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Abstract

We construct a model of baryon diffusion which has the desired properties of causality and

analyticity. The model also has the desired property of colored noise, meaning that the noise

correlation function is not a Dirac delta function in space and time; rather, it depends on multiple

time and length constants. The model can readily be incorporated in 3+1 dimensional second

order viscous hydro-dynamical models of heavy ion collisions, which is particularly important at

beam energies where the baryon density is large.
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I. INTRODUCTION

The fluctuation-dissipation theorem requires all dynamical systems in or near thermal

equilibrium to experience noise. Hydrodynamical fluctuations in non-relativistic viscous

fluids have been understood for some time [1]. Fluctuations can be especially important in

small systems, such as in ordinary liquids whose dimensions are on the order of nanometers

[2, 3].

Hydrodynamics is a state of the art tool to describe high energy heavy ion collisions where

relativity is crucial. In these collisions the dimensions are on the order of 5 to 15 fm, and so

hydrodynamical fluctuations ought to be important. Noise in relativistic hydrodynamics was

worked out in ref. [4] and applied to the ubiquitous Bjorken model. It was found that noise

contributes to two-particle correlations, resulting in a ridge-like structure in rapidity. These

and analogous two-particle correlations in azimuth might be a way to obtain an independent

measurement of the shear and bulk viscosites. It might also be a way to infer the thermal

conductivity and the existence of a critical point in the QCD phase diagram [5].

Fluctuating hydrodynamics encounters a singularity which is not encountered in noiseless

hydrodynamics [6]. This singularity can be easily understood: the autocorrelation function

of the noise in the energy-momentum tensor, 〈Ξµν(x, t)Ξρσ(x′, t′)〉, is proportional to a four-

dimensional Dirac delta function. This is white noise in frequency and momentum space. It

means that the integrated noise in a cell of space-time volume ∆V∆t has a root-mean-square

proportional to
√

∆V∆t. As a consequence, the average value of the noise in this cell diverges

as the discretization in space and time is made small, being proportional to 1/
√

∆V∆t.

Such a divergence leads to large gradients which call the gradient expansion at the heart

of hydrodynamics into question. Specifically, simulations of heavy-ion collisions which exist

at the lower limit in size of systems describable with hydrodynamics are severely limited

in resolution when thermal noise is included in the most straightforward way. Treating

hydrodynamic fluctuations as a perturbation solves the problem of this divergence on a

practical level, and indeed that is what is done analytically in [4] and [5]. However, the

question of what this divergence implies for a maximum resolving power of hydrodynamics

remains.

Reference [6] also determined the thermal noise in second-order viscous hydrodynam-

ics in the Israel-Stewart formalism [7]; a similar approach is also taken in [8]. The au-
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tocorrelation function of the noise is smoothened in time by the relaxation time τπ, a

second-order transport coefficient, so that the autocorrelation function is proportional to

δ3(x − x′) e−|t−t
′|/τπ . This established the shape of thermal noise in music [9], a numerical

hydrodynamical code which implements the Israel-Stewart formalism. Unfortunately there

is still a three-dimensional spatial delta function so the problem remains.

The goal of this paper is to focus on the general problem of baryon number diffusion,

fluctuation, and noise with potential applications to heavy ion collisions. This is very relevant

to past and future experiments of beam energy scans (BES) at the Relativistic Heavy Ion

Collider (RHIC), at the Facility for Antiproton and Ion Research (FAIR), at the SPS Heavy

Ion and Neutrino Experiment (SHINE), and at the Nuclotron-based Ion Collider Facility

(NICA). Our work is applicable to any conserved current and can readily be generalized to

include more than one conserved charge, such as electric charge and isospin.

Diffusion of a conserved charge, such as baryon number, is distinct from but closely

related to heat diffusion. As was known already by Maxwell in the 19th century, the diffusion

equation for heat propagates a signal at infinite speed, which is unphysical even apart from

relativity. Maxwell did not consider this a problem of practical concern for experiments of

the day; see ref. [10] for a history of this issue.

The outline of our paper is as follows. In sect. II we consider the baryon diffusion equation

and its generalization in successive powers of derivatives in space and time. These lead to the

Cattaneo equation [11] and to the Gurtin-Pipkin equation [12], both of which were proposed

as models of heat conduction, not baryon diffusion. We show how these relate to the baryon

density response function, to baryon density fluctuations, and to baryon noise. In sects.

