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We present a formalism to solve the Bethe-Goldstone scattering equation without the use of
partial wave expansion which is alternative to the one we developed in a previous work. The present
approach is more suitable for the calculation of in-medium nucleon-nucleon cross sections, which are
the focal point of this paper. The impact of removing the spherical approximation on the angle and
energy dependence of, particularly, in-medium proton-proton and proton-neutron differential cross
sections is discussed along with its potential implication.

I. INTRODUCTION

The Bethe-Goldstone equation [1–4] describes nucleon-nucleon (NN) scattering in a dense hadronic medium. Con-
ventional medium effects present in the equation include corrections of the single-particle energies to account for the
presence of the medium and the Pauli blocking mechanism, which prevents scattering into occupied states. Within
the Dirac-Brueckner-Hartree-Fock (DBHF) approach, which is our traditional framework, an additional “non con-
ventional” medium effect comes in through the use of the (density-dependent) nucleon effective mass in the nucleon
Dirac spinors.

In a previous work [5], we presented a method for the solution of the Bethe-Goldstone equation without the use of
partial wave decomposition in order to remove the spherical, or angle average, approximation on the Pauli blocking
operator. With that as our baseline, in this paper we consider the idealized scenario of two nucleons undergoing
scattering in infinite, symmetric or asymmetric, nuclear matter, and calculate in-medium cross sections for such a
process, using as input a G-matrix obtained from the solution of the Bethe-Goldstone equation in three-dimensional
space. A crucial step for accomplishing such solution in a manageable way is the removal of the azimuthal degree
of freedom from the starting three-dimensional equation. First, we will describe why we need to take a different
approach than the one we adopted in Ref. [5] if we wish to place the incident momentum along the direction of the
chosen quantization axis, the z-axis, as typically done in standard calculations of NN observables. As a consequence
of that, we will propose an alternative method to partially decouple the system of (helicity basis) equations. These
and other technical issues (if significantly different than those previously reported), will be confronted in Section II.

After incorporating (non-spherical) Pauli blocking and other appropriate medium effects, we proceed to calculate
in-medium differential cross sections. Clearly in-medium scattering (that is, the scattering of two nucleons embedded
in nuclear matter), is not a directly observable process. A connection with physical scattering can be made considering,
for instance, a nucleon bound in a nucleus (or, more ideally, in nuclear matter, as in our case) through the nuclear
mean field. If such nucleon is struck [for instance, as in a (e, e′) reaction], it may subsequently scatter from another
nucleon. This process would require the knowledge of the in-medium NN cross-section, or effective cross-section.

Another scenario which involves in-medium two-body cross-sections is the dynamics of heavy-ion collisions. These
are typically handled with so-called transport equations, such as the Boltzmann-Uehling-Uhlenbeck equation [6, 7],
which describe the evolution of a system of strongly interacting hadrons drifting in the presence of a mean field while
undergoing two-body collisions.

In-medium cross-sections are driven by the scattering amplitudes as well as kinematical factors. In a microscopic
approach, they are constructed from the (medium-modified) NN amplitudes without phenomenology. They depend
on several variables, such as the relative momentum of the two-nucleon pair, the total momentum of the pair in the
nuclear matter rest frame (needed for the Pauli operator), and, potentially, two different densities or Fermi momenta.
To facilitate applications in reactions, these multiple dependences have been handled in different ways and with
different levels of approximations. In the simplest approach, the assumption is made that the transition matrix in the
medium is approximately the same as in vacuum, and that medium effects on the cross-section come in only through
the use of nucleon effective masses in the phase space factors [8–10]. Concerning microscopic approaches, some can be
found, for instance, in Refs. [11–13], but consideration of medium asymmetries are not included in those predictions.
Furthermore, in Refs. [11, 12], the full (complex) nature of the scattering amplitude is not taken into account, and in-
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medium differential cross sections are calculated from a (real) K-matrix. Finally, all previous microscopic predictions
make use of the angle-averaged Pauli operator.

Effective cross-sections can also provide information on the nucleon mean-free path in nuclear matter, a quantity of
fundamental importance to understand the dynamics of a nucleon in the medium. In summary, they are an important
input for several processes. It is one of the goals of this paper to investigate to which extent our microscopic in-medium
observables are sensitive to the exact treatment of Pauli blocking, and, more generally, to examine how their angular
structure and energy dependence are impacted by the medium.

