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Background The dense neutron-rich matter found in supernovae and inside neutron stars is expected to form complex nonuni-
form phases, often referred to as nuclear pasta. The pasta shapes depend on density, temperature and proton fraction
and determine many transport properties in supernovae and neutron star crusts.

Purpose To characterize the topology and compute two observables, the radial distribution function (RDF) g(r) and the
structure factor S(q), for systems with proton fractions Yp = 0.10, 0.20, 0.30 and 0.40 at about one third of nuclear
saturation density, n = 0.050 fm−3, and temperatures near kT = 1 MeV.

Methods We use two recently developed hybrid CPU/GPU codes to perform large scale molecular dynamics (MD) simulations
with 51 200 and 409 600 nucleons. From the output of the MD simulations we obtain the two desired observables.

Results We compute and discuss the differences in topology and observables for each simulation. We observe that the
two lowest proton fraction systems simulated, Yp = 0.10 and 0.20, equilibrate quickly and form liquid-like structures.
Meanwhile, the two higher proton fraction systems, Yp = 0.30 and 0.40, take a longer time to equilibrate and organize
themselves in solid-like periodic structures. Furthermore, the Yp = 0.40 system is made up of slabs, lasagna phase,
interconnected by defects while the Yp = 0.30 systems consist of a stack of perforated plates, the nuclear waffle phase.

Conclusions The periodic configurations observed in our MD simulations for proton fractions Yp ≥ 0.30 have important
consequences for the structure factors S(q) of protons and neutrons, which relate to many transport properties of
supernovae and neutron star crust. A detailed study of the waffle phase and how its structure depends on temperature,
size of the simulation and the screening length showed that finite-size effects appear to be under control and, also, that
the plates in the waffle phase merge at temperatures slightly above 1.0 MeV and the holes in the plates form an hexagonal
lattice at temperatures slightly lower than 1.0 MeV.

PACS numbers: 26.60.-c,26.60.Dd,26.50.+x,64.70.M-

I. INTRODUCTION

It is widely accepted that dense neutron-rich matter
forms during a core-collapse supernova and exists be-
tween the crust and the core of a neutron star. A com-
bination of theoretical arguments and numerical simu-
lations suggests that this type of matter forms complex
nonuniform structures, nowadays referred to as nuclear
pasta. These complex nonuniform structures form be-
cause the system is unable to minimize all its fundamen-
tal interactions [1]. Here the interactions are the attrac-
tive short-range nuclear force, O ∼ 1 fm, and the repul-
sive long-range Coulomb force, O ∼ 10−100 fm. There is
an ongoing effort aiming to determine the possible shapes
of the pasta, its phase-transitions and their properties as
these are relevant to the equation of state of nuclear mat-
ter [2], neutrino opacities in supernovae [3, 4] and electric
transport in the neutron star crust [5].

Often, studies of nuclear pasta make use of symmetry
arguments to determine what is the most favored struc-
ture at a given density, temperature and proton fraction.
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For example, some mean-field calculations solve the equa-
tions of motion of dense matter in a Wigner-Seitz approx-
imation in one, two and three dimensions and choose the
favored geometry as the one that minimizes the energy
density of the system for a given density and proton frac-
tion [6–10]. Other works based on liquid-drop models and
Thomas-Fermi approximation also have explicit assump-
tions about the geometrical shapes of nuclear pasta [11–
14]. As noted by Williams and Koonin in Reference [15]
these symmetry arguments limit the possible structures
to uniform and five geometries: spheres (3D), cylinders
(2D), plates (1D), tubes (2D) and bubbles (3D). Thus,
they performed simulations without any a priori assump-
tion on the pasta geometry and were able to show that
the five assumed geometries are good descriptions of nu-
clear matter in certain density ranges.

The way the primitive cells are stacked in small volume
simulations limits the configurations of the 3D phases to
simple cubic lattices while the 2D phases can only form a
square lattice. With this in mind Oyamatsu et al. added
extra configurations in which the primitive cells could be
stacked to include bcc and fcc lattice configurations to
the 3D phases as well as an hexagonal lattice configura-
tion to the two-dimensional phases [13]. Though their
calculations still had assumptions on the nuclear struc-
tures formed within their unit cells they concluded that
for symmetric nuclear matter the 3D phases prefer to
form bcc lattices while the 2D phases form hexagonal
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lattices. Recently Okamoto et al. used Thomas-Fermi
approximation to determine pasta structures within a
volume large enough to include more than a single pe-
riodic image of its structure [16]. Their computations,
which had no assumptions about the pasta geometries or
lattice structures formed, indicated that symmetric nu-
clear matter can transition from bcc to fcc structures in
the three-dimensional phases and from a honeycomb to
a square lattice in the two-dimensional phases. For lower
proton fractions, Yp = 0.10 and 0.30, they demonstrated
that the fcc and simple cubic structures are favoured.
Furthermore, in their search for the ground-state they
found more exotic pasta shapes, albeit in a metastable
state. Amongst the geometries obtained were dumbbell-
like and diamond-like structures, as well as coexistence
of phases of different dimensionalities, for instance mix-
tures of droplets and rods appeared at low densities and
slabs and tubes at intermediate densities. Other works
explored structures such as gyroid and double-diamond
morphologies [17, 18] as the existence of these exotic
shapes may have important implications to the pasta
properties.

Advances in computational power in the past decade
have allowed for sophisticated calculations beyond mean-
field, Thomas-Fermi and liquid drop model approxima-
tions. These include fully self-consistent calculations
using a Skyrme-Hartree-Fock+BCS calculation at finite
temperature [19, 20] and time-dependent Hartree-Fock
simulations [21–23]. These computations showed a richer
variety of pasta shapes than the five geometries typically
reproduced. However, due to their complexity, these cal-
culations are often limited to a single periodic structure
so that the pasta shapes obtained may exhibit significant
dependence on the finite-size of the simulation. In fact,
it was recently showed by Molinelli et al. for molecular
dynamics simulations of about less than 10 000 nucleons
that the pasta shapes may differ based on the geome-
try chosen for the simulation volume [24]. Therefore, it
is necessary to perform simulations with a much larger
number of nucleons so that finite-size effects can be over-
come.

Because of limitations in computational power calcu-
lations with more than a few thousand nucleons are only
manageable by considerably simplifying nucleon interac-
tions. That can be attained by replacing the nucleon in-
teractions by schematic forces that reproduce some of the
properties of finite nuclei and nuclear matter, even if that
implies ignoring shell effects and other important physics.
This is what is done in works that study nuclear pasta
using semi-classical molecular dynamics (MD) [3, 25–31],
quantum molecular dynamics (QMD) [32–38] and Monte-
Carlo methods [39, 40]. So far, the largest simulations
reported in literature were performed by Horowitz et al.
and included up to 100 000 nucleons though it is not clear
if those simulations were run for long enough for the sys-
tem to equilibrate [25, 26].

