in Eq. (3.10) for some number of time
steps L′t. The purpose of this time propagation is to allow the dimer to bind its constituents
before injecting an additional ↑ particle. In this part of the calculation we in fact increase
the attractive interactions between the two spins to allow them to form the bound dimer
faster. We find that this trick increases the computational efficiency on large lattice systems.
The dressed cluster states are defined as

|Ψ~p〉Lt/2 = M̂Lt/2 |Ψ~p〉 , (5.2)

for some even number Lt, and the overlap between dressed cluster states is

Z~p~p ′(Lt) = Lt/2
〈Ψ~p|Ψ~p ′〉Lt/2 . (5.3)

We also calculated the matrix elements

Z~p~p ′(Lt + 1) = Lt/2
〈Ψ~p|M̂ |Ψ~p ′〉Lt/2 . (5.4)

For large Lt we can obtain an accurate representation of the low-energy spectrum of M̂
by defining the adiabatic transfer matrix as

[M̂a(Lt)]~p~p ′ =
∑
~p ′′

Z−1
~p~p ′′(Lt) Z~p ′′~p ′(Lt + 1). (5.5)

Alternatively we can also construct a symmetric version of the adiabatic transfer matrix as

[M̂a(Lt)]~p~p ′ =
∑
~p ′′,~p ′′′

Z
−1/2
~p~p ′′ (Lt) Z~p ′′~p ′′′(Lt + 1)Z

−1/2
~p ′′′~p ′(Lt). (5.6)

Either form will produce exactly the same spectrum. As with any transfer matrix, we
interpret the eigenvalues λi(Lt) of the adiabatic transfer matrix as energies using the relations

e−Ei(Lt)αt = λi(Lt), Ei(Lt) = −αt−1 log λi(Lt). (5.7)

The exact low-energy eigenvalues of the full transfer matrix M̂ will be recovered in the limit
Lt →∞.

As a special case, one can simply restrict the adiabatic projection calculation to a single
initial momentum state, for example, ~p = 0. In that case the adiabatic transfer matrix is
just the scalar ratio

Z~p~p(Lt + 1)/Z~p~p(Lt). (5.8)

However we find that the energy calculations are significantly more accurate and converge
much faster with increasing Lt when using a set of several initial cluster states.
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VI. IMPURITY MONTE CARLO SIMULATION

The reduced transfer matrices /̂M~n,~n′ in Eq. (4.11) and (4.12) are one-body operators
on the linear space of ↑ particles. Therefore we can simply multiply the reduced transfer
matrices together. It is perhaps worthwhile to note that the ~n, ~n′ subscripts are not the
matrix indices of the reduced transfer matrix, but rather the coordinates of the ↓ particle

that was integrated out. The matrix indices of /̂M~n,~n′ are being left implicit.
The Euclidean time projection can be written as a sum over worldline configurations of

the ↓ particle. As a convenient shorthand we write

/̂M
[Lt]

{~nj} = /̂M~nLt ,~nLt−1
. . . /̂M~n1,~n0

, (6.1)

where ~nj denotes the spatial position of the spin-↓ particle at time step j. The projection
amplitude for cluster states |Ψ~p〉 and |Ψ~p ′〉 is then

Z~p~p ′(Lt) =
∑

~n0,...,~nLt

〈Ψ~p| /̂M
[Lt]

{~nj} |Ψ~p ′〉 . (6.2)

The states |Ψ~p 〉 and |Ψ~p ′〉 defined in Eq. (5.1) are constructed using single particle creation
operators, and so the amplitude Z~p~p ′(Lt) is just the determinant of a 2× 2 matrix of single-
particle amplitudes. As seen in Eq. (5.1), there are an extra L′t projection steps in between
some of the creation operators. This gives us the following structure,

Z~p~p ′(Lt) =
∑

~n0,...,~nLt

∑
~n′0,...,~n

′
L′t

∑
~n′′0 ,...,~n

′′
L′t

detM2×2, (6.3)

where ~n′′0 = ~nLt , ~n
′
Lt

= ~n0, and

M2×2 =

〈~p| /̂M [L′t]