Our results are presented and discussed in Sec. III, while Sec. IV contains a short summary and our conclusions.

II. FORMAL ASPECTS

A. Free space: the Thompson equation in a helicity basis

As we did previously, we start with the (free-space) Thompson equation in a helicity. More explicitly, the Thompson
equation which we adopt is given as [5]

〈λ′1λ′2|T̂ I(q′, q)|λ1λ2〉 = 〈λ′1λ′2|V̂ I(q′, q)|λ1λ2〉+
∑

λ′′1 ,λ
′′
2 =±

∫
R3

〈λ′1λ′2|V̂ I(q′, q′′)|λ′′1λ′′2〉 〈λ′′1λ′′2 |T̂ I(q′′, q)|λ1λ2〉
2(Eq − Eq′′ + iε)

d3q′′ .

(1)

Above T̂ , V̂ , I, Ep =
√
p2 +m2 and m are the T -matrix, NN potential (see Appx. A of Ref. [5]), total isospin,

relativistic energy, and nucleon mass (average of the proton and neutron mass) respectively. Furthermore, q, q′, and
q′′ are the initial, final, and intermediate momenta in the two-nucleon center-of-mass frame.

The first issue to be addressed is the removal of the azimuthal degree of freedom, which can be done in a number of
ways. The average over the azimuthal angle performed as in Eqs. (7a-b) of Ref. Ref. [5] in the spirit of Ref. [14] causes
some of the matrix elements to vanish if the initial momentum is along the z-axis (i.e. θ = 0), therefore here we will
adopt a different prescription. Placing the initial momentum along the z-axis, we observe the resulting symmetry of
the NN potential:

〈λ′1λ′2|V̂ I(q′, q, 0, φ)|λ1λ2〉 = eiΛ(φ′−φ) 〈λ′1λ′2|V̂ I(q̃′, 0, q, 0, 0)|λ1λ2〉 ≡ eiΛ(φ′−φ) 〈λ′1λ′2|vI(q̃′, q)|λ1λ2〉 , (2)

with Λ ≡ λ1−λ2 and q̃′ ≡ (q′, θ′). This symmetry, which carries over to the T -matrix, can easily be shown by writing
the T -matrix (and NN potential) in a partial wave helicity basis expansion [see Eq. (14)].

After setting θ = 0 in Eq. (1) and implementing the previous observation, in the spirit of Ref. [15] we apply on

both side of the equation the operator 1
2π

∫ 2π

0
e−iΛ(φ′−φ) dφ′ and arrive at the φ-integrated Thompson equation

〈λ′1λ′2|tI(q̃′, q)|λ1λ2〉 = 〈λ′1λ′2|vI(q̃′, q)|λ1λ2〉

+
∑

λ′′1 ,λ
′′
2 =±

π

∫ ∞
0

∫ π

0

〈λ′1λ′2|vΛI(q̃′, q̃′′)|λ′′1λ′′2〉 〈λ′′1λ′′2 |tI(q̃′′, q)|λ1λ2〉
Eq − Eq′′ + iε

q′′
2

sin θ′′ dθ′′ dq′ , (3)

with the real φ-integrated potential equal to

〈λ′1λ′2|vΛI(q̃′, q̃′′)|λ′′1λ′′2〉 =
1

2π

∫ 2π

0

eiΛ(φ′′−φ′) 〈λ′1λ′2|V̂ I(q′, q′′)|λ′′1λ′′2〉 |φ′=0 dφ′′ . (4)

Note that the φ-integrated potential depends on double, single, and unprimed helicities, rendering the present set of
equations different than Eq. (8) of Ref. [5]. This calls for a different strategy to partially decouple the system.

B. Partially decoupling the system of integral equations

The φ-integrated Thompson equations are a set of sixteen coupled Fredholm integral equations of the second kind
for each isospin. Due to parity and isospin conservation, only six amplitudes are independent. For the six independent
amplitudes we choose [5]

tI1 ≡ 〈+ + |tI |+ +〉 , tI2 ≡ 〈+ + |tI | − −〉 , tI3 ≡ 〈+− |tI |+−〉 ,
tI4 ≡ 〈+− |tI | −+〉 , tI5 ≡ 〈+ + |tI |+−〉 , tI6 ≡ 〈+− |tI |+ +〉 . (5)
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Additionally, we found that the following linear combinations

0tI ≡ tI1 − tI2 , 12tI ≡ tI1 + tI2 , (6)

will partially decouple the system for the tI1 and tI2 amplitudes.