III, IV and V we show how these general considerations apply to the conventional diffusion

equation, to the Cattaneo equation, and to the Gurtin-Pipkin equation, respectively.

We find that both the Cattaneo and Gurtin-Pipkin approaches lead to finite speed of

propagation for the baryon density autocorrelation function. However, only the Gurtin-

Pipkin approach leads to smeared out correlations in space and time for the noise, and thus

is preferable for modeling high energy nuclear collisions. Our conclusions are presented in

sect. VI.
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II. GENERAL CONSIDERATIONS

In this section we outline three approaches to the problem of baryon diffusion with succes-

sively increasing number of space and time derivatives. Detailed calculations of the response

function, fluctuations, and noise for each approach are considered in subsequent sections.

The Landau-Lifshitz approach is the most commonly used one for high energy heavy ion

collisions. In this approach uµ is defined to be the velocity of energy transport, whereas in

the Eckart approach it is defined to be the velocity of baryon transport. The Landau-Lifshitz

approach is favored because the baryon density is small in comparison to the energy and

entropy densities, sometimes making the definition of flow velocity in the Eckart approach

problematic. The baryon current takes the form

Jµ = nuµ + ∆Jµ (1)

where n is the proper local baryon density and ∆Jµ is the dissipative part. This modification

to the current must satisfy uµ∆Jµ = 0 in order that n represent the proper baryon density.

In first order viscous fluid dynamics ∆Jµ takes the form

∆Jµ = σT∆µ (βµ) , (2)

where β = 1/T , µ is the chemical potential, σ is the baryon conductivity and

∆µ = ∂µ − uµ (u · ∂) (3)

is a derivative normal to uµ. For baryon diffusion in a system with no energy flow one

obtains the usual diffusion equation [
∂

∂t
−D∇2

]
n = 0 (4)

where the diffusion constant and baryon conductivity are related by σ = D(∂n/∂µ). As

is well known [10, 13], the diffusion equation results in instantaneous transport and is not

suitable for numerical hydrodynamic simulations of high energy heavy ion collisions.

It has been suggested to replace the usual diffusion equation by the second order hyper-

bolic equation [
∂

∂t
−D∇2 + τ

∂2

∂t2

]
n = 0 (5)
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which involves a characteristic time scale τ . This equation is also recognized as the telegraph

equation. It’s application to heat transport is generally attributed to Cattaneo [11] (although

Maxwell did consider the second order time derivative but dropped it on the grounds that

it is irrelevant in practice [10]). It arises from a modification to the dissipative part of the

current in the form

∆Jµ = D∆µ 1

1 + τ(u · ∂)
n ≡ D∆µ

∞∑
l=0

[−τ(u · ∂)]l n (6)

which is of infinite order in time derivatives (in the local rest frame). At high frequency,

waves travel with speed v0 =
√
D/τ . Although this description leads to a baryon density

response function that has the required features of causality and analyticity, it does not lead

to a noise correlator which has a finite correlation length as we shall see later.

Going to the third order in derivatives results in an equation first applied to the problem

of heat conduction by Gurtin and Pipkin.[
∂

∂t
−D∇2 + τ1

∂2

∂t2
+ τ 22

∂3

∂t3
− τ ′3D

∂

∂t
∇2

]
n = 0 (7)

(The reason for the prime will become apparent.) This equation is also hyperbolic. High

frequency waves travel with speed v0 =
√
τ ′3D/τ

2
2 . This equation follows from the dissipative

current

∆Jµ = D∆µ 1 + τ4(u · ∂)

1 + τ1(u · ∂) + τ 22 (u · ∂)2 + τ3D∆2
n (8)

where again the differential operator in the denominator is to be understood as its Taylor

series expansion. Note that there are four time constants in the current as τ ′3 = τ3 + τ4.

Obviously, setting τ2 = τ3 = τ4 = 0 results in the Cattaneo equation, and further setting

τ1 = 0 results in the ordinary diffusion equation. Setting only τ2 = 0 results in a differential

equation of the Jeffrey’s type, but it is not hyperbolic and will not be considered here.

Suppose that the chemical potential is varied by an amount δµ by some external source.

