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We investigate a novel method of accurate calculation of the neutrinoless double-β decay shell-
model nuclear matrix elements for the experimentally relevant case of 76Ge. We demonstrate that
with the new method the nuclear matrix elements have perfect convergence properties and, using
only the first 100 intermediate states of each spin, the matrix elements can be calculated with better
than 1% accuracy. Based on the analysis of neutrinoless double-β decays of 48Ca, 82Se, and 76Ge
isotopes, we propose a new method to estimate the optimal values of the average closure energies at
which the closure approximation gives the most accurate nuclear matrix elements. We also analyze
the nuclear matrix elements for the heavy-neutrino-exchange mechanism, and we show that our
method can be used to quench contributions from different intermediate spin states.

PACS numbers: 23.40.Bw, 21.60.Cs, 23.40.Hc, 14.60.Pq

Observation of neutrinoless double-β (0νββ ) decay
will have profound implications in modern physics. It will
prove that neutrino and antineutrino are identical parti-
cles (Majorana fermions), provide evidence for lepton-
number violation, and help to determine the absolute
scale of neutrino masses. In other words, it will change
our understanding of Nature significantly.
In this Rapid Communication, we analyze the

0νββ decay of 76Ge in a shell-model approach. From
an experimental point of view, 76Ge is one of the
most promising and important 0νββ decay candidates.
The most sensitive limits on 0νββ -decay half-lives have
been obtained from germanium-based experiments: the
Heidelberg-Moscow experiment [1], the International
Germanium experiment [2], and the GERDA-I experi-
ment [3]. 76Ge is the only isotope for which an observa-
tional claim has been made (though it was not accepted
by the double-beta decay community) [4, 5]. GERDA-
II [6] and MAJORANA DEMONSTRATOR [7], the sec-
ond generation of the germanium-based experiments, are
in progress.
Interpretation of the experimental results and plan-

ning of new experiments require an accurate analysis of
the 0νββ decay process and the corresponding nuclear
matrix elements (NME). Various theoretical models have
been used for the NME calculations, including the Quasi-
particle Random Phase Approximation (QRPA) [8–10],
the Interacting Shell Model (ISM) [11, 12], the Interact-
ing Boson Model (IBM-2) [13], the Generator Coordinate
Method (GCM) [14], and the Projected Hartree-Fock Bo-
goliubov model (PHFB) [15].
A 0νββ decay process can be presented as a transition

from the ground state of an initial nucleus to an arbi-
trary state of the intermediate nucleus and then tran-
sition to the ground state of the final nucleus. In an
exact approach one needs to calculate all the intermedi-
ate states which can be a very demanding task. To avoid
this computational challenge the closure approximation
is usually introduced [16]. In the closure approximation
the energies of the intermediate states are replaced with
a constant value (closure energy), which allows the use
of completeness to remove the sum over the intermedi-

ate states so that no information about the intermediate
states is required.

In this Rapid Communication, we present calculations
of the NME for 0νββ decay of 76Ge in the shell-model
approach beyond closure approximation. Going beyond
closure requires knowledge of a large number of the in-
termediate nuclear states. In the case of 76Ge, the in-
termediate nucleus 76As, being considered in a realistic
model space, has about 1.5 × 108 states. Shell-model
calculations for such a large number of nuclear states
are practically impossible. To avoid the unmanageable
computational costs, we use the mixed method [17, 18]
in which the intermediate states are ordered according
to their energies and a state cutoff parameter N is intro-
duced, so that all the intermediate states below the cutoff
parameter are taken into account exactly, i.e. in a non-
closure manner. The states which are above the cutoff
are included within the closure approximation. Defined
in such a way, the mixed NME depend on both the state
cutoff parameter N and the closure energy. The mixed
method was carefully tested on the fictitious cases of 44Ca
and 46Ca, where all the intermediate states can be ob-
tained, and then on the realistic case of 48Ca, where it is
possible to get the first 500 intermediate states for each
spin and parity Jπ [17]. It was shown that the mixed
NME converge much faster with increasing the state cut-
off parameter N compared to the nonclosure matrix ele-
ments. It was also shown that the mixed NME have very
weak dependence on the closure energy, which makes this
method more accurate compared to the closure approxi-
mation. Finally, the mixed method was successfully used
to calculate the 0νββ decay of 82Se where the first 250
intermediate states for each Jπ were calculated [18]. It
was shown that in order to achieve a 1% accuracy in the
0νββNME it is possible to consider only a small number
of intermediate states: one needs about 20 intermedi-
ate states for each Jπ for the 0νββ decay of 48Ca and
about 60 states for the 0νββ decay of 82Se, while the
corresponding total number of the intermediate states
for these cases are about 105 and 107. For 76Ge, about
100 intermediate states of nucleus 76As for each Jπ is
required to provide a 1% accuracy for the 0νββmatrix
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elements. In calculations we use the shell model code
NuShellX@MSU [19], the jj44 model space, which con-
sist of the nucleus 56Ni as a core and the f5/2, p3/2, p1/2,
and g9/2 single-particles orbitals, and the JUN45 effective
interaction [20].
We demonstrate that the mixed method allows us to