The symmetries on the φ-integrated potential can be found analytically (for instance using a partial wave helicity
basis expansion [see Eq. (14)], or numerically. Either way, we end up with the following conclusions: 1) When Λ = 0
the symmetries of the φ-integrated potential are the same as the corresponding ones for the t-matrix, see Eq. (9) of
Ref. [5]. 2) When Λ = ±1 the following holds

v1I
1 ≡ 〈+ + |v1I |+ +〉 = 〈+ + |v−1I |+ +〉 = 〈− − |v1I | − −〉 = 〈− − |v−1I | − −〉 ,
v1I

2 ≡ 〈+ + |v1I | − −〉 = 〈+ + |v−1I | − −〉 = 〈− − |v1I |+ +〉 = 〈− − |v−1I |+ +〉 ,
v1I

3 ≡ 〈+− |v1I |+−〉 = 〈−+ |v−1I | −+〉 ,
v−1I

3 ≡ 〈+− |v−1I |+−〉 = 〈−+ |v1I | −+〉 ,
v1I

4 ≡ 〈+− |v1I | −+〉 = 〈−+ |v−1I |+−〉 ,
v−1I

4 ≡ 〈+− |v−1I | −+〉 = 〈−+ |v1I |+−〉 ,
v1I

5 ≡ 〈+ + |v1I |+−〉 = −〈+ + |v−1I | −+〉 = 〈− − |v1I |+−〉 = −〈− − |v−1I | −+〉 ,
v−1I

5 ≡ 〈+ + |v−1I |+−〉 = −〈+ + |v1I | −+〉 = −〈− − |v1I | −+〉 = 〈− − |v−1I |+−〉 ,
v1I

6 ≡ 〈+− |v1I |+ +〉 = −〈−+ |v−1I |+ +〉 = 〈+− |v1I | − −〉 = −〈−+ |v−1I | − −〉 ,
v−1I

6 ≡ 〈+− |v−1I |+ +〉 = −〈−+ |v1I |+ +〉 = −〈−+ |v1I | − −〉 = 〈+− |v−1I | − −〉 . (7)

If we utilize Eqs. (3) and (5) to (7) along with the symmetries of the t-matrix (see Eq. 9 in Ref. [5]) we obtain the
following six partially coupled integral equations.

The spin singlet amplitude 0tI is uncoupled

0tI(q̃′, q) = 0vI(q̃′, q) + π

∫ ∞
0

∫ π

0

0v0I(q̃′, q̃′′)0tI(q̃′′, q)

Eq − E′′q + iε
q′′

2
sin θ′′ dθ′′ dq′′ . (8)

The spin triplet amplitudes 12tI and 66tI form a bi-coupled system

12tI(q̃′, q) = 12vI(q̃′, q) + π

∫ ∞
0

∫ π

0

12v0I(q̃′, q̃′′)12tI(q̃′′, q) + 4v0I
5 (q̃′, q̃′′)tI6(q̃′′, q)

Eq − E′′q + iε
q′′

2
sin θ′′ dθ′′ dq′′ , (9)

tI6(q̃′, q) = vI6(q̃′, q) + π

∫ ∞
0

∫ π

0

v0I
6 (q̃′, q̃′′)12tI(q̃′′, q) + [v0I

3 (q̃′, q̃′′)− v0I
4 (q̃′, q̃′′)]tI6(q̃′′, q)

Eq − E′′q + iε
q′′

2
sin θ′′ dθ′′ dq′′ . (10)

Finally, the tI3, tI4, and tI5 amplitudes form a tri-coupled system

tI3(q̃′, q) = vI3(q̃′, q) + π

∫ ∞
0

∫ π

0

v1I
3 (q̃′, q̃′′)tI3(q̃′′, q) + v1I

4 (q̃′, q̃′′)tI4(q̃′′, q) + 2v1I
6 (q̃′, q̃′′)t5(q̃′′, q)

Eq − E′′q + iε
q′′

2
sin θ′′ dθ′′ dq′′ ,

(11)

tI4(q̃′, q) = vI4(q̃′, q) + π

∫ ∞
0

∫ π

0

v−1I
4 (q̃′, q̃′′)tI3(q̃′′, q) + v−1I

3 (q̃′, q̃′′)tI4(q̃′′, q)− 2v−1I
6 (q̃′, q̃′′)t5(q̃′′, q)

Eq − E′′q + iε
q′′

2
sin θ′′ dθ′′ dq′′ ,

(12)

tI5(q̃′, q) = vI5(q̃′, q) + π

∫ ∞
0

∫ π

0

v1I
5 (q̃′, q̃′′)tI3(q̃′′, q)− v−1I

5 (q̃′, q̃′′)tI4(q̃′′, q) + 12v1I(q̃′, q̃′′)t5(q̃′′, q)

Eq − E′′q + iε
q′′

2
sin θ′′ dθ′′ dq′′ .