This results in a change in energy δH =
∫
d3xn δµ. The current then satisfies the equation

∂µJ
µ =

(
∂n

∂µ

)
∂δµ

∂t
(9)

Let a thermodynamic quantity in frequency and wavenumber space be denoted with a tilde,

and let δn denote the deviation from the uniform background density. Then, in Fourier

space [
−iω +

Dk2(1− iτ4ω)

1− iτ1ω − τ 22ω2 + τ3Dk2

]
δn = −i

(
∂n

∂µ

)
ωδµ (10)
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The response function for δñ comes from the ratio of the terms above, namely

GR(ω,k) =

(
∂n

∂µ

)
ω

A(ω,k)
(11)

where

A(ω,k) ≡ ω +
iDk2(1− iτ4ω)

1− iτ1ω − τ 22ω2 + τ3Dk2
. (12)

The autocorrelation function is

〈δnδn(ω,k)〉 = −2T

ω
Im {GR} = 2T

(
∂n

∂µ

)
Im {A}
|A|2

= iT

(
∂n

∂µ

)(
1

A
− 1

A∗

)
(13)

Note that both the response function and the autocorrelation function for the baryon density

will generally have poles at the zeroes of A(ω,k) and A∗(ω,k), depending on the values of

the parameters.

Now let us consider the autocorrelation function for the noise. From current conservation

∂µJ
µ
total = 0, where Jµtotal = Jµ + Iµ, Jµ = nuµ + ∆Jµ, ∆Jµ is the dissipative part, and Iµ is

the noisy part, we have

〈∂µJµ(x, t)∂νJ
ν(0, 0)〉 = 〈∂µIµ(x, t)∂νI

ν(0, 0)〉 (14)

We work in the rest from of the fluid, u0 = 1, ui = 0. The Cartesian components of the

noise current are independent so that

〈
I i(x, t)Ij(0,0)

〉
= 1

3

〈
I l(x, t)I l(0,0)

〉
δij (15)

After Fourier transforming we have

1
3
k2〈I lI l(k, ω)〉 = A(ω,k)A∗(ω,k)〈δnδn(k, ω〉 = −iT

(
∂n

∂µ

)
(A− A∗) (16)

The noise correlator has the same singularities as A−A∗, whereas the baryon autocorrelation

function has singularities at the zeroes of A and A∗.

III. ORDINARY DIFFUSION EQUATION

For the ordinary diffusion equation

A = ω + iDk2 (17)

6



The response function

GR =

(
∂n

∂µ

)
ω

ω + iDk2
(18)

has a simple pole in the lower half plane and is analytic in the upper half plane. Therefore,

it is causal in the sense that if a disturbance occurs at t = 0, there is no response at negative

times. The baryon autocorrelation function in time and wavenumber space is

〈δnδn(t,k)〉 = T

(
∂n

∂µ

)
e−Dk

2t (19)

In time and coordinate space it is

〈δnδn(t,x)〉 = T

(
∂n

∂µ

)(
1

4πDt

)3/2

e−r
2/4Dt (20)

Thus, although it is causal in the sense mentioned before, baryon diffusion happens with

infinite speed of propagation.

In frequency and wavenumber space the noise correlator is just a constant.

1
3
〈I lI l(k, ω)〉 = 2σT (21)

In time and coordinate space it is

〈I iIj(t,x)〉 = 2σTδ(x) δ(t) δij (22)

This is identical to the result obtained in [4].

IV. CATTANEO EQUATION

To obtain the Cattaneo equation means setting τ2 = τ3 = τ4 = 0. Hereafter in this

section we shall relabel τ1 as τD.

Now

A = ω +
iDk2

1− iτDω
(23)

and the response function can be written as

GR =

(
∂n

∂µ

)
ω(ω + i/τD)

(ω − ω+)(ω − ω−)
(24)

Here

ω± = − i

2τD
± iδk

2τD

δk =
√

1− 4τDDk2 ≤ 1 (25)
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when k ≤ kc ≡ 1/2
√
τDD, and

ω± = − i

2τD
± εk

2τD

εk =
√

4τDDk2 − 1 ≥ 0 (26)

when k > kc. The fact that GR is analytic in the upper half-plane is a consequence of

analyticity.

The group velocity is only defined when k > kc. It is

vg(k) =
1

2τD

∂εk
∂k

=
2Dk√

4τDDk2 − 1
(27)

which goes to v0 ≡
√
D/τD as k →∞. This means that τD > D if the group velocity is not

to exceed the speed of light in the ultraviolet. The fact that the group velocity exceeds the

speed of light for a finite range of k is not a problem. Recall that the group velocity arises

from a Taylor series expansion around the centroid of a wave packet. The interpretation of

dω/dk as the propagation of a signal is predicated on the assumption that d2ω/dk2 is small.