In a previous paper we studied nuclear pasta forma-
tion using MD [30]. In that work we evolved dense mat-

ter with a proton fraction of Yp = 0.40 at a tempera-

ture of 1 MeV from high to low densities, n = 0.10 fm−3

to n ∼ 0.01 fm−3, by expanding the simulation volume
at different rates. We explicitly observed the nucleation
mechanism as the pasta transitioned from one phase to
the next and quantified the topologycal transitions by
calculating Minkowski functionals on a suitable isosur-
face of the structures formed. Specifically, we noted that
once the density reached approximately n = 0.04 fm−3

the system transitioned from plates (“lasagna” phase)
to cylinders (“spaghetti phase”). During the transition,
holes appeared in the lasagna plates and a phase similar
to perforated plates or cross linked network of spaghetti
formed. As density was decreased further the cross links
disappeared to produce isolated nearly straight spaghetti
strands. Study of finite size effects of this phase of per-
forated plates is the main focus of this work. This is
done running MD simulations of 51 200 and 409 600 nu-
cleons at a density of n = 0.05 fm−3 and proton frac-
tion of Yp = 0.30 for up to 15 × 106 MD time steps.
This proton fraction is slightly lower than in our previ-
ous work and was chosen as the cross-linked phase was
more stable. Besides that it also allows us to compare
the topology of our results to the work of Pais and Stone
[20] and Schuetrumpf et al. [21, 23] as they obtained a
similar phase at similar proton fractions and densities.
We also note here that Sebille et al. using a dynamic
self-consistent mean-field model also obtained a similar
phase of stacked perforated plates at this same density
for symmetric nuclear matter [41].

One of the purposes of performing large nuclear pasta
simulations is to determine how the pasta phases affect
observable quantities present in supernovae and neutron
stars. While nucleon clustering and long range order
of the pasta structures are relevant for neutrino pasta-
scattering [3], impurities and/or defects may be impor-
tant for heat and electrical conductivity and pulsar spin-
down [5, 42]. Because MD allows for much larger sim-
ulations than possible with quantum calculations and it
is straightforward to track the time evolution of the sys-
tem, we can directly calculate observables like radial dis-
tribution function (RDF), g(r), and its Fourier trans-
form, the static-structure factor S(q). Therefore, besides
the study of the perforated plates phase, we also calcu-
late the topology and observables of structures formed
at a density of n = 0.050 fm−3 for four proton fractions,
Yp = 0.10, 0.20 0.30 and 0.40 and compare their prop-
erties. Time and frequency dependent observables may
also be computed and will be the topic of a future work.

This manuscript is arranged as follows. In Section II A
we review our MD formalism while Section II C is de-
voted to the CPU/GPU codes used in our simulations.
Afterwards, in Section III we present our results. The
section starts with a discussion of four 51 200 nucleon
simulations with different proton fractions, Section III A.
We then move our focus to simulations with proton frac-
tion Yp = 0.30 of different sizes and screening lengths,
Section III B, and finish with a discussion of some ob-
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servables that can be obtained from the MD simulations,
Section III C. Finally, we conclude in Sec. IV.

II. MD CODE

We start this section discussing the formalism used in
our codes, Sec. II A, a brief description of how we obtain
the relevant Minkowski functionals, Sec. II B and then
describe how the CPU/GPU codes work in Sec. II C.

A. Formalism

Following is a review of our MD formalism, as it is
the same as the one used by Horowitz et al. and oth-
ers in previous works [3, 25–31]. We use a cubic box
with periodic boundary conditions to simulate systems
of neutrons and protons immersed in a degenerate rela-
tivistic free Fermi electron gas. The nucleons are mass
M = 939 MeV point-like particles that interact via two-
body potentials of the form

Vnp(r) = ae−r
2/Λ + [b− c]e−r

2/2Λ (1a)

Vnn(r) = ae−r
2/Λ + [b+ c]e−r

2/2Λ (1b)

Vpp(r) = ae−r
2/Λ + [b+ c]e−r

2/2Λ +
α

r
e−r/λ. (1c)

The n and p indexes denote whether the potential is for a
neutron-proton, neutron-neutron or proton-proton inter-
action. In the equations above, r is the distance between
the two nucleons and a, b, c and Λ are constants adjusted
to approximately reproduce some bulk properties of pure
neutron matter and symmetric nuclear matter as well as
the binding energies of selected nuclei [3]. Their values
are given in Table I. As there have been studies on the
dependence of the pasta phases on the density depen-
dence of the nuclear symmetry energy, for an example
see Reference [10], we quote our value for this quantity:
S = 40.7 MeV. We also obtain a value of K = 372 MeV
for the nuclear compressibility, although we do not ex-
pect our results to be very sensitive to this somewhat
high value.

The proton-proton interaction Vpp also has a term
proportional to the fine-structure constant α. This is
the Coulomb repulsion between protons screened by the
background electron gas. The screening has a character-
istic length λ that depends on the electron Fermi momen-
tum kF = (3π2ne)

1/3, where ne is the electron density
and the electron mass me. Its value is

λ =
π1/2

2α1/2

(
kF

√
k2
F +m2

e

)−1/2

(2)

In most previous works λ was fixed to an arbitrary
value λ = 10 fm. Though we do that in Section III A,
in Section III B we compare our results for runs with
both λ = 10 fm and λ = λTF given by Eq. (2), i.e.
λ = 13.6 fm.

TABLE I: Nuclear interaction parameters. The parameter
a defines the strength of the short-range repulsion between
nucleons, b and c the strength of their intermediate-range at-
traction and Λ the length scale of the nuclear potential.

a (MeV) b (MeV) c (MeV) Λ (fm2)
110 −26 24 1.25

B. Minkowski functionals

To quantify the shapes of the structures formed in our
simulations we use Minkowski functionals. In three di-
mensions any shape may be classified in terms of four
Minkowski functionals: volume V , area A, mean breath
B and Euler characteristic χ. In our simulations the
occupied volume V is defined by the region enclosed
by a nuclear surface of total area A. Meanwhile, the
mean breadth B and Euler characteristic χ are, respec-
tively, proportional to the surface integrals of the mean
curvature 1

2 (κmin + κmax) and the Gaussian curvature
(κminκmax). Here κmin and κmax are the minimum and
maximum values for the curvature on each point of the
surface. Furthermore, the Gaussian curvature may be
related to the number of structures or the connectivity
of the shapes formed [43].

As in our previous work, Reference [30], the nuclear
surface is defined as isosurfaces of charge density nch =
0.03 fm−3 obtained by folding a three-dimensional uni-
tary Gaussian with standard deviation of σ = 1.5 fm
around each proton of the system. The surface integrals
were performed using the prespcription of Lang et al. [44].
To track the evolution of a system and to directly com-
pare the topology of simulations of different sizes we cal-
culate the average mean curvature, B/A, and the average
Gaussian curvature, χ/A.