{~n′′j }
/̂M

[Lt]

{~nj} /̂M
[L′t]

{~n′j}
|~p ′〉 〈~p| /̂M

[L′t]

{~n′′j }
/̂M

[Lt]

{~nj}| − ~p
′〉

〈−~p| /̂M
[Lt]

{~nj} /̂M
[L′t]

{~n′j}
|~p ′〉 〈−~p| /̂M

[Lt]

{~nj}| − ~p
′〉

 . (6.4)

The calculation of Z~p~p ′(Lt) has now been recast as a problem of computing the determinant
of the matrix M2×2 over all possible impurity worldlines. We use a Markov chain Monte
Carlo process to select worldline configurations. The Metropolis algorithm is used to accept
or reject configurations with importance sampling given by the weight function |Z~p~p(Lt)|,
where ~p is one of the initial momenta.

We now benchmark our results for the low-energy spectrum calculated using adiabatic
projection and the impurity Monte Carlo method. We compare these results with exact
lattice results that we compute using the Lanczos iterative eigenvector method with a space
of ∼ L6 basis states. Although exact lattice results provide a useful benchmark test for
the three-particle system, the extension to larger systems is computationally not viable due
to exponential scaling in memory and CPU time. In contrast, the impurity Monte Carlo
calculation does scale well to much larger systems. In fact, many-body impurity systems
are currently being studied in Ref. [6].

In our lattice calculations we take the particle mass to be the average nucleon mass, 938.92
MeV, and the interaction strength C0 is tuned to obtain the deuteron energy, −2.2246 MeV.
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TABLE I: Momentum of the dimer, ~pd, with p = 2π/L. The total momentum of the system is zero.

n ~pd

1 〈p, 0, 0〉
2 〈0, p, 0〉
3 〈0, 0, p〉
4 〈p,−p, 0〉
5 〈p, 0,−p〉
6 〈0, p,−p〉

We use an L3 periodic cubic volume with spatial lattice spacing a = 1.97 fm. The values
of L used will be specified later. In the temporal direction we use Lt time steps with a
temporal lattice spacing at = 1.31 fm/c.

Let N be the number of initial/final states. We choose the initial dimer momenta, ~pd,
as shown in Table I. In all cases the total momentum of the three-particle system is set to
zero. We label and order the various possible dimer momenta with index n = 1, · · · , N . We
then construct the corresponding N × N adiabatic matrix, [M̂a(Lt)]nn′ , and obtain the N
low-lying energy states of the finite-volume system. There is no restriction on the choice
of N . Therefore, so long as the numerical stability of the matrix calculations is under
control, it is advantageous to maximize the number N . While constructing a large adiabatic
matrix requires more computational time, it significantly accelerates the convergence with
the number of projection time steps, Lt.
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FIG. 2: (Color online) The ground state energy is shown versus projection time t using either one or four

initial/final states. For comparison we show the exact lattice energies as dotted horizontal lines.

In Fig. 2 we compare the ground state energies using [M̂a(t)]1×1 and [M̂a(t)]4×4 adiabatic
matrices. We are plotting the energies versus projection time t = Ltat. The results shown
are obtained using a lattice box of length La = 13.79 fm, while the number of time steps is
varied over a range of values to extrapolate to the limit t→∞. We use a simple exponential



11

ansatz to extrapolate away the residual contribution from higher-energy states,

Ei(t) = Ei(∞) + cie
−∆Eit + · · · . (6.5)

As can be seen clearly in the figure, the [M̂a(t)]4×4 results converge with a significantly

faster exponential decay than the [M̂a(t)]1×1 results. This is consistent with the derivation
in Ref. [2] that the energy gap ∆Ei in Eq. (6.5) is increased by including more initial states.