(13)

Concerning the numerical solution, the strategies shown in Appx. B of Ref. [5] can be easily adapted to this particular
set of equations.
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C. Connection with partial wave decomposition and construction of NN observables

Although the point of this paper is to avoid the method of partial-wave expansion, we utilize the partial wave
solution for comparison purposes. The expansion of T̂ I(q′, q) in a partial wave helicity basis [16, 17] is given by

〈λ′1λ′2|T̂ I(q′, q)|λ1λ2〉 =
∑
JM

2J + 1

4π
DJ
MΛ′(φ

′, θ′,−φ′)∗ 〈λ′1λ′2|T̂ IJ(q′, q)|λ1λ2〉DJ
MΛ(φ, θ,−φ) , (14)

where the Wigner D-matrix DJ
MΛ(α, β, γ) = e−iMαdJMΛ(β)e−iΛγ includes the reduced rotation matrix dJMΛ(β) with

Λ ≡ λ1−λ2 and an analogous definition for the primed coordinate. The partial wave amplitudes, denoted by T̂ IJ(q′, q)
(with a similar decomposition done for the NN potential), are the solutions of the partial wave decomposed Eq. (1).

To obtain a transformation from partial waves into the (angle-dependent) t-matrix we evaluate Eq. (14) at φ′ =
θ = φ = 0

〈λ′1λ′2|tI(q̃′, q)|λ1λ2〉 =
∑
J

2J + 1

4π
dJΛΛ′(θ

′) 〈λ′1λ′2|T̂ IJ(q′, q)|λ1λ2〉 . (15)

As it stands, our angle-dependent solutions contain unphysical states. On the other hand, the well-known antisym-
metry requirement for the NN system imply that only even or odd values of J are allowed in a particular state of
definite spin and isospin. Thus, starting with Eq. (15) and making use of the identities (−1)JdJ00(θ′) = dJ00(π − θ′),
(−1)J+1dJ01(θ′) = dJ01(π− θ′), (−1)JdJ11(θ′) = −dJ−11(π− θ′), and (−1)JdJ−11(θ′) = −dJ11(π− θ′) we can, in each case,
identify the appropriate combination of the direct and the exchange terms which must enter the antisymmetrized
amplitudes. For those, we obtain:

0t
1
0
a(q̃′, q) ≡ 1

2
[0t

1
0(q̃′, q)± 0t

1
0(−q̃′, q)] =

∑
J=even

odd

2J + 1

4π
dJ00(θ′)0T J

1
0(q′, q) , (16)

12t
1
0
a(q̃′, q) ≡ 1

2
[12t

1
0(q̃′, q)± 12t

1
0(−q̃′, q)] =

∑
J=even

odd

2J + 1

4π
dJ00(θ′)12T J

1
0(q′, q) , (17)

with,

t
1
0
a,1(q̃′, q) =

1

2
[12t

1
0
a(q̃′, q) + 0t

1
0
a(q̃′, q)] and t

1
0
a,2(q̃′, q) =

1

2
[12t

1
0
a(q̃′, q)− 0t

1
0
a(q̃′, q)] , (18)

t
1
0
a,6(q̃′, q) ≡ 1

2
[t

1
0
6(q̃′, q)∓ t

1
0
6(−q̃′, q)] =

1

2

∑
J=even

odd

2J + 1

4π
dJ01(θ′)66T J

1
0(q′, q) , (19)

t
1
0
a,3(q̃′, q) ≡ 1

2
[t

1
0
3(q̃′, q)∓ t

1
0
4(−q̃′, q)] =

1

2

 ∑
J=even

odd

2J + 1

4π
dJ11(θ′)34T J

1
0(q′, q) +

∑
J= odd

even

2J + 1

4π
dJ11(θ′)1T J

1
0(q′, q)