C. GPU codes

The most time consuming task when solving the equa-
tions of motion of the system described above is the com-
putation of the forces acting on each nucleon. In this
work we use an upgraded version of the Indiana Uni-
versity Molecular Dynamics (IUMD) Fortran code used
in our previous paper, Reference [30]. Amongst the up-
grades are a neighbor-list scheme to calculate the nuclear
forces using CPUs and the use of GPUs, whenever avail-
able, to calculate the long-range Coulomb interaction be-
tween protons. The details of the code are described in
Sec. II C 1. We also describe another newly developed
Fortran code, CubeMD, which also makes use of CPUs
and GPUs. This code is discussed in Sec. II C 2. In
a forthcoming paper we will discuss the performance of
each code as it depends on density, temperature and pro-
ton fraction of the simulation.
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1. The IUMD code

The IUMD code has been developed for the past
decade and has recently undergone a major reformulation
to take full advantage of the Big Red II supercomputer
acquired by Indiana University last year. Big Red II is a
Cray XE6/XK7. The XE6 part of the machine consists of
344 dual CPU compute nodes, where each CPU is an Ad-
vanced Micro Devices 16-core Abu Dhabi Opteron. Each
of these nodes has 64 GB of RAM. The XK7 part consists
of 676 CPU/GPU compute nodes, each containing one
16-core AMD Interlagos Opteron CPU, one Nvidia Ke-
pler K20 GPU, and 32 GB of RAM [45]. IUMD is a par-
allel code that can run on either the dual CPU nodes, or
the CPU/GPU nodes, using MPI (Message Passing Inter-
face) to communicate between nodes, OpenMP threads
on the 16 cores of each CPU, and Portland Group CUDA
Fortran on each GPU. IUMD takes full advantage of the
compute power of CPU/GPU nodes by calculating nu-
clear forces on the CPUs while computing the Coulomb
forces on the GPUs via a straightforward particle-particle
algorithm. On CPU-only nodes of Big Red II, and any
other machines that do not have hybrid CPU/GPU ar-
chitecture it is also possible to run the code using only
CPUs.

Decomposition of the force calculation among com-
pute nodes is best understood by thinking of all the two-
particle interactions as making up a force matrix. Ele-
ment ij of the matrix corresponds to the force f ij that
source particle j exerts on target particle i. Of course,
sources and targets are the same N particles overall, but
thinking of them as sources acting on targets simplifies
explanation. In the parallel code, the force matrix is de-
composed into P block rows and Q block colums, where
PQ is the total number of MPI processes (one process
per compute node). Each process is assigned one block,
and is responsible for calculating the action of its N/Q
sources on its N/P targets. In order to simplify commu-
nication between processes, as well as the Coulomb calcu-
lation on the GPUs, IUMD does not use Newton’s third
law to calculate the reaction of targets on sources. This
decomposition resembles a customary cell algorithm, ex-
cept that the cells are abstract rather than a geometrical
division of real space. Once assigned to a process, par-
ticles stay there; they do not need to be moved from
process to process as they would in a spatially based cell
algorithm.

After all processes have calculated the forces their
sources exert on their targets, forces are summed along
the Q processes of each row to get the total force on each
target. This is done by an MPI allreduce which leaves
each process with the total force on each of its targets.
Note that these are row-wise allreduces, so that in princi-
ple the P allreduces can be done concurrently. Thus the
code should scale to very large node counts on machines
that can actually do them concurrently. A time step is
finished by each process applying a velocity Verlet up-
date to its targets, followed by another set of allreduces,

this time along each block column, to copy the new tar-
get positions to sources belonging to that column. Since
each column has the complete set of new target positions,
these allreduces can also be done concurrently. The only
time an allreduce over all processes is required, is when
calculating total potential energy, or virial for the pres-
sure. However, these calculations are needed relatively
infrequently.

Each MPI process calculates Coulomb forces by a sim-
ple particle-particle algorithm. All source and target pro-
ton positions are sent to the GPU, which sums the force
of all sources on each target, and returns the forces to the
CPU. The GPU version of the code does not use a cut-off
or other work reducing measure, so the Coulomb calcula-
tion has computational complexity O((YpN)2/(PQ)). In
the CPU only version the performance of the Coulomb
force calculations can be improved by setting a cut-off
to the Coulomb interaction, though this cut-off still has
to be large enough to allow distant protons to interact
with each other. More details of the Coulomb force cal-
culations using GPUs or CPUs were described in Refer-
ence [46]. While the GPU calculates the Coulomb inter-
action, the CPU calculates nuclear forces via a cell and
neighbor list algorithm. Since the nuclear force has a
range of only few fermi, at most a few thousand source
nucleons will be within range of each target nucleon, even
at saturation density. Because sources are randomly dis-
tributed among Q nodes of each block row of the force
matrix, this is reduced to perhaps hundreds per target
per node, making a neighbor list algorithm very efficient.

In detail, the code builds a neighbor list Li of all
sources within a distance rnuc + δrnuc of target i. The
force on i is calculated only from its interaction with
sources in Li that are within distance rnuc. We set
rnuc = 11.5 fm in all runs reported in this paper, as
the nuclear force drops well below machine precision by
this distance, even for IEEE 64-bit arithmetic. We could
probably reduce rnuc to 9 or 8 fm, but took a conservative
approach for these runs. Sources are included in Li from
the buffer zone of thickness δrnuc about the interaction
sphere so lists do not have to be rebuilt as nucleons move
in and out of interaction range. Rather, list Li needs
to be rebuilt only when the distance i has moved, plus
the maximum distance any source on a node has moved
since the last build is greater than δrnuc. We have found
it more efficient to rebuild all lists on all nodes when any
one of them needs rebuilding, as the list-building proce-
dure takes some time, and interrupts flow of the simula-
tion. This requires an MPI allreduce of a logical variable
from each process telling whether it needs to do a re-
build. For the size of runs we have done, this all-process
allreduce is not too time-consuming, and results in more
efficient runs. However in principle, the decision to re-
build lists only needs to be done on a process-by-process
basis.

As just described neighbor list builds would be of
O(N2/PQ) computational complexity, as distances be-
tween all targets and all sources on a node must be
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checked. This complexity is reduced considerably by cou-
pling the algorithm with a cell algorithm. Each process
divides the whole simulation volume into cells of width
rnuc + δrnuc, and figures out which cell each source is
in. This is an order O(N/Q) operation. Then for each
target i, only i’s cell and its 26 neighboring cells must be
checked in order to build Li. Note that this requires no
communication between processes. Even though this re-
duces work required to build the Li, builds should still be
done as infrequently as possible, implying δrnuc should
be large. However the number of sources in each list
grows as (rnuc + δrnuc)

3, so rnuc + δrnuc should be kept
small. We have chosen δrnuc = 4.0 fm, as a good trade-
off of list size vs. frequency of builds. For Q = 1 this
would result in about 3 200 sources in each list for density
n = 0.20 fm−3, well above saturation density. Of these,
only about 1 350 would be within interaction range rnuc.
Note that for parallel runs these numbers are reduced by
the number Q of MPI processes in each row. For the den-
sities and temperatures we usually consider in our works
the neighbor lists are rebuilt every dozen or so time steps
depending on how close to equilibrium the system is.

The algorithm just described is a significant improve-
ment over the one used in our previous paper where the
distance over every pair of particles had to be calculated
and the code would scale with O(N2).

2. The CubeMD code

The CubeMD code is also a hybrid CPU/GPU code
that works similarly to the IUMD code. It calculates the
nuclear forces on the CPUs while the GPUs take care of
the Coulomb interactions amongst the protons. The dif-
ference is in how the nuclear forces are calculated; while
the IUMD code builds neighbor lists for each nucleon
the CubeMD code divides the simulations volume into
cubes of sides of approximately 4 fm. Each nucleon is
then tagged with a number that specifies which of the
smaller cubes it belongs to. The force on a target nucleon
is computed only for the potential due to source nucle-
ons in the same cube as the target or in adjacent ones.
The adjacent cubes are determined in such way as to
preserve periodic boundary conditions. We note that as
of now the CubeMD code uses only a single CPU/GPU
compute node. Its performance is slightly better than
the IUMD code running on a single compute node.

