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Abstract

We calculate the energy dependence of the asymmetry in the cross sections for circularly polarized

photons on an unpolarized deuteron target in d~γ → np in pionless effective field theory. By matching

the parity-violating low-energy constants to different sets of corresponding model parameters we

obtain estimates for the asymmetry. In addition we calculate a possible figure of merit for the

asymmetry in order to assess the preferred photon energy at which to perform a possible future

experiment at a high-intensity photon source.
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I. INTRODUCTION

Weak interactions between quarks in the nucleon induce a parity-violating (PV) compo-

nent in the interactions between nucleons. This PV interaction is expected to be suppressed

by about six to seven orders of magnitude (GFm
2
π ∼ 10−7) compared to the dominant

parity-conserving (PC) component. While weak interactions are well understood at the level

of quarks, the nonperturbative nature of the strong interactions at low energies makes it

difficult to derive their manifestation at the nucleon level. At the same time, the short range

of the weak interactions allows hadronic parity violation to be considered as a unique probe

of nonperturbative strong interactions. For reviews, see e.g. Refs. [1–4].

Traditionally, experimental studies of hadronic parity violation have been focused on sys-

tems containing a larger number of nucleons, where PV effects can be enhanced by several

orders of magnitude due to close lying states of opposite parity, see e.g. Ref. [5]. How-

ever, many-body effects significantly complicate the theoretical analysis in terms of nucleon-

nucleon (NN) interactions. A number of PV observables in two-nucleon systems can in

principle be used to constrain the PV part of the nucleon-nucleon interaction. In addition

to proton-proton scattering [6–9], a particularly prominent example is the photon angular

asymmetry Aγ in the capture of polarized neutrons on unpolarized protons, which in terms

of the traditional meson exchange models provides information on the PV pion-nucleon cou-

pling. The NPDGamma experiment at Oak Ridge National Laboratory’s Spallation Neutron

Source is currently determining this asymmetry with the aim of significantly improving on

previous results [10].

A second observable in this system is the circular photon polarization Pγ in the capture

of unpolarized neutrons on unpolarized protons, np → d~γ. While both Aγ and Pγ involve

neutron capture, the different polarizations result in two complementary and independent

observables. In particular, the component of the PV NN interaction giving the main contri-

bution to Aγ is highly suppressed in Pγ, which thus presents the opportunity to constrain

different PV components. The requirement of a high neutron flux and the difficulty of

measuring the circular polarization of the outgoing photon make a measurement of Pγ chal-

lenging. A previous experiment was able to put a bound on Pγ which, however, is consistent

2



with zero [11].

For identical kinematics, the polarization Pγ is equal to the longitudinal asymmetry AγL,

AγL =
σ+ − σ−
σ+ + σ−

, (1)

in the time-reversed process ~γd → np, where σ± is the total break-up cross section for

photons with helicity ±1. Again, the requirements for luminosity and control of systematic

effects are very stringent, and to date no experiment has determined AγL. However, the

continuing developments of high-intensity photon sources put the possibility of measuring

AγL within reach. In fact, the feasibility of such a measurement is currently being explored

for a possible upgrade of the High Intensity Gamma-Ray Source (HIγS) at the Triangle

Universities Nuclear Laboratory [12].

Theoretically, AγL (or equivalently Pγ) has been considered using meson-exchange models

[13–17], effective field theories (EFTs) [18–20], as well as hybrid methods [21]. Pγ was also

considered in Ref. [22], which introduced the approach to hadronic parity violation based

on the so-called Danilov amplitudes. The meson-exchange model results are based on the

Desplanques, Donoghue, and Holstein (DDH) framework [23] in combination with various

PC models. The DDH approach describes the PV NN interactions in terms of single-meson

exchanges of π, ρ, and ω mesons giving seven phenomenological weak couplings of these

mesons to a nucleon. It also provides “best guesses” and “reasonable ranges” based on

quark model and symmetry arguments. Using the DDH model combined with the Argonne

v18 (AV18) model for the PC interactions, Ref. [16] finds at the photon energy ω = 2.235 MeV

AγL = 2.53× 10−8 . (2)

This agrees with the result of Ref. [17] using the same inputs. However, the authors of

Ref. [17] also show that the result is very sensitive to the values of the PV couplings as well

as the choice of PC potential. In particular, the asymmetry is larger by a factor of almost

two if the CD-Bonn potential [24] is used instead of AV18 (using the same PV parameters).1

1 In this comparison the PC couplings in the PV potential were not adjusted to match those used in the

PC potential. For a discussion of the impact on the extraction of PV coupling values from experiment see

Ref. [3].
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Similarly, Ref. [15] shows that the circular polarization Pγ depends strongly on the choice of

PC potential.