 , (20)

t
1
0
a,4(q̃′, q) ≡ 1

2
[t

1
0
4(q̃′, q)∓ t

1
0
3(−q̃′, q)] =

1

2

 ∑
J=even

odd

2J + 1

4π
dJ−11(θ′)34T J

1
0(q′, q)−

∑
J= odd

even

2J + 1

4π
dJ−11(θ′)1T J

1
0(q′, q)

 ,

(21)

t
1
0
a,5(q̃′, q) ≡ 1

2
[t

1
0
5(q̃′, q)∓ t

1
0
5(−q̃′, q)] =

1

2

∑
J=even

odd

2J + 1

4π
dJ10(θ′)55T J

1
0(q′, q) , (22)
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where definitions for the linear combinations of partial wave amplitudes nT J
1
0, n = 0, 1, 12, 34, 55, 66 are given in

Ref. [18]. Also, above one must read across the top (or bottom) to associate the correct sign with the appropriate
J values (even or odd) and isospin (0 or 1). We also used the shorthand notation for the exchange amplitude
tI(−q̃′, q̃) = tI(q′, π − θ′, q, θ).

We are now in a position to calculate in-medium observables as functions of the scattering angle relative to the
z-axis, for which purpose we will use the Hoshizaki spin formalism [19]. We will calculate the elastic differential
cross-section, dσ

dΩ , and a representative spin observable, for which we choose the depolarization D (also denoted as
Dnn). The latter refers to an experiment where beam and target are polarized in the direction normal to the scattering
plane.

First, as in Table VII of Ref. [19], we define

4a = ϕ1 − ϕ2 + ϕ3 + ϕ4 + (ϕ1 + ϕ2 + ϕ3 − ϕ4) cos θcm − 4ϕ5 sin θcm , (23)

4ic = (ϕ1 + ϕ2 + ϕ3 − ϕ4) sin θcm + 4ϕ5 cos θcm , (24)

4m = −ϕ1 + ϕ2 − ϕ3 − ϕ4 + (ϕ1 + ϕ2 + ϕ3 − ϕ4) cos θcm − 4ϕ5 sin θcm , (25)

4g = −ϕ1 + ϕ2 + ϕ3 + ϕ4 , (26)

4h = −ϕ1 − ϕ2 + ϕ3 − ϕ4 , (27)

where the Hoshizaki ϕn amplitudes are related to our tn as

ϕn(q, θcm) = (2π)2E

2
tn(q, θcm, q) for n = 1, 2, 3, 4, 5, with E =

√
m2 + q2, (28)

and

tn(q′, θ′, q) =

{
t0a,n(q′, θ′, q) + t1a,n(q′, θ′, q) np observables

2t1a,n(q′, θ′, q) pp observables.
(29)

In terms of the Hoshizaki amplitudes a, c, m, g, and h, we have (as in Table I of Ref. [19])

dσ

dΩ
= |a|2 + |m|2 + 2(|c|2 + |g|2 + |h|2) , (30)

dσ

dΩ
(1−D) = 4(|g|2 + |h|2) . (31)

We can write Eq. [30] in an alternative way, which best shows the roles of the phase space factors and the invariant
amplitude squared. First, we recall that our (on-shell) tn amplitudes, being solutions of Eq. 1, are related to the
solutions of the original Thompson equation as [5]

tn =
m2

E2

t̂n
(2π)3

. (32)

This is just a convenient definition, which makes the relativistic equation formally identical to its non-relativistic
counterpart [5]. Applying the same factors to the ϕn amplitudes in Eq. 28, we obtain

ϕn =
m2

4Eπ
t̂n . (33)

Therefore, the Hoshizaki expression, Eq. [30], becomes, in the center-of-mass frame,

dσ

dΩ
=

m4

s(2π)2
(|â|2 + |m̂|2 + 2(|ĉ|2 + |ĝ|2 + |ĥ|2)) , (34)

where s is the total energy squared, and the “hat” symbol signifies solutions of the relativistic equation, related to the
solutions of our “reduced” Thompson equation as in Eq. 32. (As a footnote, we mention that we use natural units,
~ = c = 1, throughout this paper. In order to express the differential cross-section in units of mb, a factor of 10(~c)2

must be applied.)
In our application of the DBHF approach (see Ref. [20] and references therein), one describes the positive energy

solutions of the Dirac equation in the medium as

u∗(q, λ) =

(
E∗q +m∗

2m∗

)1/2
(

1
σ·~q

E∗q +m∗

)
χλ, (35)
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where the effective mass, m∗, is defined as m∗ = m + US , with US an attractive scalar potential, assumed to be
density dependent but momentum independent. Thus, throughout our in-medium calculations, we replace m with

m∗ and E =
√
m2 + q2 with E∗ =

√
(m∗)2 + q2.