III. RESULTS

In this section we describe our simulations and what
we have learned from them. Though all the results pre-
sented here are from simulations performed with the
IUMD code we did obtain very similar results with the
CubeMD code. However, we decided to omit those re-
sults from this work to make the presentation of our re-
sults clearer.

We start in Sec. III A with a comparison of the
topologies of systems evolved at a constant density of
n = 0.050 fm−3 and temperature kT = 1.0 MeV for dif-
ferent proton fractions. The topology is characterized
by the average mean B/A and Gaussian χ/A curvatures
[43]. In Sec. III B we focus on systems with proton frac-
tion Yp = 0.30. We compare how the average mean and
Gaussian curvatures evolve for simulations of 51 200 and
409 600 nucleons from different initial conditions, sizes
and screening length and discuss their topological struc-
tures. Finally we finish Sec. III C discussing how we
obtain the radial distribution functions (RDFs) g(r) and
the structure factors S(q) from MD simulations.

A. Systems of different proton fractions

We start this section discussing the topologies of sys-
tems of different proton fractions. Using the IUMD
code we simulated systems with 51 200 nucleons in a cu-
bic box with nucleon number density n = 0.050 fm−3,
temperature kT = 1.0 MeV and proton fractions Yp =
0.10, 0.20, 0.30 and 0.40. For the simulations discussed
in this section we fixed the screening length to 10 fm.
Since a constant density of n = 0.050 fm−3 implies a box
with length size 100.8 fm the ratio of box length L to
screening length λ is approximately 10. Had we used the
screening length λTF obtained in the relativistic Thomas-
Fermi approximation the ratio of box length L to screen-
ing length λTF would be somewhat smaller, see Table II,
and increase with lower proton fractions.

TABLE II: Comparison of screening length λ = 10 fm used in
the simulations and the relativistic Thomas-Fermi screening
λTF to the box length L = 100.8 fm.

Yp λTF (fm) L/λTF L/λ
0.10 19.610 5.14 10.08
0.20 15.565 6.48 10.08
0.30 13.597 7.41 10.08
0.40 12.354 8.16 10.08

From Equation (2) and the results in Table II we
note that, for electrically neutral ultra-relativistic sys-
tems (kF � me) such as the ones where nuclear pasta
forms, the Thomas-Fermi screening lengths is propor-

tional to Y
−1/3
p , i.e. λTF ∝ Y

−1/3
p . We also note that

in the worst case scenario presented above, Yp = 0.10,
the value of λ = 10 fm is within a factor of two of the
screening predicted by the Thomas-Fermi approximation.
These values for the screening λTF are much smaller than
the ones estimated by Alcain et al. in Reference [10]
using a non-relativistic approximation, me >> kF in
Eq. 2. In their work they simulated isospin symmet-
ric nuclear matter which, in a relativistic approximation
(me << kF ), implies a screening length λTF ∼ 11.5 fm
at the density used in this work, n = 0.050 fm3. Thus,
following their conclusions we expect that for large sim-
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ulations such as the ones presented here, a screening of
10 fm should be sufficient to at least correctly predict
the signs for the average mean and Gaussian curvatures
of the systems with higher proton fractions, Yp & 0.30.
The differences between the predictions of fixing λ for
Yp = 0.30 and using the Thomas-Fermi approximation
will be explored in Section III B.

Y p = 0.10 Y p = 0.20

Y p = 0.30 Y p = 0.40

FIG. 1: (Color on line) Charge density isosurfaces of
runs with 51 200 nucleons, mean density n = 0.05 fm−3,
temperature kT = 1.00 MeV, and proton fractions Yp =
0.10, 0.20, 0.30 and 0.40 after 107 fm/c evolution time. In
this figure, and all similar ones throughout this paper, the
golden surfaces represent isosurfaces of charge density nch =
0.03 fm−3, while the cream color shows regions such that
nch > 0.03 fm−3. All such figures were generated using Par-
aView [47].

Each simulation described in this section was evolved
for 107 fm/c in time steps of 2 fm/c. The final configura-
tion of each simulation is shown in Figure 1. To generate
Figure 1, a gaussian of unit volume was folded about
each proton. These gaussians were then summed at each
point of a fine 3D grid overlaying the simulation vol-
ume, and an isosurface corresponding to charge density
nch = 0.03 fm−3 constructed. Details of this construc-
tion are given in Reference [30]. We see that the lowest
proton fraction, Yp = 0.10, formed a phase that consist
of small deformed nuclei while the Yp = 0.20 system is
mostly formed of deformed elongated nuclei that resem-
ble the spaghetti phase. The two larger proton fractions,
Yp = 0.30 and 0.40, formed structures that spread along
the whole length of the simulation volume; the Yp = 0.40
proton fraction formed flat sheets interconnected by de-
fects, while the Yp = 0.30 proton fraction formed perfo-
rated plates we named nuclear waffles. The waffle phase
is the subject of the following section while the defects
in pasta structure will be the subject of a forthcoming

paper.
We quantify the shapes formed by calculating the

Minkowski functionals (area, mean curvature and Gaus-
sian curvature) of the charge isosurface of density nch =
0.030 fm−3. We calculate these quantities the same way
as in Reference [30], and refer the reader to that paper
for details. The reason we evolved our simulations for 107

fm/c was that that was the time the slowest converging
run took to appear to equilibrate. While the Minkowski
functionals of the Yp = 0.10 and 0.20 runs stopped evolv-
ing after about 2×105 fm/c, the Yp = 0.40 run took about
2 × 106 fm/c to reach equilibrium. The slowest converg-
ing run was the Yp = 0.30. The Minkowski functionals
took about 5×106 fm/c to reach an apparent asymptotic
value. In Table III we show the mean and Gaussian cur-
vatures per unit area averaged over the last 106 fm/c of
the run. We note that for the lowest proton fraction,
Yp = 0.10 both values are positive, which means several
separated convex structures. For Yp = 0.20 the average
Gaussian curvature is very close to zero while the aver-
age mean curvature is positive. This is characteristic of
convex structures that are on average flat along one direc-
tion, such as cylinders. Meanwhile, both the Yp = 0.30
and Yp = 0.40 systems have positive average mean cur-
vature and negative Gaussian curvatures characteristic
of network-like structures [22, 48]. We note that for the
Yp = 0.40 system both curvatures are close to zero, as
the system consists mostly of flat plates. As we shall see
in our discussion of observables, Sec. III C, the Yp = 0.10
and Yp = 0.20 proton fraction simulations exhibit struc-
ture factors that resemble those of a liquid phase. Mean-
while, the Yp = 0.30 and Yp = 0.40 simulations display
Bragg peaks in their structure factor characteristic of a
phase with periodic structures.

TABLE III: Average mean (B/A) and Gaussian (χ/A) cur-
vatures for the last one tenth of each run.

Yp B/A( fm−1) χ/A( fm−2)
0.10 0.415(5) 1.23(4)×10−2

0.20 0.170(1) 6.(12.)×10−5

0.30 0.071 8(9) −1.15(3)×10−3

0.40 0.012 7(3) −3.51(3)×10−4

B. The waffle phase

In this section we focus on systems with proton frac-
tions of Yp = 0.30 at a density of n = 0.050 fm−3. As
seen in the previous section this system has an interesting
topology formed of perforated plates we call the “waffle”
phase. This phase lies in the transition between a phase
formed of flat plates, “lasagna” phase, and one made up
of elongated cylindrical nuclei, “spaghetti” phase.