The corresponding extrapolated ground state energies obtained from the [M̂a(t)]1×1 and

[M̂a(t)]4×4 adiabatic matrices are −1.1918(46) MeV and −1.1916(25) MeV, respectively.
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FIG. 3: (Color online) The first two excited state energies with even parity. For comparison we show the

exact lattice energies as dotted horizontal lines.

In Figs. 2 and 3 we plot the lowest lying even-parity energies as a function of Euclidean
projection time t. To be able to calculate the two excited states in Fig. 3 we use the
[M̂a(t)]4×4 adiabatic matrix. For comparison the horizontal dotted lines in the plots represent
the exact lattice energies obtained from the Lanczos iteration method. The solid lines are
exponential fits to the data using the ansatz in Eq. (6.5). As seen from Figs. 2 and 3
the corresponding extrapolated energies in Table II, we find that the calculations using
adiabatic projection with impurity Monte Carlo are in excellent agreement with the exact
lattice results. The energy level E+1 has two-fold degeneracy. The degeneracies of this
energy level are not shown in Fig. 3 or Table II.

TABLE II: The exact and Monte-Carlo results for the ground state and lowest lying even-parity energies

in a periodic box of length La = 13.79 fm. The Monte-Carlo results are obtained from the [M̂a(t)]4×4

adiabatic matrix.

E+0 [MeV] E+1 [MeV] E+2 [MeV]

Exact −1.1904 3.3828 4.9024

MC −1.1916(25) 3.3905(82) 4.9012(15)
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FIG. 4: (Color online) The lowest two odd parity energies as a function of Euclidean projection time t.

For comparison we show the exact lattice energies as dotted horizontal lines.

In Fig. 4 we present the energies for the lowest two states with odd parity. In order
to calculate these odd parity energies we use five initial/final states and construct a 5 × 5
adiabatic matrix. The horizontal dotted lines represent the exact lattice energies obtain from
Lanczos iteration, and the solid lines are the exponential extrapolation fits. We see from
Fig. 4 and Table III again that the calculations using adiabatic projection with impurity
Monte Carlo are in excellent agreement with the exact lattice results. Both energy levels
shown in Fig. 4 have three-fold degeneracy. The degeneracies of these energy levels are not
shown here.

TABLE III: The exact and Monte Carlo results for the energies of the lowest two odd-parity states in a

periodic box of length La = 13.79 fm. The Monte Carlo results are obtained from the [M̂a(t)]5×5 adiabatic

matrix.

E−0 [MeV] E−1 [MeV]

Exact 2.509 7.784

MC 2.519(25) 7.869(93)

VII. COMPOSITE PARTICLES IN FINITE VOLUME

In this section we present lattice results for the fermion-dimer elastic scattering phase
shifts for angular momentum up to ` = 2 using Lüscher’s finite-volume method. As back-
ground for explaining the finite-volume calculations, we first briefly review Lüscher’s method.
Since the phase shifts depend crucially on an accurate calculation and analysis of finite-
volume energy levels, we also discuss in the appendix some corrections which are due to
modifications of the dimer binding energy at finite volume.
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A. Lüscher’s finite-volume method

Lüscher [10, 11] has developed a well-known technique for extracting elastic phase shifts
for two-body scattering from the volume dependence of two-body continuum states in a cubic
periodic box. The method has been extended to higher partial waves, two-body systems in
moving frames, multi-channel scattering cases, and scattering of particles with spin [12–19].
Lüscher’s framework has also been successfully applied to the determination of resonance
parameters [20], and recently this technique has been applied to moving frame calculations
[21, 22]. See Ref. [23–27] for further studies on the extraction of resonance properties at
finite volume. We note also recent work on improving lattice interactions in effective field
theories using Lüscher’s method [28].

Lüscher’s relation between scattering phase shifts and two-body energy levels in a cubic
periodic box has the following forms [10, 11, 13]

p2`+1 cot δ`(p) =



2√
πL
Z0,0(1; η) for ` = 0 ,(

2π

L

)3
η

π3/2
Z0,0(1; η) for ` = 1 ,(

2π

L

)5
1

π3/2

[
η2Z0,0(1; η) +

6

7
Z4,0(1; η)

]
for ` = 2 .