The asymmetry AγL has been determined in pionless EFT (EFT 6π) at leading order (LO) at

threshold in Refs. [18–20]. The philosophy behind parity violation in EFT 6π is closely related

to the approach by Danilov [22] in that no assumptions are made about the short-distance

details underlying the mechanism for PV and PC interactions. Since no model-independent

determination of the PV low-energy constants (LECs) of EFT6π exists, the authors of [18–20]

chose not to give any numerical results.

Given the model dependence of the existing results, the aim of this paper is to analyze

the asymmetry AγL systematically in EFT 6π to next-to-leading order (NLO). Using EFT6π

allows one to consistently treat PC and PV interactions in the same framework as well as

to provide theoretical error estimates based on its power counting. Going beyond the work

of Refs. [18, 19], we determine AγL at NLO and study its energy dependence. Employing

two different conventions for the determination of the PC LECs provides a lower bound on

theoretical errors from higher-order effects in the EFT expansion. In addition, we consider

two very rough “figures of merit” to constrain the energy at which an actual measurement

of AγL might be best performed. As explained below, we use several sets of values of the

PV LECs to find an estimate of AγL. However, these only amount to order-of-magnitude

estimates. A more detailed and reliable estimate requires the extraction of the LECs from

other PV observables, which is not currently feasible. Our results show that a measurement

of AγL should probably be performed for a photon energy . 2.3 MeV. Matching the LECs to

the DDH best values we find AγL of the order of 10−7. However, given the uncertainty in the

PV LECs, this number should only be considered an order-of-magnitude estimate.

The paper is structured as follows. In Sec. II we introduce the EFT6π Lagrangian for the

PC and PV sectors. Section III contains the definition and calculation of the required PC

and PV amplitudes, while results for the asymmetry are found in Sec. IV. We conclude in

Sec. V.
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II. EFFECTIVE LAGRANGIAN

Pionless EFT is the effective theory describing interactions between nucleons as well

as their couplings to external currents at low momenta well below the pion mass. The

corresponding Lagrangian consists of nucleon contact terms with an increasing number of

derivatives. For reviews, see e.g. Refs. [25–27]. In the following, we use the formulation

including two auxiliary dibaryon fields with the quantum numbers of two nucleons in the 1S0

and 3S1 states, respectively [28–30]. The dibaryon formulation will be denoted by dEFT6π.

The parity-conserving Lagrangian up to NLO in dEFT6π is given by

LdPC =N̂ †

(
iD0 +

~D2

2MN

)
N̂ + t̂†i

(
∆

(3S1)
(−1) + ∆

(3S1)
(0) − c0t

(
iD0 +

~D2

4MN

))
t̂i − yt

[
t̂†iN̂

TPiN̂ + H.c.
]

(3)

+ ŝ†a

(
∆

(1S0)
(−1) + ∆

(1S0)
(0) − c0s

(
iD0 +

~D2

4MN

))
ŝa − ys

[
ŝ†aN̂

T P̄aN̂ + H.c.
]
,

where the dibaryon field t̂i (ŝa) is a spin-triplet iso-singlet (spin-singlet iso-triplet) combi-

nation of nucleons projected by Pi = 1√
8
σ2σiτ2 (P̄a = 1√

8
σ2τ2τa). The nucleon covariant

derivative is

DµN̂ = ∂µN̂ + i
e

2
(1 + τ3)ÂµN̂ , (4)

while for the dibaryon fields

Dµt̂i = ∂µt̂i + ieÂµt̂i , Dµŝa = ∂µŝa + ieÂµQŝa . (5)

Here Q = diag(2, 1, 0) is a matrix in isospin space acting on the iso-triplet field ŝ. The

coefficients in the Lagrangian have to be determined by comparison with experimentally

accessible quantities, and several conventions exist for this procedure. In the so-called Z-

parametrization [31, 32] they are determined by reproducing the 3S1 deuteron pole and the

1S0 virtual bound state pole at LO, and at NLO one fits to the residues about the 3S1 and

1S0 poles. This scheme yields

yt = ys =

√
4π

MN

, ∆
(3S1)
(−1) = (γt − µ), ∆

(1S0)
(−1) = (γs − µ),

c0s/t = −MN

2γs/t

(
Zs/t − 1

)
, ∆

(3S1)
(0) =

γ2
t

MN

, ∆
(1S0)
(0) =

γ2
s

MN

, (6)
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where γt = 45.7025 MeV is the deuteron binding momentum, γs = −7.890 MeV the 1S0

virtual bound state pole binding momentum, Zt = 1.6908 the residue about the deuteron

pole, and Zs = .9015 the residue about the 1S0 virtual bound state pole. The parameter

µ is a mass scale given by the power divergence subtraction scheme [33] with dimensional

regularization.