We first discuss simulations performed at a temper-
ature of kT = 1.0 MeV started from a random con-
figuration. To study finite size effects we simulated
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systems of 51 200 and 409 600 nucleons and compared
their topologies. We also compare the results obtained
from systems that use the artificially decreased screening
length λ = 10 fm and those obtained from the relativistic
Thomas-Fermi approximation, λTF = 13.6 fm. All sys-
tems were evolved for about 3 × 107 fm/c in time steps
of 2 fm/c.

Comparisons of their topologies can be seen in Fig-
ure 2. The top plot, Figure 2(a), shows the mean cur-
vature per unit area while the bottom one, Figure 2(b),
shows the Gaussian curvature per unit area of the sys-
tem as a function of simulation time. In Figure 2(a)
we see that all systems have initially a mean curvature
B/A & 0.08 fm−1 that decreases to B/A ∼ 0.07 fm−1 as
the system evolves. As expected the 51 200 nucleon sys-
tems equilibrate faster than their 409 600 counterparts.
Note that here we define equilibrium state as the point
where the average mean curvature of the system stops
evolving significantly. In fact, the small systems with
screening lengths λTF = 13.6 fm and λ = 10 fm seem
to have reached some sort of equilibrium state in about
2 × 106 fm/c and 107 fm/c, respectively. Meanwhile, the
larger systems with screening lengths λTF = 13.6 fm and
λ = 10 fm take somewhat longer to equilibrate. While
the first reaches equilibrium in 2 × 107 fm/c it is not
clear whether the second has reached equilibrium after
3× 107 fm/c.

While we can infer a time scale for equilibration of the
system from the average mean curvature of each sim-
ulation the average Gaussian curvatures only oscillate
around an average value soon after the start of the sim-
ulation. As expected the average curvature values de-
pend mostly on the screening length while the deviations
from average depend on the number of nucleons in each
simulation. In Table IV we show the average mean and
Gaussian curvatures over the last one tenth of each run.
We see that, even though its not clear whether the larger
systems have equilibrated, all values agree well within
their standard deviations.

TABLE IV: Average mean (B/A) and Gaussian (χ/A) cur-
vatures for the last one-tenth of each run.

Size λ( fm) 10B/A (fm−1) 100χ/A (fm−2)
51 200 10.0 0.714(14) −0.113(3)
51 200 13.6 0.735(13) −0.123(4)

409 600 10.0 0.700(05) −0.113(1)
409 600 13.6 0.731(03) −0.120(1)

In Figure 3 we show the last configuration of each run
from two different points of view. We observe that in ev-
ery run the final state was formed of perforated plates
parallel to each other. Furthermore, in the run with
51 200 nucleons with λTF = 13.6 fm, the plates are also
parallel to one of the sides of the box. We also note that
even after the long simulation time the larger run with
λTF = 13.6 fm exhibited several defects that connected
perforated plates aligned along two different directions.
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FIG. 2: (Color online) Plots of (a) normalized mean curva-
ture B/A and (b) normalized mean Gaussian curvature χ/A
as a function of simulation time t for four simulations with
Yp = 0.30, n = 0.050 fm−3 and kT = 1.00 MeV.

This will become clearer in the following discussion of
observables, specifically the structure factor S(q).

In order to test the stability of these phases we se-
lected the last configuration of the two smaller simula-
tions and slowly increased (decreased) their temperature
from kT = 1.0 MeV to kT = 1.5 MeV (kT = 0.5 MeV)
at a rate of d(kT )/dt = 10−7 MeV/(fm/c). We then
measured the topological characteristics as the system
evolved. We noticed that when the temperature was in-
creased some connections between adjacent plates ap-
peared and at high enough temperatures the pattern
of perforated parallel plates merged as the temperature
reached kT = 1.3 MeV, for an example see Figure 4.
This transition is characterized by a sudden increase (de-
crease) in the average mean (Gaussian) curvatures away
from their values at kT = 1.0 MeV, see Figure 5. Mean-
while, when the temperature is decreased the holes in the
perforated plates form a structure close to an hexagonal
lattice. Note also that this 2D hexagonal lattice of holes
is displaced by about half of a lattice spacing in nearest
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N = 51 200
λ = 10 fm λ = 13.6 fm

N = 409 600
λ = 10 fm λ = 13.6 fm

FIG. 3: (Color online) Charge density isosurfaces of runs with 51 200 (top) and 409 600 nucleons (bottom). The two leftmost
(rightmost) figures show the final configurations that used a screening length of 10 fm (13.6 fm) from different angles.

neighbor plates and, thus, is aligned to the holes in next-
nearest neighbor plates. Though this happens in both
the λ = 10 fm and λ = 13.6 fm simulations it is easier to
see what happens in the latter as the plates are parallel to
one of the sides of the box. Therefore, we chose to show
only the λ = 13.6 fm plates in Figure 6. It should be
clear comparing the two figures that neighboring plates
have holes displaced by half of a lattice spacing so that
next-nearest neighbor plates have their holes aligned.

Besides the simulations described above we also per-
formed two simulations starting at temperature kT = 2.5
MeV, and cooled at rate d(kT )/dt = −10−7 MeV/(fm/c),
in order to test the stability of the phase of perfo-
rated plates. We used 51 200 nucleons for both simu-
lations, with λ = 10.0 fm for one and λ = 13.6 fm for
the other. We expected that cooling the system slowly
enough would allow it to reach an equilibrium state sim-
ilar to the one found in the constant temperature sim-
ulations when it reached kT = 1.0 MeV. We expected
this since at higher temperatures it is easier for the sys-
tem to jump the potential barrier that separates states
with similar energies. Therefore, once the simulations
reached a temperature of slightly below the plate melt-
ing temperatures of kT = 1.3 MeV we expected plates
to form. However, this only happened for the simulation
with λ = 13.6 fm. In this case the topological character-

istics of the system at kT = 1.0 MeV are very similar to
those obtained by evolving a random configuration for a
long time at kT = 1.0 MeV. The systems also look very
similar: six parallel perforated plates though their poten-
tial energies are slightly different, see Table V. This may
be due to small differences in the number of nucleons on
each plate. The time evolution of this system can be seen
in Figure 7.

Meanwhile, when the run with screening length λ =
10 fm reached a temperature of kT = 1.0 MeV, down
from kT = 2.5 MeV, it formed a phase that resembles
more several interconnected spaghetti than the perfo-
rated plates obtained from evolving an initial random
configuration for a long time at a constant kT = 1.0 MeV
temperature. The difference in potential energy between
the systems at 1.0 MeV is of the same order of magnitude
as the systems run with λ = 13.6 fm, see Table V. This
stresses the fact that the difference in energy of systems
with significantly different topological characteristics is
indeed small. The cooled system may not have reached
the waffle phase due to a possible energy barrier once it
formed interconnected spaghetti. The evolution of this
system can be seen in Figure 8. Besides that we also
plot the evolution of the topological characteristics of the
cooled down systems in Figure 9. We see that at a tem-
perature of 1.0 MeV the average curvatures of the system
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kT = 1.00MeV kT = 1.25MeV kT = 1.35MeV kT = 1.40MeV kT = 1.50MeV

FIG. 4: (Color online) Projection along one axis of the charge density isosurfaces of run with 51 200 and λ = 13.6 fm as the
temperature is increased from kT = 1.0 MeV to 1.5 MeV.
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FIG. 5: (Color online) Plots of (a) normalized mean
and (b) Gaussian curvatures as a function of temperature
kT for a Yp = 0.30 simulation started at a temperature
kT = 1.0 MeV and increased or decreased at a rate of
d(kT )/dt = 10−7 MeV/(fm/c). The circles (squares) repre-
sent the value for the initial mean curvature for the simula-
tions with λ = 10.0 fm (λ = 13.6 fm).

cooled down from 2.5 MeV are close to the ones obtained
from the constant temperature runs for the simulation
with screening λ = 13.6 fm. On the other hand, there
are significant differences for the average mean curvature
of the two simulations that used a screening length of
λ = 10 fm. These values are also shown in Table V.