That assumption is violated in the vicinity of kc where vg(k) > 1. See ref. [14].

A. Baryon correlation function

The equal-time autocorrelation function for density perturbations is

〈δnδn(0,x)〉 = −2T

(
∂n

∂µ

)∫
d3k

(2π)3
eik·x Im

∫
dω

2π

ω + i/τD
(ω − ω+)(ω − ω−)

= 2T

(
∂n

∂µ

)
δ(x) (28)

which is independent of D and τD. This is just the usual thermal average, as it must be.

Now let’s consider the autocorrelation function for positive time t > 0. The Fourier

transform is ∫ ∞
−∞

dω

2π
e−iωt〈δnδn(ω,k)〉 = T

(
∂n

∂µ

)
e−t/2τDS(k, t) (29)

where

S(k, t) =


cosh

(
δkt

2τD

)
+

1

δk
sinh

(
δkt

2τD

)
if k ≤ kc

cos

(
εkt

2τD

)
+

1

εk
sin

(
εkt

2τD

)
if k ≥ kc

(30)

which is an even, analytic function of k. Fourier transforming in space gives∫
d3kdω

(2π)4
ei(k·x−ωt)〈δnδn(ω,k)〉 =

T

2π2r

(
∂n

∂µ

)
e−t/2τD

∫ ∞
0

dk k sin(kr)S(k, t) (31)
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Due to the symmetry of the integrand in eq. (31) the integral can also be written as

1

2i

∫ ∞
−∞

dk keikrS(k, t)

For large k the integrand behaves as eik(r±v0t) so if r > v0t one can add a semi-circular contour

in the upper half-plane and apply the residue theorem to show that the autocorrelator

vanishes. This is a manifestation of causality.

To display some numerical results it is useful to use the dimensionless variables t̂ = t/2τD,

r̂ = r/2
√
τDD, and k̂ = 2

√
τDDk. Removing all the unimportant prefactors

〈δnδn(t,x)〉 =
1

16π2

(
∂n

∂µ

)
T√
τ 3DD

3
f(r̂, t̂) (32)

where

f(r̂, t̂) =
e−t̂

r̂

∫ ∞
0

dk̂ k̂ sin(k̂r̂)S(k̂, t̂) (33)

This illustrates that the characteristic length scale is
√
τDD while the charactersitic time

scale is τD; unsurprisingly, they are related by
√
τDD = v0τD.

Hidden within the integral are singularities at the point r̂ = t̂. These may readily be

extracted by expanding the integrand up to and including the order 1/k̂ for large k̂. This is

k̂S(k̂, t̂)→
[
1 +

t̂

2

]
sin(k̂t̂) +

[
k̂ − (4 + t̂)t̂

8k̂

]
cos(k̂t̂) (34)

These terms contribute to f as

π

2

e−t̂

r̂

[(
1 +

t̂

2

)
δ(r̂ − t̂)− δ′(r̂ − t̂)− (4 + t̂)t̂

8
θ(r̂ − t̂)

]
The terms involving the Dirac delta function and its first derivative comprise the singular

part fsing. The terms in (34) are subtracted from the integrand of (33) to yield an integral

which is easily computed numerically; when the step function is added they together com-

prise the regular part. (This procedure avoids the Gibbs phenomenon when representing

the step function with a Fourier series.) Some sample curves are shown in Figure 1. Indeed

f(r̂ > t̂) = 0. The appearance of the Dirac delta function and its derivative, followed by a

diffusion wake, is very similar to what was found for a different response function in [4].

The conventional diffusion result is recovered in the limit that r is held fixed and t� τD.

Looking back at eqs. (29) and (30) it is apparent that in this limit the autocorrelation

function is dominated by those values of k which maximize δk, namely, k � kc. Then

S(k, t)→ et/2τD e−Dk
2t (35)

which, together with eq. (29), leads to the convential result of eq. (19).
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FIG. 1: The regular part of the dimensionless baryon correlator freg(r̂, t̂) for the Cattaneo equation.

The correlator is shown for t̂ = 0.5 (dashed line), t̂ = 1 (solid line), and t̂ = 1.5 (dotted line).