(7.1)

where

η =

(
Lp

2π

)2

. (7.2)

Here Z`,m(1; η) are the generalized zeta functions [10, 11],

Z`,m(1; η) =
∑
~n

|~n|` Y`,m(n̂)

|~n|2 − η
, (7.3)

and Y`,m(n̂) are the spherical harmonics. We can evaluate the zeta functions using
exponentially-accelerated expressions [13]. For `,m = 0 we have

Z0,0(1; η) = πeη(2η − 1) +
eη

2
√
π

∑
~n

e−|~n|
2

|~n|2 − η

− π

2

∫ 1

0

dλ
eλη

λ3/2

(
4λ2η2 −

∑
~n

e−π
2|~n|2/λ

)
, (7.4)

and for arbitrary ` and m,

Z`,m(1; η) =
∑
~n

|~n|` Y`,m(n̂)

|~n|2 − η
e−Λ(|~n|2−η)

+

∫ Λ

0

dλ
(π
λ

)`+3/2

eλη
∑
~n

|~n|` Y`,m(n̂)

|~n|2 − η
e−π

2|~n|2/λ . (7.5)
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FIG. 5: (Color online) The s-wave scattering phase shift versus the relative momentum between fermion

and dimer.
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FIG. 6: (Color online) The p-wave scattering phase shift versus the relative momentum between fermion

and dimer.

B. Results for the elastic phase shifts

We now use our lattice results for the finite-volume energies and use Eq. (7.1) to determine
the elastic phase shifts. We compute phase shifts using data from the impurity Monte Carlo
calculations as well as the exact lattice energies using the Lanczos method. The fermion-
dimer system that we are considering corresponds exactly to neutron-deuteron scattering
in the spin-quartet channel at the leading order in pionless effective field theory. Therefore
we choose to set the dimer energy to the physical deuteron energy of −2.2246 MeV and
compare our lattice results to calculations of neutron-deuteron scattering in the continuum
and infinite-volume limits at leading order in pionless effective field theory [29–31]. The
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FIG. 7: (Color online) The d -wave scattering phase shift versus the relative momentum between fermion

and dimer.

Skorniakov-Ter-Martirosian (STM) integral equation for the T -matrix is

T`(k, p) = − 8πγ

mpk
Q`

(
p2 + k2 −mE − i0+

pk

)
− 2

π

∫ ∞
0

dq
q

p

T`(k, q)√
3q2/4−mE − i0+ − γ

Q`

(
p2 + q2 −mE − i0+

pq

)
, (7.6)

where γ is the dimer binding energy, E = 3p2/(4m) − γ2/m is the total energy, and Q` is
the Legendre function of the second kind,

Q`(a) =
1

2

∫ 1

−1

dx
P`(x)

x+ a
. (7.7)

The scattering phase shifts can be calculated from the on-shell T -matrix formula,

T`(p, p) =
3π

m

p2`

p2`+1 cot δ` − ip2`+1
. (7.8)

We show results for the s-wave, p-wave and d-wave phase shifts in Fig. 5, 6 and 7 respec-
tively. The square points indicate the data from the lattice Monte Carlo simulations, the
circular points are the exact lattice calculations, and the solid lines are a fit of the exact
lattice data using an effective range expansion,

p2`+1 cot δ`(p) = − 1

a`
+

1

2
r` p

2 +O(p4) . (7.9)

The dashed lines are leading order results from the STM calculation. The dotted vertical
lines indicate the inelastic breakup threshold of the dimer. The range of lattice box sizes
is L ≤ 16 for the exact lattice and L ≤ 9 for the Monte-Carlo calculations. As it is
demonstrated in Figs. 5 - 7, this range of the box sizes allows us to access the energy regime
down to approximately 10 MeV for the s-wave and 40 MeV for the p-wave and d-wave.
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Where we have overlapping data, we find excellent agreement between the Monte Carlo
and exact lattice phase shifts. At very low energies we find that Monte Carlo calculations
of the phase shifts become impractical due to the high sensitivity of Lüscher’s method
upon small deviations in the finite-volume energies. This should be regarded more as a
limitation of Lüscher’s formalism rather than a deficiency of the adiabatic projection method
or impurity Monte Carlo.