The LO 3S1 and 1S0 dibaryon propagators are given by an infinite bubble sum of nucleons

[33], which at NLO receive corrections from the dibaryon kinetic terms and the ∆
(3S1)
(0) and

∆
(1S0)
(0) terms respectively. The resulting dibaryon propagators in the center of mass (c.m.)

frame are [32]

Dt

(
p2

MN

, 0

)
=

1

γt + i|p|

 1︸︷︷︸
LO

+
Zt − 1

2γt
(γt − i|p|)︸ ︷︷ ︸
NLO

 , (7)

and

Ds

(
p2

MN

, 0

)
=

1

γs + i|p|

 1︸︷︷︸
LO

+
Zs − 1

2γs
(γs − i|p|)︸ ︷︷ ︸
NLO

 , (8)

where Dt is the 3S1 dibaryon propagator and Ds the 1S0 dibaryon propagator. From the

deuteron propagator we obtain the deuteron wavefunction renormalization as the residue

about its pole which yields

ZD =
8πγt
M2

Ny
2
t

 1︸︷︷︸
LO

+Zt − 1︸ ︷︷ ︸
NLO

 . (9)

In addition to the Z-parametrization we also consider another formalism, which we refer to

as the resummed effective range expansion (ERE). In this approach effective range corrections

are treated as LO terms and are resummed into the LO dibaryon propagators yielding

Dt

(
p2

MN

, 0

)
=

1

γt − 1
2
ρt(p2 + γ2

t ) + i|p|
, (10)

and

Ds

(
p2

MN

, 0

)
=

1

γs − 1
2
rsp2 + i|p|

, (11)

where ρt = 1.764 fm is the effective range about the deuteron pole in the 3S1 channel and

rs = 2.73 fm is the effective range about zero momentum in the 1S0 channel. Note that in
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the resummed ERE, γs = 1
as

, where as = −23.714 fm is the 1S0 scattering length and the

deuteron wavefunction renormalization is given by

ZD =
8πγt
M2

Ny
2
t

Zt. (12)

The PC LECs are given by

∆
(3S1)
(0) =

γ2
t

MN

, ∆
1S0

(0) = 0, c0t = −ρt
2
, c0s = −rs

2
, (13)

while the other LECs remain the same as in the Z-parametrization.2

The nucleon and dibaryon fields can couple to external electromagnetic currents through

the covariant derivative. In addition, the nucleon can couple through its magnetic dipole

moment. The corresponding LO Lagrangian is given by

Lκ =
e

2MN

N̂ †(κ0 + κ1τ3)~σ ·BN̂ , (14)

where κ0 = 0.4399 is the isoscalar magnetic dipole moment, and κ1 = 2.3529 the isovector

magnetic dipole moment. At NLO there is also a four-nucleon-one-photon contact interaction

with a coupling constant L1 which in dEFT 6π is [30, 34]

LdL1
= e

L1ysytMN

8π
t̂j†ŝ3Bj + H.c. (15)

The constant L1 is fit to reproduce the np capture cross section of σexpt = 334.2 ± .5 mb

at a neutron velocity of 2200 m/s. At the same order, there is an additional four-nucleon-

one-photon contact interaction proportional to a LEC L2 in dEFT 6π which is given by the

Lagrangian [34, 35]

LdL2
= −eL2y

2
tMN

8π
iεijk t̂†i t̂jBk. (16)

The value for L2 is fit to reproduce the correct deuteron magnetic dipole moment at NLO

in dEFT 6π [36].

2 This is not the most conventional choice of LECs in the resummed ERE formalism (see e.g. Ref. [30]).

However, physical results are independent of which convention is used.
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The LO PV Lagrangian in EFT6π consists of five independent terms [37, 38] and in the

dibaryon formalism is given by [19]

LdPV = −
[
g(3S1−1P1)t̂†i

(
N̂Tσ2τ2i

↔
DiN̂

)
(17)

+ g
(1S0−3P0)
(∆I=0) ŝ†a

(
N̂Tσ2~σ · τ2τai

↔
DN̂

)
+ g

(1S0−3P0)
(∆I=1) ε3ab(ŝa)†

(
N̂Tσ2~σ · τ2τ

b
↔
DN̂

)
+ g

(1S0−3P0)
(∆I=2) I

ab(ŝa)†
(
N̂Tσ2~σ · τ2τ

bi
↔
DN̂

)
+ g(3S1−3P1)εijk(t̂i)

†
(
N̂Tσ2σ

kτ2τ3

↔
D
j

N̂

)]
+ H.c.