B. Noise

In frequency and wavenumber space the noise correlator is

1
3
〈I lI l(k, ω)〉 =

2σT

1 + (τDω)2
(36)

In time and coordinate space it is

〈I iIj(t,x)〉 =
σT

τD
δ(x) e−|t|/τD δij (37)

Thus, noise decays exponentially in time but is still a Dirac delta function in space. In the

limit that τD → 0, eq. (37) goes to eq. (22).

V. GURTIN-PIPKIN EQUATION

Now we keep all four τi nonzero. We will generally assume that D, τ1, τ
2
2 , τ3, and τ ′3 are

all positive. The function A is given by eq. (12). Giving it a common denominator results

in the form

A =
ω − iτ1ω2 − τ 22ω3 + iDk2 + τ ′3Dk

2ω

1− iτ1ω − τ 22ω2 + τ3Dk2
(38)

10



The poles of the response function GR are given as the solutions of the cubic equation

ω3 + i
τ1
τ 22
ω2 −

(
1 + τ ′3Dk

2

τ 22

)
ω − iDk

2

τ 22
= 0 (39)

The solutions may be expressed as follows.

ω1 =

√
3

2
(R+ +R−)− i

2
(R+ −R−)− iτ1

3τ 22

ω2 = −
√

3

2
(R+ +R−)− i

2
(R+ −R−)− iτ1

3τ 22

ω3 = i (R+ −R−)− iτ1
3τ 22

(40)

Here

R± =

[
1

2

(√
Q2 + 4P 3 ±Q

)]1/3
(41)

with

P =
1

3τ 22

(
1− τ 21

3τ 22
+ τ ′3Dk

2

)
(42)

and

Q =
τ1

3τ 42

(
1− 2τ 21

9τ 22
+ τ ′3Dk

2

)
− Dk2

τ 22
(43)

A more compact way of expressing these is to define dimensionless variables x ≡ τ1/τ2,

y ≡ τ ′3Dk
2, and z ≡ τ2Dk

2. Then

ω1τ2 = w0 − iw1

ω2τ2 = −w0 − iw1

ω3τ2 = −iw3 (44)

Here

w0 =
√
3
2

(r+ + r−)

w1 = 1
3
x+ 1

2
(r+ − r−)

w3 = 1
3
x− (r+ − r−) (45)

with

r± =
[
1
2

(√
q2 + 4p3 ± q

)]1/3
(46)

p = 1
3

(
1− 1

3
x2 + y

)
(47)

q = 1
3

(
1− 2

9
x2 + y

)
x− z (48)
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Let us examine the behavior of these solutions as functions of x, y and z.

When q2 + 4p3 > 0 there is one imaginary root and a pair of complex roots. Clearly the

complex roots are ω1 and ω2. When q2 + 4p3 < 0 all three roots are imaginary. In that case

it is better to express the roots somewhat differently. They are

w0 = −i
√

3

2

√
−p
[√

3 cos(φ/3)− sin(φ/3)
]

w1 = 1
3
x+ 1

2

√
−p
[
cos(φ/3) +

√
3 sin(φ/3)

]
w3 = 1

3
x−
√
−p
[
cos(φ/3) +

√
3 sin(φ/3)

]
(49)

where

φ = arccos

[
−q

2(−p)3/2

]
(50)

Equivalently, the three roots are

w+ = 1
3
x+ 2

√
−p cos(φ/3)

w− = 1
3
x+
√
−p
[
− cos(φ/3) +

√
3 sin(φ/3)

]
w3 = 1

3
x−
√
−p
[
cos(φ/3) +

√
3 sin(φ/3)

]
(51)

When k2 → 0 it is easiest to find the roots from the original cubic equation rather than

from the general solutions given above. In that limit, with x < 2,

w0 →
√

1− x2/4 (52)

w1 →
x

2
(53)

w3 → τ2Dk
2 (54)

The w3 represents the long-time diffusion mode. When x > 2, w0 begins pure imaginary,

and therefore so do ω1 and ω2.

When k2 →∞ one finds that

w0

τ2
→ v0k +

(4 + 3α2 − 2αx− x2)
8v0τ 22 k

(55)

where v0 =
√
τ ′3D/τ

2
2 and α = z/y = τ2/τ

′
3. Furthermore

w1 →
x− α

2
+
α(α2 − αx+ 1)

2v20τ
2
2 k

2

w3 → α− α(α2 − αx+ 1)

v20τ
2
2 k

2
(56)
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Since the poles should lie in the lower half-plane we must insist that α < x or τ 22 < τ1τ
′
3.