obtain practically exact values for the 0νββ NME in the
sense of going beyond the closure approximation. There
are still uncertainties associated, for example, with the
way the shell model treats the short-range correlations
(SRC), the restriction of the model space, and the ef-
fective interaction. However, since we know the exact
(beyond closure) NME we can compare them with the
closure NME and find optimal values for the average clo-
sure energies at which the closure approximation provides
the most accurate NME. We have also calculated the op-
timal closure energies for the 0νββ decays of 48Ca, 82Se,
and 76Ge isotopes. One can expect a 7-10% growth in
the absolute values of the closure NME using our opti-
mal closure energies instead of the commonly accepted
ones [21]. We also discuss contributions of the heavy
neutrino-exchange mechanism to the 0νββ decay rate of
76Ge [8, 11, 22].
Assuming the light neutrino-exchange mechanism, the

decay rate of a 0νββ decay process can be written as [8]

[

T 0ν
1/2

]−1

= G0ν |M0ν |2
(

〈mββ〉

me

)2

, (1)

where G0ν is the phase-space factor [23], M0ν is the nu-
clear matrix element, me is the electron mass, and 〈mββ〉
is the effective neutrino mass, which depends on the neu-
trino masses mk and the elements of neutrino mixing
matrix Uek [8]. The nuclear matrix element M0ν is usu-
ally presented as a sum of three terms: Gamow-Teller
(M0ν

GT ), Fermi (M0ν
F ), and tensor (M0ν

T ) nuclear matrix
elements (see, for example, Refs. [17, 18, 24]).
In the case of 0νββ decay of 76Ge, the matrix elements

can be presented as an amplitude for the transitional
process where the ground state |i〉 of the initial nucleus
76Ge changes into an intermediate state |κ〉 of the nucleus
76As and then to the ground state |f〉 of the final nucleus
76Se,

M0ν
α =

∑

κ

∑

1234

〈13|Oα|24〉〈f |ĉ
†
3ĉ4|κ〉〈κ|ĉ

†
1ĉ2|i〉. (2)

Here the sum over κ spans all the intermediate states
|κ〉, indices 1,2,3, and 4 correspond to the single-particle
quantum numbers, label α describes different terms in
the total NME (1): Gamow-Teller (α = GT ), Fermi (α =
F ), and tensor (α = T ). The operators Oα carry all the
details of a 0νββ decay process, they explicitly depend on
the intermediate-state energy Eκ, Oα = Oα(E0 + Eκ),
through the energy denominators in perturbation the-
ory. The actual form of the Oα operators can be found
in Ref. [17]. Here, we would like only to emphasize
the energy dependence of these operators. The constant
E0 =

[

Egs(
76As)− Egs(

76Ge)
]

Qββ/2 ≈ 1.943 MeV.