Applied to Eq. [34], this yields (consistent with, for instance, Ref. [13])

dσ

dΩ
=

(m∗)4

s∗(2π)2
|Ĝ|2 , (36)

where the “hat” symbol indicates solutions of the (in-medium) Thompson equation.

D. Including the Pauli operator

For completeness, we recall that, in analogy with the free-space case, the Bethe-Goldstone equation can be written
as [5]

ĜI(q′, q,P , kF ) = V̂ I(q′, q) +

∫
R3

V̂ I(q′, q′′)Q(q′′,P , kF )ĜI(q′′, q,P , kF )

2(E∗q − E∗q′′ + iε)
d3q′′ , (37)

where the asterix signifies in-medium energies and the Pauli operator Q suppresses scattering into states below the
Fermi momentum. More explicitly the Pauli operator for symmetric nuclear matter is defined as

Q(q′′,P , kF ) ≡ Θ(|P + q′′| − kF )Θ(|P − q′′| − kF ) , (38)

where Θ is the Heaviside step function, P is one half the center of mass momentum, P ± q are the momenta of the
two nucleons in the nuclear matter rest frame, and kF is the Fermi momentum, related to the nucleon density by

ρ =
2k3F
3π2 . Clearly, the free-space equation is recovered by using free-space energies and setting Q=1. The corresponding

φ-integrated Bethe-Goldstone equation can then be solved in perfect analogy with the free-space case described above.
We also recall that the so called spherical or angle-averaged Pauli operator Q̄ (see Ref. [21] and references therein),

is obtained from

Q(q′′,P , kF ) ≈ Q̄(q′′, P, kF ) =

∫
Q(q′′,P , kF ) dΩ′′∫

dΩ′′
, (39)

unless it’s equal to zero or one. Clearly, no angle average is required in our three-dimensional approach.
The case of asymmetric nuclear matter, that is, when two different Fermi momenta, kF1 and kF2, are present (as

would be the case in collisions of two different ions), can be handled by simply modifying the angular integration to
implement the restrictions

|P + q′′| > kF1 and |P − q′′| > kF2 =⇒
Q(q′′,P , kF1, kF2) ≡ Θ(|P + q′′| − kF1)Θ(|P − q′′| − kF2) , (40)

which, again, is easily accomplished in our three-dimensional formalism.

III. RESULTS AND DISCUSSION

The scattering amplitudes obtained from the solution of the integral equations as described above are the input
for calculating NN scattering observables. In this section, we will present and discuss selected in-medium np and
pp cross sections obtained with the exact Pauli operator and compare with previous predictions which utilize the
angle-averaged expression. Once again, NN scattering in nuclear matter is not directly measurable, but a model for
such process can be indirectly tested through applications in nuclear reactions.

In addition to the elastic differential cross-section, we will also consider polarized scattering, to explore whether
the sensitivities we are investigating are more or less pronounced in the spin dependence of the interaction. As a
representative example, we have chosen the depolarization parameter, D, or Dnn.

In Figs. 1-3, we show np observables at values of the on-shell c.m. momentum corresponding to a free-space incident
energy of 50, 100, and 200 MeV, respectively. In each figure, the frames labeled as (a) and (b) display the elastic
differential cross-section, whereas those labeled as (c) and (d) show the depolarization parameter.
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In all frames, the solid red curve shows the free-space predictions. For the frames on the left-hand side, the dashed
blue curve is obtained with the exact Pauli operator, assuming scattering in symmetric nuclear matter with a Fermi
momentum of 1.4 fm−1 [namely, we are solving the Bethe-Goldstone equation with the Pauli operator as in Eq. (38)];
the dotted green curve is the corresponding result with the angle-averaged calculation. For the frames on the right-
hand side, we consider scattering in the presence of two different Fermi momenta [see Eq. (40)]. The dashed blue
curve and the dotted green one are, again, predictions with the three-dimensional formalism and the angle-averaged
approach, respectively.

In all cases, medium effects on the energies are taken into account through the use of nucleon effective masses,
which we take from previous calculations [20]. Specifically, the nucleon effective mass in nuclear matter with density
corresponding to kF = 1.4 fm−1 is taken to be 612.8 MeV, whereas for kF = 1.1 fm−1 the value is found to be 718.3
MeV.