TABLE V: Topological characteristics and potential energy
per nucleon at kT = 1.0 MeV for systems with proton fraction
Yp = 0.30 obtained from the constant temperature runs and
the runs cooled down from kT = 2.5 MeV.

Run type λ( fm) 10B/A (fm−1) 100χ/A (fm−2) V/N( MeV)
constant 10.0 0.714(14) −0.113(3) −5.6304(1)
cooled 10.0 0.790(10) −0.116(3) −5.6246(6)
constant 13.6 0.735(13) −0.123(4) −2.5807(1)
cooled 13.6 0.736(12) −0.124(3) −2.5763(6)

C. Observables

In this section we discuss two observables that can also
help us quantify the different pasta structures. We start
with the pair correlation function or radial distribution
function (RDF) g(r) and then discuss the structure factor
of the pasta shapes S(q).

The RDF g(r) defines the normalized probability of
finding a particle of type a at a distance r from a particle
of type b, i.e.,

gab(r) =
1

4πr2

1

NaNb

Na∑
i=1

Nb∑
j=1

〈δ(|ri − rj | − r)〉. (3)

If a and b are the same type then the sum runs over i 6= j
and Nb = Na − 1. In Figures 10(a), 10(b) and 10(c),
we compare, respectively, g(r) for proton-proton, proton-
neutron and neutron-neutron pairs for systems simulated
with different proton fractions. In order to obtain the
RDFs we analyzed the positions of all nucleons every 100
time steps over the last 106 time steps of the run.

First we compare the short range behavior of the
RDFs. Note that the three systems with higher proton
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(a)

(b)

FIG. 6: (Color online) Final projection along the z direction
of two of the six perforated plates formed in the run with
51 200 nucleon with proton fraction Yp = 0.30 and screening
length λ = 13.6 fm. The simulation was started at kT =
1.0 MeV and cooled to 0.5 MeV (shown). Figure (a) shows
two next-nearest neighboring plates, plate 3 (blue) and plate
5 (red) separated by a third plate which is not shown. Figure
(b) shows two nearest neighboring plates, plate 4 (blue) and
plate 5 (red). The opacity of the plates was decreased so the
holes on the blue plates in the back could also be seen.

fractions, Yp = 0.20, 0.30 and 0.40, exhibit similar qual-
itative behaviors for short range correlations, r . 10 fm;
all of their maxima and minima in this region are approx-
imately in the same places regardless of proton fraction,
although the heights of these peaks and valleys changes
significantly from one system to the next.

The behavior of the RDFs of the low proton fraction
system, Yp = 0.10, is somewhat different to those of
higher proton fractions. For instance, the positions of
the first maxima and minima of the low Yp system of
the proton-proton correlations do not match that of the
other systems. Also, the neutron-neutron correlations
of this system have only two maxima in the r < 10 fm
range while the others have four. We also note that
the neutron-neutron and neutron-proton RDF of the

Yp = 0.10 reach their asymptotic limit of one (g(r)→ 1)
at r ∼ 7 fm, while the proton-proton correlations reach
this limit at about twice that value. These features may
be explained by the fact that the Yp = 0.10 system only
forms small clusters that are not organized in any par-
ticular way and have a large amount of free neutrons in
their proximity.

As for the long range behavior, the larger the pro-
ton fraction the larger are the oscillations around the
asymptotic limit of g(r). This is because the larger pro-
ton fraction systems, Yp = 0.30 and 0.40, formed some-
what periodic structures within the simulation volume
while the lower proton fraction systems, Yp = 0.10 and
0.20, did not. Also, the long range correlations between
proton-proton pairs are stronger than between neutron-
neutron and neutron-proton pairs. This is due to two
facts. First, there are free neutrons roaming the simula-
tion volume not bound to any cluster and their numbers
are larger for the lower the proton fraction. Second, only
proton pairs have long range interactions and, therefore,
long range correlations that involve a neutron depend on
those being bound to nucleon clusters.

Besides the RDFs g(r) we may also obtain the static
structure factor Sa(q) for nucleons of species a = n, p
of the system. This quantity is related to the Fourier
transform of the pair correlation function gaa(r) [25]

Sa(q) = 1 + ρa

∫
V

(gaa(r)− 1)eiq·rd3r. (4)

The structure factor Sn(q) of neutrons (Sp(q) of pro-
tons) can be used to determine the scattering cross sec-
tion of neutrinos (electrons) by the pasta shapes. While
the neutron structure factor Sn(q) may be used to com-
pute neutrino mean-free paths in supernovae and how
they are initially trapped, see Reference [25], the proton
structure factor Sp(q) is used to compute thermal con-
ductivity, shear viscosity and electrical conductivity of
the pasta, see Reference [27]. To first order, the cross
section per neutron of a neutrino of energy E scattered
by the pasta is [25]

1

N

dσ

dΩ
= Sn(q)

G2
FE

2

4π2

1

4
(1 + cos θ). (5)

Here GF is the Fermi coupling constant, θ the scattering
angle and q the momentum transferred to the system by
the incident particle. The transferred momentum q, the
scattering angle θ and the incident energy are related by

q2 = 2E2(1− cos θ). (6)

Thus, a large structure factor at some transferred mo-
mentum q means a large probability that a scattered par-
ticle will transfer that momentum to the system. This oc-
curs whenever the system has a (quasi) periodicity along
a direction r such that q · r ' ±2π.

When calculating the structure factor directly from the
Fourier transform of the RDFs obtained from the MD
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kT = 2.5MeV kT = 2.0MeV kT = 1.5MeV kT = 1.0MeV kT = 0.5MeV

FIG. 7: (Color online) Charge density isosurfaces of run with 51 200 nucleons and λ = 13.6 fm, cooled from kT = 2.5 to 0.5
MeV.

kT = 2.5MeV kT = 2.0MeV kT = 1.5MeV kT = 1.0MeV kT = 0.5MeV

FIG. 8: (Color online) Charge density isosurfaces of run with 51 200 nucleons and λ = 10.0 fm, cooled from kT = 2.5 to 0.5
MeV.

simulations one has to deal with significant finite-size ef-
fects as it is difficult to obtain g(r) for r > L/2, where L is
the size of the simulations cube. This becomes even more
troublesome for simulations with higher proton fractions
where significant oscillations around the asymptotic limit
continue for a distance r much larger than the size of the
box. Horowitz et al. in Reference [3] tried to circumvent
that by fitting an exponentially decaying sine function
to the tail of g(r). However, this was not helpful in our
simulations with Yp ≥ 0.30. In these cases we noticed
that we missed important information about the Bragg
peaks in the structure factors that were obtained from
the method described next.