We also find quite good agreement between the STM continuum results and the lattice
results for the s-wave and p-wave phase shifts. Below the inelastic breakup theshold, the
small deviation can be regarded as an estimate of lattice discretization errors. For the s-wave
and p-wave phase shifts the eigenstates of the angular momentum in the SO(3) rotational
symmetry of continuum space decompose into the irreducible representations A1 and T1

of the cubic rotational group, respectively. Therefore, there is one-to-one correspondence
between the finite-volume energy spectrum and the phase shifts. However, the eigenstates
of the angular momentum for ` = 2 decompose into the irreducible representations E and T2

of the cubic rotational group. In our analysis for the d-wave we consider only the irreducible
representation E of the cubic rotational group, and we believe this is the origin of the larger
deviation in the d-wave phase shifts.

Above the breakup threshold there are also systematic errors since our analysis using
Lüscher’s method does not account for inelastic breakup processes. Nevertheless we see that
the agreement with the STM calculation for the elastic phase shifts is still quite good, and
the STM calculation does correctly account for breakup effects. To our knowledge these
results are the first lattice calculations of fermion-dimer scattering in the p- and d-wave
channels.

TABLE IV: The exact and Monte Carlo results for the energies up to L = 9 used in the s-wave, p-wave

and d-wave phase shift calculations given in Figs. 5, 6 and 7.

L E+0 MeV E−0 MeV E+1

Exact MC Exact MC Exact MC

4 1.646 1.649(7) 10.208 10.259(154) 13.127 13.139(13)

5 0.164 0.161(3) 6.401 6.395(30) 8.254 8.259(10)

6 −0.684 −0.634(3) 4.037 4.038(13) 5.285 5.293(10)

7 −1.190 −1.192(3) 2.509 2.512(15) 3.383 3.390(10)

8 −1.506 −1.503(11) 1.475 1.493(30) 2.104 2.105(90)

9 −1.711 −1.706(13) 0.746 0.737(62) 1.209 1.224(40)

In Table IV we present the energies obtained from the exact and Monte Carlo calculations
up to L = 9. These fermion-dimer energies are used in the s-wave, p-wave and d-wave phase
shift calculations. As it can be seen from the table that the relative errors in the energies
are relatively larger for higher partial waves. Therefore, this explains, together with the fact
that the Lüscher method becomes more difficult at higher angular momentum, the larger
error bars in the p-wave and d-wave phase shifts given in Figs. 6 and 7.
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VIII. SUMMARY AND DISCUSSION

In this paper we have presented the adiabatic projection method and its first application
using Monte Carlo methods. The adiabatic method is a general framework for studying
scattering and reactions on the lattice. The method constructs a low-energy effective theory
for clusters, and in the limit of large Euclidean projection time the description becomes
exact. In previous studies [1, 2] the initial cluster states were parameterized by the initial
spatial separations between clusters. In this study we have used a new technique which
parameterizes the cluster states according to the relative momentum between clusters. This
new approach is crucial for doing calculations with a small number of initial states in order
to improve the efficiency of the Monte Carlo calculations. The system we have analyzed in
detail here is fermion-dimer elastic scattering for two-component fermions interacting via
zero-range attractive interactions.