Exact calculation of the NME (2) can be problem-
atic due to the sum over a large number of intermediate
states. One way to proceed in this situation 5of states of
each Jπ, is to use the closure approximation, in which the
energies of intermediate states are replaced by a constant
value so that Oα(E0 +Eκ) → Õα ≡ Oα(〈E〉), where 〈E〉
is the closure energy. Values of 〈E〉 from Ref. [21] are
frequently used.
To go beyond the closure approximation, a nonclosure

approach can be considered. In this approach, the sum
over intermediate states κ in Eq. (2) is restricted by a
finite cutoff parameter N . Success of the nonlcosure ap-
proach is defined by the convergence properties of NME
as a function of N . The nonclosure approach cannot be
directly used for the heavier cases, such as 0νββ decay of
82Se and 76Ge, where only a few hundred intermediate
states of each spin J can be calculated.
In themixedmethod, the intermediate states below the

cutoff parameter N are taken into account within the
nonclosure approach, while the states above the N are
included within the closure approach. For more details
see Refs. [17, 18].
The nonclosure approach allows us to calculate the

0νββ decay NME for fixed spin and parity Jπ of the in-
termediate states |κ〉,

M0ν
α (J) =

∑

κ, Jκ=J

〈13|Oα|24〉〈f |ĉ
†
3ĉ4|κ〉〈κ|ĉ

†
1ĉ2|i〉, (3)

where the sum over κ spans all the intermediate states
with given spin and parity Jπ. This J decomposition can
be obtained only within a nonclosure approach.
We also analyze the nuclear matrix elements for

the right-handed heavy-neutrino exchange mechanism,
whose corresponding contribution to the total decay rate
can be written as

[

T 0ν
1/2

]−1

heavy
= G0ν |M0ν

N |2|ηNR|
2, (4)

where the heavy neutrino-exchange matrix elements M0ν
N

have the structure similar to the light neutrino-exchange
NME, while the parameter ηNR depends on the heavy
neutrino masses (for more details see, for example,
Ref. [11]). One difference between the heavy and
light neutrino-exchange mechanisms is that the heavy
neutrino-exchange NME do not depend on the energy
of intermediate states. Thus for the heavy neutrino-
exchange mechanism the closure approach provides the
exact matrix elements.
First, we studied the convergence properties of the

0νββ decay NME of 76Ge. N = 100 is the maximum
number of states we are able to calculate in 76As with an
computational effort of about 500000 CPU × hour. In
the mixed method, the states above the cutoff parameter
N are included within the closure approximation which
makes the mixed NME dependent on the closure energy
〈E〉. However this dependence is not strong. For N =0
(the closure approximation), it results in a 10% uncer-
tainty in the total NME [24]. When the cutoff parameter
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FIG. 1: Dependence of mixed NME (light-neutrino exchange)
on the cutoff parameter N calculated for different average
closure energies 〈E〉. The main panel: 〈E〉 = 2 MeV (solid
curve), 〈E〉 = 3.4 MeV (dash-dotted curve), 〈E〉 = 7 MeV
(dashed curve), and 〈E〉 = 10 MeV (dotted curve). The in-
sert shows the uncertainty in the value of mixed NME corre-
sponding to the shaded area from the main panel.
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FIG. 2: J decomposition: contributions of the intermediate
states |κ〉 with certain spin and parity Jπ to the nonclosure
Gamow-Teller (dark colors) and Fermi (light colors) matrix el-
ements for the 0νββ decay of 76Ge (light-neutrino exchange).
Solid black and white bars correspond to the positive-parity
states, while shaded bars represent the states with negative
parity. The CD-Bonn SRC parametrization was used.

increases this dependence weakens relatively fast. Fig-
ure 1 shows the convergence properties of the mixed NME
in an enhanced form and how these properties change
when the closure energy varies. The solid, dash-dotted,
dashed, and dotted lines in the figure present the mixed
NME calculated with 〈E〉 equals to 2, 3.4, 7, and 10
MeV, respectively. If we restrict the range of possible
closure energies to be from 3.4 MeV to 7.0 MeV (which
is quite reasonable since one curve approaches the final
NME from above and the other approaches it from below,
so the true NME should be confined somewhere in be-

tween) then the corresponding shaded area on the main
panel gives us the uncertainty in the mixed NME. We
can see how the uncertainty goes down when the cutoff
parameter N increases. The corresponding relative error
in the mixed matrix elements is presented by the insert
in Figure 1. It shows that it is sufficient to use only the
first 100 nuclear states for each Jπ of 76As to obtain the
0νββ decay NME of 76Ge within a 1% accuracy.