Given these limiting behaviors in k, it is clear that when x > 2 there is a critical value kc

such that for k < kc the ω1 and ω2 are pure imaginary, and when k > kc they are complex

with nonzero real and imaginary parts.

A. Baryon correlation function

The autocorrelation function gets contributions from all three poles. In time and

wavenumber space, and assuming that w0 is real, it can be found to be

〈δnδn(t,k)〉 =
σTτ2k

2

(w1 − w3)2 + w2
0

{(
1

w3

− τ4
τ2

)
e−w3t/τ2

+

[(
w1(w3 − w1) + w2

0

w2
1 + w2

0

+ (w1 − w3)
τ4
τ2

)
sin(w0t/τ2)

w0

+

(
w3 − 2w1

w2
1 + w2

0

+
τ4
τ2

)
cos(w0t/τ2)

]
e−w1t/τ2

}
(57)

When w0 is pure imaginary it can be found to be

〈δnδn(t,k)〉 =
σTτ2k

2

(w1 − w3)2 − |w0|2

{(
1

w3

− τ4
τ2

)
e−w3t/τ2

+

[(
w1(w3 − w1)− |w0|2

w2
1 − |w0|2

+ (w1 − w3)
τ4
τ2

)
sinh(|w0|t/τ2)

|w0|

+

(
w3 − 2w1

w2
1 − |w0|2

+
τ4
τ2

)
cosh(|w0|t/τ2)

]
e−w1t/τ2

}
(58)

Obviously one can go from (57) to (58) by making the substitution w0 → i|w0| in the former.

The conventional diffusion result is recovered in the limit that r is held fixed and t becomes

large compared to the characteristic time scales. Looking back at eqs. (57) and (58) it is

apparent that in this limit the autocorrelation function is dominated by the term involving

exp(−w3t/τ2) as the others are exponentially smaller. The w3 is minimized when k → 0. In

this limit (w1 −w3)
2 + w2

0 = 1 if x < 2 and (w1 −w3)
2 − |w0|2 = 1 if x > 2. The term τ4/τ2

can be ignored in comparison to 1/w3. This then leads to eq. (19).

Just as in the Cattaneo equation the autocorrelator is an even function of k, and has

similar large k behavior. The dispersion relation at large k is w0 =
√
τ ′3Dk so that when

r > v0t the autocorrelation function vanishes. There is a step function and a Dirac delta

function and its derivatives located at r = v0t, followed by a wake. To show some numerical

results we shall take τ4 = 0 to shorten the formulas. We redefine the dimensionless variables
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r̂, k̂, and t̂ for the Gurtin-Pipkin equation to be r̂ = r/τ2, k̂ = τ2k, and t̂ = v0t/τ2. Then

y = v20 k̂
2 and z = αv20 k̂

2. Equation (57) becomes

〈δnδn(t,k)〉 =
σT

2π2v20τ
4
2

f(r̂, t̂) (59)

where

f(r̂, t̂) =
1

r̂

∫ ∞
0

dk̂ k̂ sin(k̂r̂)
v20 k̂

2

(w1 − w3)2 + w2
0

×

{
e−w3 t̂/v0

w3

+

[(
w1(w3 − w1) + w2

0

w0(w2
1 + w2

0)

)
sin(w0t̂/v0)

+

(
w3 − 2w1

w2
1 + w2

0

)
cos(w0t̂/v0)

]
e−w1 t̂/v0

}
(60)

When w0 is imaginary the integrand changes to the form given in eq. (58). From the

integrand must be subtracted the large k̂ limit in order to obtain an integral that can be

done numerically. Apart from the overall factor k̂ sin(k̂r̂) what must be subtracted is[
1 +

α(α2 − αx+ 1)

v30 k̂
2

t̂+
α(x− 2α)

v20 k̂
2

]
e−αt̂/v0

α

+

[
sin(k̂t̂)

v0k̂
+
[
(2α− x)v0 + 1

8
(4 + 3α2 − 2αx− x2)t̂

] cos(k̂t̂)

v30 k̂
2

]
e−(x−α)t̂/2v0

The first term in square brackets in the first line leads to a singular term proportional to