For our calculations we have introduced a new Monte Carlo algorithm which we call im-
purity lattice Monte Carlo. This can be seen as a hybrid algorithm in between worldline and
auxiliary-field Monte Carlo simulations. In impurity Monte Carlo we use worldline Monte
Carlo for the impurities, and these impurity worldlines are acting as additional auxiliary
fields in the simulation of the other particles. By using the impurity lattice Monte Carlo
algorithm, we have found significant improvement over more standard auxiliary-field Monte
Carlo calculations. In addition to greater speed and efficiency of the calculations, we also
found a reduction of fermonic sign oscillations, and this has greatly improved the resulting
accuracy.

We have found that the adiabatic projection method with impurity Monte Carlo enables
highly accurate calculations of the finite-volume energy levels of the fermion-dimer system.
From these energy levels we have used Lüscher’s method to present the first lattice calcu-
lations of p-wave and d-wave phase shifts for fermion-dimer elastic scattering. In addition
to finding excellent agreement between Monte Carlo and exact lattice phase shifts, we have
also found good agreement with continuum STM caculations of neutron-deuteron elastic
scattering in the spin-quartet channel at leading order in pionless effective field theory.

Our results show that the adiabatic projection method with Monte Carlo simulations
is a viable approach to calculating elastic phase shifts. The method can be applied in a
straightforward manner to other two-cluster scattering systems. One area where more work
is needed is that our application of Lüscher’s method does not account for inelastic breakup
processes. Another area that needs improvement is that Lüscher’s method has too much
sensitivity to small changes in the finite-volume energy levels. For these reasons we are now
working to develop new methods which incorporates more information from the adiabatic
projection wavefunction in order to extract scattering information in a more robust manner.

Acknowledgments

We thank Gautam Rupak for extensive discussions on several aspects of the project and
for help on the large-scale computational runs. We are also thank Shahin Bour, Hans-
Werner Hammer and Ulf-G. Meißner for discussions on the impurity Monte Carlo method.
We are also grateful to Harald Grießhammer for helpful correspondence regarding the STM
calculations. Computer supports provided by the NCSU High Performance Computing
center. Financial support provided by the U.S. Department of Energy grant DE-FG02-
03ER41260.



18

Appendix A: The exact relations between the normal-ordered lattice transfer matrix

and lattice Grassmann integrals

In this appendix we give some basic relations between the normal-ordered lattice transfer
matrix and lattice Grassmann integrals. Materials presented here are useful to carry out
the derivations in Sections III and IV.

We start with the annihilation and creation operator, b and b†, for one fermion species
on a single lattice site. We use the usual occupation number basis, |0〉 and |1〉, where

b |0〉 = 0, |1〉 = b† |0〉 , 〈0|0〉 = 〈1|1〉 = 1. (A1)

Let us also consider two anticommuting Grassmann variables θ and θ∗. The matrix elements
of any normal-ordered operator : f(b, b†) : can be calculated in terms of the Grassmann
variables as

〈i| : f(b, b†) : |j〉 =


[ −→
∂

∂θ∗

]i
eθ
∗θf(θ, θ∗)

[←−
∂

∂θ

]j
θ=θ∗=0

(A2)

for indices i, j = 0 or 1. This identity is easily checked by considering all possible normal-
ordered functions of b and b†. It is straightforward to check that this identity can generalized
to an arbitrary number of fermion operators. This then leads us to Eq. (4.4).

We now define the Grassmann integrals,∫
dθ =

∫
dθ∗ = 0,

∫
dθθ =

∫
dθ∗θ∗ = 1. (A3)

The equivalence between Grassmann integration and Grassmann differentiation gives

〈i| : f(b, b†) : |j〉 =

∫
(dθ∗)i eθ

∗θf(θ, θ∗) (−dθ)j . (A4)

Let us now consider the matrix elements of a product of normal-ordered operators,

〈i| : f1(b, b†) : : f0(b, b†) : |j〉 =
∑
k

〈i| : f1(b, b†) : |k〉 〈k| : f0(b, b†) : |j〉 . (A5)

From Eq. (A2) we can write the right-hand side as

∑
k


[ −→
∂

∂θ∗1

]i
eθ
∗
1θ1f(θ1, θ

∗
1)