First, we observe that the density dependence is very large. The differential cross-section is strongly reduced and
flattened by medium effects. Also, structures in the spin dependence are heavily suppressed.

Differences between the dashed curve and the dotted one are noticeable, but much smaller than those between the
free-space predictions and either one of the medium-modified calculations. Interestingly, those differences are larger
for the case of the asymmetric Pauli operator, particularly so in the case of polarized scattering.

We note that the free-space np cross-section is rather anisotropic, and becomes more so, as energy increases, due
to interferences from more partial waves. In the presence of medium effects, the cross-section becomes much more
isotropic. Also, medium effects are smaller at the higher energies, as is physically reasonable.

In Figs. 4-6, we provide a similar presentation as the one in Figs. 1-3, but for pp scattering. As far as general features
are concerned, similar considerations apply. Namely, there is strong density dependence, and moderate sensitivity
to the use of the angle-dependent Pauli operator. Again, such sensitivity is more pronounced for the cases on the
left-hand side.

We note in passing that the free-space pp differential cross-section is less anisotropic than the np one, due to the
smaller number of partial waves that contribute to it (I = 1 states only), and is symmetric with respect to the
θ → π−θ transformation. In the medium, it is strongly reduced, and, at the higher energies, shows a dramatic change
in curvature. Recalling that different partial waves (beyond the S-waves) contribute non-isotropically to the cross
section, we attribute this feature to how the relative role of different partial waves is impacted by the medium .

With regard to sensitivity to the removal of the spherical approximation, we conclude that the latter is slightly
more pronounced in the np case, particularly in the spin-dependent observable. This suggests enhanced sensitivity in
the I = 0 channel, which is absent in the pp interaction.

Overall, we can conclude that small effects from the use of the non-averaged Pauli operator are to be expected in
applications involving in-medium NN cross-sections. Highly asymmetric situations (that is, two very unequal Fermi
momenta), could be an exception. Furthermore, it is appropriate to point out that the in-medium observables we have
shown are obtained from the on-shell G-matrix. At this time, we cannot exclude a larger sensitivity to the removal
of the spherical approximation in many-body calculations which utilize the half- or fully-off-shell G-matrix.
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FIG. 1: (Color online) [Figs. (a) and (b)] np elastic differential cross-section and [Figs. (c) and (d)] depolarization
at a laboratory free-space energy of 50 MeV vs. the c.m. scattering angle. The solid red curve shows the free-space
prediction. The angle-averaged calculation is given by the dotted green curve whereas the dashed blue curve shows the
prediction obtained with the exact Pauli operator in symmetric [left side Figs. (a) and (c)] and asymmetric [right side
Figs. (b) and (d)] matter at a density equal to kF1 = kF2 = 1.4 fm−1 and kF1 = 1.1 fm−1, kF2 = 1.4 fm−1 respectively.
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FIG. 2: (Color online) Same as Fig. 1 but at 100 MeV.
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FIG. 3: (Color online) Same as Fig. 1 but at 200 MeV.
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FIG. 4: (Color online) Same as Fig. 1 but for pp scattering.
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FIG. 5: (Color online) Same as Fig. 4 but at 100 MeV.
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FIG. 6: (Color online) Same as Fig. 4 but at 200 MeV.

IV. SUMMARY AND CONCLUSION

We presented an alternative way to solve the Thompson and the Bethe-Goldstone equations in three-dimensional
space. The main differences with the solution techniques developed in Sect. II concern the way the azimuthal degree
of freedom is integrated out in the equations and how the resulting analytical structure of the equations is handled.

Exact angle-dependent on-shell amplitudes were calculated and used to obtain in-medium NN “observables”. These
were compared to partial wave decomposed (angle-independent) solutions which utilized the spherical approximation
on the Pauli operator. Only moderate sensitivity was observed between the exact and angle-averaged calculation in
this case, although scattering in asymmetric matter (that is, in the presence of two different Fermi momenta), showed
enhanced sensitivity.

Finally, Pauli blocking is one of the most important mechanisms governing the scattering of fermions in the many-
body system. Regardless the magnitude of the effects we set forth to explore, to the best of our knowledge the
solution of the Bethe-Goldstone equation we have presented in this paper is an original one, and has allowed us to
better quantify the impact of the historically very popular spherical approximation.
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