δ(x̂)e−αt̂/v0 . The first term in square brackets in the second line leads to a singular term

proportional to r̂−1δ(r̂− t̂)e−(x−α)t̂/2v0 . The remaining terms are finite and should be added

back to obtain the regular part of f . They are

π

2v30

[
(α2 − αx+ 1)t̂+ v0(x− 2α)

] e−αt̂/v0

r̂

and
π

16v30

[
8(2α− x)v0 + (4 + 3α2 − 2αx− x2)t̂

] e−(x−α)t̂/2v0

r̂
θ(r̂ − t̂)

For illustration we show freg(r̂, t̂) as a function of r̂ for three different times in figures 2

(x=3) and 3 (x=1). In both cases we chose v20 = 1/3. They show the characteristic wake

following the front located at r̂ = t̂.
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FIG. 2: The regular part of the dimensionless baryon correlator freg(r̂, t̂) for the Gurtin-Pipkin

equation with x = 3. The correlator is shown for t̂ = 0.5 (dashed line), t̂ = 1 (solid line), and

t̂ = 1.5 (dotted line).

B. Noise

In frequency and wavenumber space the noise correlator is obtained from eqs. (16) and

(12). The function A(ω, k) has poles at

ω± = − iτ1
2τ 22
± iδk

2τ2

δk =

√
τ 21
τ 22
− 4 (1 + τ3Dk2) (61)

when k2 < k2c ≡ (τ 21 /τ
2
2 − 4)/4τ3D. When k2 > k2c the poles are at

ω± = − iτ1
2τ 22
± εk

2τ2

εk =

√
4 (1 + τ3Dk2)−

τ 21
τ 22

(62)

When x < 2 the poles are always complex and only (62) applies, not (61). This is the same

situation as for the baryon autocorrelator.
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FIG. 3: The regular part of the dimensionless baryon correlator freg(r̂, t̂) for the Gurtin-Pipkin

equation with x = 1. The correlator is shown for t̂ = 0.5 (dashed line), t̂ = 1 (solid line), and

t̂ = 1.5 (dotted line).

The group velocity

vg =
2(τ3/τ2)Dk√

4 (1 + τ3Dk2)− x2
(63)

is defined only for k > kc if x > 2. For x < 2 it is defined for all k. For x > 2 it diverges at

kc which is the same situation as in the autocorrelator in the Cattaneo equation. For x < 2

the group velocity is always below its asymptotic value of v0 =
√
τ3D/τ 22 . Note that this

differs with the asymptotic speed in the baryon autocorrelator if τ4 6= 0.

In time (t > 0) and wavenumber space the noise correlator is

1
3
〈I lI l(k, t)〉 =

σT

τ2

[
τ4
τ2

cosh

(
δkt

2τ2

)
+

(
2− τ1τ4

τ 22

)
1

δk
sinh

(
δkt

2τ2

)]
exp

(
− τ1t

2τ 22

)
(64)

when k < kc and

1
3
〈I lI l(k, t)〉 =

σT

τ2

[
τ4
τ2

cos

(
εkt

2τ2

)
+

(
2− τ1τ4

τ 22

)
1

εk
sin

(
εkt

2τ2

)]
exp

(
− τ1t

2τ 22

)
(65)

when k > kc. These have some interesting analytical limits.

Setting τ4 = 0, letting τ2 → 0, and then setting τ3 = 0 (so that the condition τ 22 < τ1τ
′
3

is respected), one obtains the Cattaneo result eq. (37).
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Setting τ1 = 2τ2, equivalently x = 2, results in εk = 2v0τ2k. Then

1
3
〈I lI l(k, t)〉 =

σT

τ2

[
τ4
τ2

cos (v0kt) +

(
1− τ4

τ2

)
sin (v0kt)

v0τ2k

]
exp

(
− t

τ2

)
(66)

whose Fourier transform is

1
3
〈I lI l(x, t)〉 =

σT

4πv0τ 22 r

[(
1− τ4

τ2

)
δ(r − v0t)− v0τ4δ′(r − v0t)

]
(67)

This is just a pulse which, interestingly, leaves behind no wake.

From now on we shall consider only the situation τ4 = 0. This simplifies presentation

of the main features, and is rather natural since it leads to the same speed of propagation

of noise as baryon density fluctuations, although in principle they need not be the same.