[ ←−
∂

∂θ1

]k [ −→
∂

∂θ∗0

]k
eθ
∗
0θ0f(θ0, θ

∗
0)

[ ←−
∂

∂θ0

]j
θ0,1=θ∗0,1=0

. (A6)

We note that for any functions g0 and g1,

∑
k

g1(θ1)

[ ←−
∂

∂θ1

]k [ −→
∂

∂θ∗0

]k
g0(θ∗0)


θ1=θ∗0=0

= −
∫
dθ1dθ

∗
0e
−θ∗0θ1g1(θ1)g0(θ∗0). (A7)

Therefore we have

〈i| : f1(b, b†) : : f0(b, b†) : |j〉 = −
∫

(dθ∗1)idθ1dθ
∗
0e
θ∗1θ1f1(θ1, θ

∗
1)eθ

∗
0(θ0−θ1)f0(θ0, θ

∗
0)(−dθ0)j.

(A8)
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More generally, for the product of Lt normal-ordered operators, we find

〈i| : fn−1(b, b†) : · · · : f0(b, b†) : |j〉 = (−1)n−1

∫
(dθ∗n−1)ieθ

∗
n−1θn−1fn−1(θn−1, θ

∗
n−1)

×
n−2∏
m=0

[dθm+1dθ
∗
me

θ∗m(θm−θm+1)fm(θm, θ
∗
m)](−dθ0)j, (A9)

where the product on the right-hand side is a time-ordered product, though the ordering
will not matter in physical applications where the functions fm are even in the Grassmann
variables.

We note that for any function g(θ0, θ
∗
n−1),∑

i

∫
(dθ∗n−1)ig(θ0, θ

∗
n−1)(−dθ0)i =

∫
dθ0dθ

∗
n−1e

θ∗n−1θ0g(θ0, θ
∗
n−1). (A10)

From this and Eq. (A9), we derive the trace identity

Tr
[
: fn−1(b, b†) : · · · : f0(b, b†) :

]
=

∫ n−1∏
m=0

[dθmdθ
∗
me

θ∗m(θm−θm+1)fm(θm, θ
∗
m)], (A11)

where θn = −θ0 and the factors of −1 vanish upon reordering the integration measure. The
straightforward generalization of these results to more than one fermion annihilation and
creation operator leads to Eq. (3.8).

Appendix B: Finite-volume binding energy corrections and topological volume

corrections for scattering with arbitrary `

In order to apply Lüscher’s finite-volume method with maximal accuracy, we consider also
finite-volume corrections to the binding energy of the dimer. The finite-volume correction to
two-body s-wave binding energies was derived in Ref. [32] and extended to arbitrary angular
momentum in Ref. [33, 34]. There has also been significant work towards understanding
three-body binding energy corrections at finite volume [35, 36].

It was noticed in Ref. [3] that the finite-volume corrections to the dimer binding energy
is dependent on the motion of the dimer. This fact has been used to cancel out finite-
volume corrections to the binding energy [7]. The dimer motion induces phase-twisted
boundary conditions on the dimer’s relative-coordinate wavefunction. These effects are
called topological volume corrections and were found to have an effect on the finite-volume
analysis for scattering of the dimer. The study of topological volume corrections were carried
out for s-wave scattering in Ref. [3, 4] and further applied in Ref. [2, 5]. In the following we
show the extension to general partial wave `.

The general solution of the Helmholtz equation has the form of

ψp(~r) =
∑
`,m

c`,m(p)G`,m(~r, p2) . (B1)

The functions G`,m(~r, p2) form a linearly independent complete basis set and are defined as

G`,m(~r, p2) = Y`,m(∇)G(~r, p2) . (B2)



20

Here Y`,m are the solid spherical harmonic polynomials and defined in terms of the spherical
harmonics as

Y`,m(~r) = r` Y`,m(θ, φ) , (B3)

and G(~r, p2) is the periodic Green’s function solution to the Helmholtz equation for `,m = 0,