As in Horowitz et al., Reference [27], we calculate
the neutron and proton structure factors Sa(q) from the
density-density correlation function

Sa(q) = 〈ρ∗a(q)ρa(q)〉 − 〈ρ∗a(q)〉〈ρa(q)〉. (7)

The equation above determines the density-density corre-
lations of the neutron and proton densities in momentum
space of the system,

ρa(q) =
1√
Na

Na∑
i=1

eiq·ri . (8)

In order to avoid finite size effects due to the finite sim-
ulation volumes we only take into account transferred

momenta q such that

q = 2π

(
nx
Lx

,
ny
Ly
,
nz
Lz

)
(9)

where the ni ∈ Z and Li is the side of the box along
the i direction. This choice should be clear since eiq·r =
eiq·(r+L) for all L = (mxLx,myLy,mzLz) with mi ∈ Z.
Note that since our simulation volumes are cubic all Li =
L. In order to obtain the structure factors we saved the
configurations of the 51 200 nucleon runs every 10 time
steps over the last 106 time steps of each run. For the
larger 409 600 nucleon runs we saved 104 configurations
over the last 106 time steps of each run.

In Figure 11 we plot the angle averaged structure factor
S(q) = 〈S(q)〉 for protons, Figure 11(a), and neutrons,
Figure 11(b), for the four simulations discussed in Sec-
tion III A. First we observe that the two simulations with
lower proton fractions, Yp = 0.10 and 0.20, have smooth
structure factor curves that are characteristic of liquid-
like systems. As seen in Figure 1 neither of these two
simulations formed periodic structures within the sim-
ulation volume. The peaks near q = 0.36 fm−1 arise
from the average distance between the clusters formed,
approximately L/6. The height of the peaks is propor-
tional to the contrast in the proton and neutron densities.
Therefore, since the Yp = 0.20 simulations formed larger
clusters than the Yp = 0.10 system and the free neutrons
gas between its clusters is less dense its peaks are larger.
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FIG. 9: (Color online) Plots of (a) normalized mean and
(b) Gaussian curvatures as a function of temperature kT
for 51 200-nucleon systems with Yp = 0.30, cooled at rate
d(kT )/dt = −10−7 Mev/(fm/c) from kT = 2.5 to 0.5 MeV.
One simulation used λ = 10 fm, while the other used λ = 13.6
fm. The circles (squares) represent the initial mean curva-
tures for the constant kT = 1.0 MeV runs with λ = 10.0 fm
(λ = 13.6 fm).

Meanwhile, the other two simulations, Yp = 0.30 and
0.40, have diffraction peaks characteristic of periodic or
solid-like systems. These diffraction peaks come from
the values of q perpendicular to the plates formed in
the simulation volume. For example, in the Yp = 0.30
simulation at kT = 1.0 MeV the transferred momen-
tum that contributes the most to the Bragg peak is the
q = ± 2π

L (4, 3, 3). This can be checked by looking at the
Yp = 0.30 configuration in Figure 1. Note that starting
from one of the plates and moving up along the box one
reaches another plate every L/3. If one moves along one
of the horizontal axis we see plates separated by L/3 (left
side of the figure) and L/4 (right side of the figure). Thus,
q = ± 2π

L (4, 3, 3) produces the strongest Bragg peak. Its

absolute value, q = 0.363 fm−1, can be used to estimate
the distance d = 2π/q ' 17.3 fm−1 between the plates.
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FIG. 10: (Color online) Radial distribution functions
(RDFs) g(r) for (a) proton-proton, (b) neutron-proton and
(c) neutron-neutron pairs for 51 200 nucleon simulations with
a density of n = 0.050 fm−3, temperature kT = 1.0 MeV,
screening length λ = 10 fm and proton fractions Yp = 0.10,
0.20, 0.30 and 0.40.

Also, one expects that for a transferred momentum q
that is double of the first peaks, q = ± 2π

L (8, 6, 6), there
would be another diffraction peak. Though this happens
for the proton structure factor Sp(q), it does not for the
neutron structure factor Sn(q). This may be due to how
the bound neutrons move in the plates or the free neu-
trons move between them. Another important point is
that there does not seem to be any significant diffraction
peaks related to the holes in the plates. This is because at
kT = 1.0 MeV the shape and position of the holes is con-
stantly changing. This might not be true for that system
at lower temperature where the holes in the plates form a
two dimensional lattice. Also, it is likely that at slightly
higher temperatures than 1.0 MeV the diffraction peaks
disappear altogether as the systems does not have any
visible periodic structures within the simulation volume.

The structure factor of the Yp = 0.40 run exhibits sev-
eral prominent peaks, the largest one being near q =
0.34 fm−1. This peak has significant contribution from
four different orientations of q: q1 = ± 2π

L (5,−2,−1),

q2 = ± 2π
L (5,−2, 1), q3 = ± 2π

L (5, 2,−1) and q4 =

± 2π
L (5, 2, 1). The main contribution is from q1 while the
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other large contributions likely arise from the defects on
the pasta structure. In this case, due to the very low
number of free neutrons the diffraction peaks appear even
in the neutron structure factor at twice and thrice (not
shown) the value of q = 0.34 fm−1.
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FIG. 11: (Color online) Angle averaged structure factors
S(q) for (a) protons and (b) neutrons for simulations with
density n = 0.050 fm−3, temperature kT = 1.0 MeV, screen-
ing length λ = 10 fm and proton fractions Yp = 0.10, 0.20,
0.30 and 0.40.

Another comparison we make is between the structure
factors obtained for all of the Yp = 0.30 simulations dis-
cussed in Section III B. In our comparisons, see Figure 12,
we first note that finite size effects for the long wave-
length limit, q . 0.30, of both proton, Figure 12(a), and
neutron, Figure 12(b), structure factors seem to be well
constrained by our simulations. In this region the values
for the structure factors only depend on our choice of
screening length. On the other hand, for q & 0.40 all the
curves are very close to each other provided we ignore the
eventual diffraction peaks in the proton structure factors.
As discussed above there are no diffraction peaks for the
neutron structure factor for q & 0.40 for the Yp = 0.30
runs. Though we expect some differences in the structure
factors of different runs with different screening lengths
we also noted that the number of diffraction peaks and
their height and position still depend on the size of the
simulation. This implies that, as far as structure fac-
tors go, we may need even larger simulations in order to

accurately quantify the pattern of diffraction peaks.
In Table VI we tabulate properties of the diffraction

peaks such as their height, position and which orienta-
tions of q contribute the most and the least to the peak.
First we observe that in all runs the height of Sp(qmax) is
about 10±2% larger than Sn(qmax). Also, the main peak
positions are within 1% of each other for the λ = 10 fm
runs and 3% for the λ = 13.6 fm runs. However, while
the peak heights agree within 10% for the λ = 13.6 fm
runs there is a factor of 18 in height difference between
the 51 200 and 409 600 λ = 10 fm runs. The short peak
in the small run with λ = 10 fm screening length comes
from a strong cancellation between the first and second
terms in the right hand side of Equation (7) for the ori-
entation of q that contributes the most to the peak; see
the qmax column in Table VI. In fact, while in this run
both terms are within 10% of each other for both pro-
tons and neutrons, in the three other runs the first term
is a factor of 10 to 60 larger than the second (not ex-
plicitly shown). Finally, we note that the smallest con-
tribution to the peaks are often from orientations qmin

such that qmin ·qmax ' 0. The only run where this is not
the case is the 409 600 nucleon run with screening length
λ = 13.6 fm. However, even in this case the contribution
to Sn(q) and Sp(q) from the orientation orthogonal to
qmax, q′ = ± 2π

L (0, 10, 6), is of the same order of magni-
tude as the contribution from qmin: Sn(q′) = 5.7 fm and
Sp(q

′) = 6.2 fm.
There is a second range in momentum transfer q where

diffraction peaks appear for the proton structure factors.
These are located at approximately twice in momentum
transfer value as q of the largest peak. As before there
are also small differences in the number of peaks around
the largest peak and in their positions and magnitudes.