To display numerical results it is convenient to use the dimensionless variables t̂ = t/2τ2,

k̂ = 2v0τ2k, and r̂ = r/2v0τ2. Then

1
3
〈I lI l(x, t)〉 =

σT

8π2v30τ
4
2

g(r̂, t̂) (68)

where

g(r̂, t̂) =
e−xt̂

r̂

∫ ∞
0

dk̂ k̂ sin(k̂r̂)
sin(εk̂ t̂)

εk̂
(69)

Hidden within the integral are singularities at the point r̂ = t̂. These may be extracted by

examining the large k̂ limit.

sin(εk̂ t̂)

εk̂
→ sin(k̂t̂)

k̂
+

(4− x2)t̂
2k̂2

cos(k̂t̂) (70)

These terms contribute to g as

πe−xt̂

4r̂

[
2δ(r̂ − t̂) + (4− x2) t̂ θ(r̂ − t̂)

]
The regular part of g, which does not include the Dirac delta function but which does include

the step function, is

greg(r̂, t̂) =
e−xt̂

r̂

{∫ ∞
0

dk̂ k̂ sin(k̂r̂)

[
sin(εk̂ t̂)

εk̂
− sin(k̂t̂)

k̂
− (4− x2)t̂

2k̂2
cos(k̂t̂)

]

+
π(4− x2)t̂

4
θ(r̂ − t̂)

}
(71)

Some representative plots of greg are shown in Figures 4 and 5. For x > 2 the wake behind

the front represents a positive correlation, while for x < 2 it represents a negative correlation;

for x = 2 the wake is absent, as mentioned above.
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FIG. 4: The regular part of the dimensionless noise correlator greg(r̂, t̂) for x = 3. The correlator

is shown for t̂ = 0.5 (dashed line), t̂ = 1 (solid line), and t̂ = 1.5 (dotted line).
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FIG. 5: The regular part of the dimensionless noise correlator greg(r̂, t̂) for x = 1. The correlator

is shown for t̂ = 0.5 (dashed line), t̂ = 1 (solid line), and t̂ = 1.5 (dotted line).
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VI. CONCLUSIONS

In this paper we studied and compared the baryon current in first, second, and third

order dissipative fluid dynamics using the Landau-Lifshitz definition of flow velocity. With

no energy transport but only pure baryon diffusion, the resulting equations correspond to the

ordinary heat conduction equation, the Cattaneo heat conduction equation, and the Gurtin-

Pipkin heat conduction equation, respectively. Using the fluctuation-dissipation theorem we

computed the response function, the baryon autocorrelation function, and the correlation for

thermal noise. Unlike the case of the first order theory, the second and third order theories

progagate signals with a finite speed. The parameters in the theories must be such that the

group velocity at large wavenumbers does not exceed the speed of light, for it is this velocity

with which signals travel.

Previous work examined the effect of diffusion beyond first order on correlations in heavy-

ion collisions. Reference [13] found that using the Cattaneo equation instead of the first order

diffusion equation lessens the extent to which diffusion can dissipate fluctuations. Enforcing

a finite speed of propagation makes clear the importance of fluctuations at early times for

creating long-range correlations in rapidity. The thermal noise discussed here is one source

for these fluctuations. We have also demonstrated how including the additional transport

coefficients of the Gurtin-Pipkin equation might also have an effect on correlation functions.

In the first order theory the noise correlator is proportional to a product of Dirac delta

functions in space and time, as has been known for a long time. For hydrodynamic modeling

of high energy heavy ion collisions this would generally be sufficient if noise is treated as

a perturbation. However, in some situations, such as near a critical point, noise may play

such an important role that it should be treated nonperturbatively in the hydrodynamic

evolution. In that case, it is important to have a noise correlator that is of finite range in

time and space lest the results become sensitive to the size of the coarse-graining cells. The

second order theory has a finite range in time but is still a delta function in space. One

must go to the third order to have a finite range in space as well.

We have not attempted to deduce the τ parameters in the third order theory. In principle

they should be calculable from a microscopic theory. Undoubtedly they will be functions

of temperature and density. Of course one should expect coupling of the current to various

components of the energy-momentum tensor when the temperature and flow velocity can
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vary in space and time; this might provide relationships between these τ parameters and

others that appear in higher order viscous fluid dynamics [7, 15]. We look forward to future

progress in these and other avenues of investigation.
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