G0,0(~r, p2) = G(~r, p2) =
1

L3

∑
~k

e
2iπ
L
~k·~r(

2π
L
~k
)2

− p2

. (B4)

Using Eq. (B1) of Ref. [11], we have

G`,m(~r, p2) = r` Y`,m(θ, φ)

(
1

r

∂

∂r

)`
G(~r, p2) . (B5)

Inserting Eq. (B4) into Eq. (B5), we write the asymptotic form of the scattering wave
function as

u`(r) = C
∑
~k

|~k|` e
2iπ
L
~k·~r(

2π
L
~k
)2

− p2

, (B6)

where C is the normalization coefficient. The derivation of the topological volume corrections
for the s-wave scattering of two composite particles A and B is given in Ref. [3–5]. Here
we focus on the fermion-dimer scattering and derive the topological volume corrections for
higher partial waves.

In this analysis we take the continuum limit. We let the total momentum of the fermion
plus dimer system to be zero and let p be the magnitude of the relative momentum between
the fermion and dimer. Let Ed,~0(∞) be the dimer energy at infinite volume and md be the
dimer mass. Then the fermion-dimer energy at infinite volume, Edf(p,∞), is

Edf(p,∞) =
p2

2md

+
p2

2m
+ Ed,~0(∞) . (B7)

As in previous studies of fermion-dimer scattering on the lattice [2–5], we calculate the
effective dimer mass of the dimer on the lattice by computing the dimer dispersion relation.
Now we let Edf(p, L) be the finite-volume energy of the fermion-dimer system. Following
Ref. [3–5], we can compute the expectation value

Edf(p, L) =

∫
d3r u∗`(r)Ĥu`(r)∫
d3r |u`(r)|2

=
1

N`

kmax∑
~k

|~k|2`
p2

2md
+ p2

2m
+ Ed,~k(L)(

~k2 − η
)2 , (B8)

where Ed,~k(L) is the finite-volume energy of the dimer with momentum ~k, N` is defined as

N` =
kmax∑
~k

|~k|2`
(
~k2 − η

)−2

, (B9)
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and η =
(
Lp
2π

)2
. For ` > 0 the summations are divergent and we must cutoff the short

distance behavior at some momentum scale Λ characterizing the range of the fermion-dimer
interactions. The corresponding maximum index value kmax scales as ΛL/(2π).

Let ∆Ed,~0(L) = Ed,~0(L)−Ed,~0(∞) be the finite-volume energy shift of the dimer energy
in its rest frame, and ∆Ed,~k(L) = Ed,~k(L)−Ed,~k(∞) be the finite-volume energy shift of the

dimer energy with momentum ~k. One can show that [3],

∆Ed,~k(L)

∆Ed,~0(L)
=

1

3

3∑
i=1

cos (2πki α) . (B10)

Using Eq. (B7), (B8), and (B10), we can now write the fermion-dimer energy correction at
finite volume as

Edf(p, L)− Edf(p,∞) = τ`(η) ∆Ed,~0(L) , (B11)

where τ`(η) is the topological factor,

τ`(η) =
1

N`

kmax∑
~k

|~k|2`
∑3

i=1 cos (2πki α)

3
(
~k2 − η

)2 , (B12)

with α = m/(m + md) = 1/3. Due to the short distance behavior of the momentum mode
summations for ` > 0, we find that the topological phase factor τ`(η) is suppressed by the
lattice length L,

τ`>0(η) = O
(
L−1

)
. (B13)

In other words, the topological volume correction for ` > 0 is smaller by a factor of L relative
to the ` = 0 correction. In our analysis of fermion-dimer scattering we have therefore
included topological volume corrections as written in Eq. (B12) for ` = 0, but neglected
the corrections for ` > 0. We find that this prescription gives good agreement with the
continuum infinite-volume STM results for partial waves ` = 0, 1, 2.
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[10] M. Lüscher, Communications in Mathematical Physics 105, 153 (1986).
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