Figure 2 presents the J decomposition (see Eq. (3)) of
the nonclosure NME. All the Gamow-Teller matrix ele-
ments are positive and all the Fermi matrix elements are
negative. If we neglect the tensor NME (which are actu-
ally small), then the total height of each bar corresponds
to the total nuclear matrix element calculated for each
spin J in Eq. (3). We can see that all the spins con-
tribute coherently to the total NME. The contribution
of J = 1 is dominating, but it provides only about 30%
of the total value. If we include only the J = 1 inter-
mediate states then we will lose about 70% of the total
matrix element and about 91% of the decay rate. Table I
summarizes the results for the light-neutrino-exchange
NME 0νββ decay of 76Ge calculated for different SRC
parametrization sets [24]. The mixed total matrix ele-
ment is about 7% percent greater than the total closure
NME. This increase is consistent with similar calcula-
tions [17, 18, 25].

TABLE I: Mixed and closure (the last column) NME for
the 0νββ decay of 76Ge (light-neutrino exchange) calculated
with different SRC parametrizations schemes [24]. The clo-
sure NME were calculated for a standard closure energy of
〈E〉 = 9.41 MeV [21].

SRC M0ν

GT M0ν

F M0ν

T M0ν

total M0ν

closure

None 3.06 -0.63 -0.01 3.45 3.24

Miller-Spencer 2.45 -0.44 -0.01 2.72 2.55

CD-Bonn 3.15 -0.67 -0.01 3.57 3.35

AV18 2.98 -0.62 -0.01 3.37 3.15

It should be noted that the jj44 model space is incom-
plete because the f7/2 and g7/2 orbitals are missing. As a
result the Ikeda sum rule is not satisfied and some contri-
butions from the Gamow-Teller NME with Jπ =6+, 8+

and from the Fermi NME Jπ=1− are missing. Looking
at Fig. 2, it seems safe to suggest that the missing con-
tributions are not very large. However, this deficiency
is reflected in the two-neutrino NME, which requires a
quenching factor of about 0.64, smaller than the usual
0.74, to describe the experimental data (see also Table 2
of Ref. [26]). Although the spin-isospin operators enter-
ing the 0νββ decay NME are different from pure Gamow-
Teller, some authors (see e.g. Ref. [27]) advocate using
appropriate quenching factors for contributions coming
from different spins of the intermediate states. The most
important are those from Jπ = 1+ states, which repre-
sent about 30% of the total NME, and from Jπ = 2−

states [27], which represents about 15% of the total NME.
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It would be interesting to investigate whether quench-
ing factors obtained from other processes, such as 2νββ
decay and charge-exchange reactions, quench the corre-
sponding contributions to the 0νββ decay NME. For ex-
ample, if one uses a quenching factor of 0.642 for the
contribution from the Jπ = 1+ states and 0.402 for the
contribution of the Jπ = 2− [27], one gets for CD-Bonn
SRC a NME of 2.369 rather than 3.572 (see Table I). One
can view this as a lower limit NME within our approach.