IV. CONCLUSIONS

Using the recently upgraded IUMD code and the
newly developed CubeMD we studied nuclear systems
at a density of n = 0.050 fm−3. First we discussed the
differences in topologies (Minkowski functionals) of four
51 200 nucleon simulations with different proton fractions
at a temperature of kT = 1.0 MeV. We observed that the
system with a proton fraction of Yp = 0.10 formed several
small deformed nuclei while the Yp = 0.20 system formed
elongated nuclei that resembled spaghetti. Meanwhile,
both the Yp = 0.30 and 0.40 systems formed network-
like structures that spread along the whole length of the
simulation volume. By calculating the radial distribution
function g(r) we observed that the lower the proton frac-
tion of the system the smaller were the long-range cor-
relations. We also noted that proton-proton correlations
gpp(r) exhibited oscillations around the asymptotic value
of gpp(r) much larger than the neutron-neutron gnn(r)
and neutron-proton gnp(r) correlations. Also, except for
the lowest proton fraction run, Yp = 0.10, all runs had
a similar qualitative behavior for the short-range corre-
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FIG. 12: (Color online) Angle averaged structure factors S(q) for (a) protons and (b) neutrons for simulations with 51 200
and 409 600 with density n = 0.050 fm−3, temperature kT = 1.0 MeV and proton fraction Yp = 0.30.

TABLE VI: Position qmax and heights, Sn(qmax) and Sp(qmax), of the highest diffraction peaks for the neutron and proton
structure factors and their statistical fluctuations for the Yp = 0.30 runs. Also shown are the degeneracy gq of qmax and the
orientations qmax and qmin of the largest and smallest contribution to the diffraction peak at qmax.

N λ qmax gq Sn(qmax) Sp(qmax) qmax Sn(qmax) Sp(qmax) qmin Sn(qmin) Sp(qmin)
(fm) (fm−1) (fm) (fm) (fm−1) (fm) (fm) (fm−1) (fm) (fm)

51 200 10.0 0.358 48 31.3(4.0) 34.8(5.6) ± 2π
L

(4, 4, 1) 440.6 476.0 ± 2π
L

(4,−4,−1) 3.8 4.1
51 200 13.6 0.374 30 377.5(34.5)411.1(48.1) ± 2π

L
(0, 6, 0) 5566.5 6053.0 ± 2π

L
(6, 0, 0) 4.4 4.7

409 600 10.0 0.354 144 570.6(3.8) 615.4(3.9) ± 2π
L

(2, 2, 11) 40175. 43266. ± 2π
L

(11,−2,−2) 4.7 5.1
409 600 13.6 0.363 48 403.8(5.6) 437.2(14.8)± 2π

L
(0, 10,−6) 9557.3 10162. ± 2π

L
(6,−6,−8) 4.9 5.4
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lations. When we examined the structure factor S(q) of
the four systems it became evident that the two systems
with lower proton fractions exhibited a liquid-like behav-
ior while the two higher proton fraction systems showed
diffraction peaks characteristic of periodic structures in-
side the simulations volume.

For systems of proton fraction Yp = 0.30 we first no-
ticed that the time it takes for the system to equilibrate
from a random initial configuration at a temperature of
1.0 MeV depended on system size (51 200 or 409 600) and
screening length (λ = 10.0 fm or λ = 13.6 fm) used. The
system that reached equilibrium fastest was the 51 200
nucleon run with λ = 13.6 fm screening length. It did
that in about 2 × 106 fm/c. On the other hand, it was
not clear whether the 409 600 system with λ = 10.0 fm
reached equilibrium after a 3×107 fm/c simulation time.
However, it was obvious that all Yp = 0.30 systems
were converging to the same phase, a stack of perfo-
rated parallel plates. Though the plates formed were
stable if the system was kept at a constant tempera-
tures kT . 1.0 MeV they quickly merged at slightly
higher temperatures, kT & 1.30 MeV. Also, while at
temperatures of kT ' 1.0 MeV the number, position
and shape of the holes were constantly changing. Once
the system was cooled to slightly lower temperatures,
kT . 0.75 MeV, their positions became approximately
fixed and their sizes and shapes were uniform, forming a
two dimensional hexagonal lattice. Similar phases have
been reported elsewhere in the literature for similar den-
sities and proton fractions, see for example the cross-rods
in Reference [20] and rod-2 phase in References [21, 23].
However, those simulations had much smaller simulation
volumes and, therefore, the two dimensional lattice struc-
ture formed by the perforations in the lattice may suffer
from significant finite-size effects.

Finally we obtained the structure factor for the Yp =
0.30 systems of different sizes and screening lengths. We
observed that the qualitative behavior of all structure
factors were about the same. At low momentum trans-
ferred q . 0.3 fm−1 the structure factors for both neu-
trons, Sn(q), and protons, Sp(q), depended mostly on
the screening length used and was almost independent
on the system sizes for our runs. This should be clear
since in our simulations the long range periodicity comes
from the long range repulsive Coulomb forces and, thus,
the distance between structures is highly dependent on

the strength of the repulsion. At intermediate momen-
tum transfer, 0.30 fm−1 . q . 0.40 fm−1 the structure
factors had large Bragg peaks caused by coherent scat-
tering from the periodic structures. Their positions and
magnitudes, as well as the vector q that contributed most
to the peak, was different for one run to the next. While
for the λ = 13.6 fm runs the magnitude of the peaks were
within 10% of each other and their positions differed by
about 3%, for the λ = 10.0 fm runs the peak positions
were within 1% of each other and their heights differed by
a factor of 18. At large momentum transfer, q & 0.4 fm−1

the curves of Sn(q) and Sp(q) had the same qualita-
tive behavior which was independent of the screening
length used in the simulation, though differences would
probably appear had the screening lengths been differ-
ent enough. The proton structure factor showed a sec-
ond range of peaks at about twice the value of the first
diffraction peaks.

Thus, we conclude that we are able to simulate nu-
cleon systems large enough and for enough time for them
to appear to equilibrate. We were able to demonstrate
with an independent method from others that there is
a stable phase of perforated plates for proton fraction
of Yp = 0.30 at density n = 0.050 fm−3 at low temper-
atures kT . 1.0 MeV. We also showed how to predict
qualitatively and quantitatively the diffraction peaks in
the structure factor that should affect heat and thermal
conductivities in a neutron star crust and the neutrino
opacities of supernovae.
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