Since we can calculate both the beyond-closure NME
and the closure NME, it is possible to find such optimal
values for the closure energies at which the closure ap-
proach provides the most accurate NME (see e.g. the
lines crossing on Fig. 5 of Ref. [18]). One interesting ob-
servation is that the optimal energies calculated for the
0νββ decay of 82Se [18] and 76Ge with the same JUN45
effective interaction and the same jj44 model space prac-
tically coincide: they both equal about 〈E〉 ≈ 3.5 MeV,
although the two cases describe quite different nuclei. It
would then be interesting to find a method to estimate
the optimal closure energies rather then using estimates
from other methods, such as those of Ref. [21]. Fig-
ure 3 presents the optimal closure energies calculated for
the fictitious 0νββ decays of 44Ca (diamonds) and 46Ca
(squares) and for the realistic 0νββ decays of 48Ca (cir-
cles), 76Ge (triangle up), and 82Se (triangle down). All
calcium isotopes were calculated in the pf model space
using several realistic interactions. The 76Ge and 82Se
isotopes were considered in the same jj44 model space
and with the same JUN45 interaction. The optimal clo-
sure energies are significantly lower than the standard
closure energies (7.72 MeV for Ca, 9.41 MeV for Ge MeV
and 10.08 for Se [21]), which explains a 7–10% growth in
absolute values of the nonclosure NME compared to the
closure values. We conjecture that the optimal energies
depend on the effective interaction and possibly on the
model space. We found the optimal closure energies for
the three different interactions in the pf model space:
GXPF1A [28], FPD6 [29], and KB3G [30]. However, it
seems that the energies do not depend much on the spe-
cific nucleus: all the calcium isotopes calculated with the
same interaction, and both 76Ge and 82Se isotopes cal-
culated with the same model space and with the same
interaction give similar optimal closure energies. This
opens an interesting opportunity: one could calculate the
optimal closure energy in a realistic model space with
an effective interaction for a nearby less computation-
ally demanding isotope (for example, 44Ca), after which
one can use it for the realistic case (for example, 48Ca).
This scheme offers a consistent way of “calculating” the
closure energies that has never been discussed before.

We also calculated the heavy-neutrino-exchange mech-
anism NME (see e.g. Ref. [11] for more details) for the
0νββ of 76Ge, and we get a value of 202 for CD-Bonn
SRC and 126 for AV18 SRC. Their Jπ decompositions
will be published elsewhere [31].

Summarizing, we calculated the 0νββ decay NME of
76Ge using for the first time a realistic shell-model ap-
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FIG. 3: Optimal closure energies 〈E〉 calculated for differ-
ent isotopes and effective interactions: fictitious 0νββ decays
44Ca (diamonds) and 46Ca (squares) and real decays 48Ca
(circles), 76Ge (triangle up), and 82Se (triangle down). The
different effective interactions considered are: GXPF1A,
FPD6, KB3G for Ca and JUN45 for Ge and Se isotopes.

proach beyond closure approximation. We demonstrated
that the mixed NME converge very fast compared to the
nonclosure matrix elements and we found a 7-10% in-
crease in the total NME compared to the closure values.

For the light-neutrino-exchange mechanism we predict
M0ν=3.5±0.1 for 0νββ decay of 76Ge, where the average
value and the error were estimated considering the NME
calculated with CD-Bonn and AV18 SRC parametriza-
tion sets. These values should be compared with the
corresponding calculations performed within different
approaches: 2.96 (ISM-1 [32]), 3.77 (ISM-2 [34]), 4.6
(EDF [14]), 2.28-4.17 (QRPA-Jy [33]), and 5.42 (IBM-
2 [13]). For the heavy-neutrino-exchange NME for 76Ge,
we get a value of 202 for CD-Bonn SRC and 126 for
AV18 SRC. The corresponding QRPA results are 412 and
265 [8], and the IBM-2 results are 163 and 107 [13].

We proposed a new method of calculating the optimal
closure energies at which the closure approach gives the
most accurate NME. We argue that these optimal clo-
sure energies depend on the interaction and model space
and have a weak dependence on the actual isotopes. It
offers the opportunity to estimate the beyond closure
0νββNME without actually calculating the intermediate
states.

We calculated for the first time a decomposition of the
shell-model NME in light- and heavy-neutrino-exchange
mechanisms for different spins of intermediate states. We
found that for the light-neutrino exchange NME the con-
tribution of the Jπ=1+ states is about 30% and that of
the Jπ = 2− states is about 15%. The shell-model J
decomposition that we obtained provides a unique op-
portunity to selectively quench different contributions to
the total NME, which in the case of 76Ge could lead to
a decrease of the total matrix elements by about 30%.
Although the QRPA approach can provide a J decom-
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position, its methodology of choosing the gpp parameter
to describe the 2νββ half-life [25] makes the selective
quenching ambiguous.
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