For the isotensor contribution of the PV Lagrangian the matrix Iab is given by Iab =

diag(1, 1,−2). The notation
↔
Di is defined as aO

↔
Db = aO ~Db − ( ~Da)Ob, where O is some

spin-isospin operator. Higher-order PV operators contain at least two more derivatives and

thus only start to enter at next-to-next-to-leading order (N2LO).

III. AMPLITUDES

The amplitude for np→ dγ including PC and PV terms can be parametrized as

A = eXNT τ2σ2[σ · kε̂∗d · ε̂∗γ − σ · ε̂∗γk · ε̂∗d]N + ieY εijkε̂∗dikj ε̂
∗
γk

(NT τ2τ3σ2N) (18)

+ eE1vN
Tσ2σ · ε̂∗dτ2τ3Np · ε̂∗γ + ieWεijkε̂∗dîε

∗
γk

(NT τ2σ2σ
jN) + eV ε̂∗d · ε̂∗γ(NT τ2τ3σ2N)

+ ieU1ε
ijkε̂∗γikj ε̂

∗
dk
NTσ2σ · pτ2τ3N + ieU2ε

ijkε̂∗γikjN
Tσ2σkτ2τ3Np · ε̂∗d

+ ieU3ε
ijkε̂∗γikjN

Tσ2σ · ε̂∗dτ2τ3Npk + · · · ,

where the ellipsis stands for terms not relevant for our calculation. Here k represents the

outgoing photon momentum and p the nucleon momentum in the center of mass frame. The

polarization of the deuteron and photon are defined by ε̂d and ε̂γ respectively, and N defines

the nucleon spinor and isospinor. We use the convention that ε̂±γ = ∓(1,±i, 0)/
√

2 is the

polarization vector for photons with ± helicity. X denotes the isoscalar magnetic dipole

(M1) amplitude, Y the isovector M1 amplitude, and E1v the isovector electric dipole (E1)

amplitude. The PV amplitudes are the PV isoscalar E1 amplitude W , the PV isovector
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E1 amplitude V , and three PV isovector M1 amplitudes U1, U2, and U3.3 In EFT 6π, each

amplitude can be decomposed into contributions at a given order, e.g. Y = YLO +YNLO + · · · ,

with analogous expressions for the remaining amplitudes. The PC amplitudes have been

calculated in various formalisms and conventions elsewhere. Here, we collect the results in

our conventions before considering the energy dependence of the PV amplitudes V , W , U1,

U2, and U3 up to NLO.

A. Parity-conserving amplitudes

The isovector electric dipole amplitude E1v in dEFT6π at LO is given by the diagram in

Fig. 1, in which photons are minimally coupled to the nucleons. At NLO there are no new

FIG. 1. (Color online) Diagram contributing to the E1v amplitude. The thick solid line denotes

a dibaryon propagator, the thin lines with arrows nucleon lines, and the wavy line a photon.

The photon is minimally coupled and the cross denotes an insertion of the deuteron wavefunction

renormalization.

diagrams for E1v and corrections in the Z-parametrization only come from the deuteron

wavefunction renormalization. Using the ERE parametrization, the E1v amplitude has been

calculated in EFT6π up to N4LO [39, 40], and in dEFT6π in the resummed ERE up to NLO

[41]. The LO E1v amplitude in the Z-parametrization is given by

E1
(Z)
v,LO = − 2

MN

√
γtπ

1

γ2
t + p2

, (19)

and in the resummed ERE by

E1
(R)
v,LO = − 2

MN

√
γtπ

1

γ2
t + p2

√
Zt. (20)

3 These amplitudes are also sometimes referred to as multipole moments.
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The strictly perturbative NLO correction in the Z-parametrization is

E1v
(Z)
NLO = − 2

MN

√
γtπ

1

γ2
t + p2

1

2
(Zt − 1), (21)

and in the resummed ERE the NLO term is

E1v
(R)
NLO = 0. (22)

At LO and NLO the isovector M1 amplitude Y is given by the sum of diagrams in

Fig. 2. The LO contributions are given by diagrams (a) and (b) where the photon couples

FIG. 2. (Color online) Diagrams contributing to the amplitude Y . Here the small open circle

denotes a coupling to the nucleon magnetic moment. The green diamond represents an insertion

of L1.

magnetically via the Lagrangian of Eq. (14). In the NLO diagram (c) the photon couples

through the L1 term from the Lagrangian of Eq. (15). In addition to this NLO diagram,

in the Z-parametrization, the LO diagrams (a) and (b) receive NLO corrections from the

deuteron wavefunction renormalization as well as effective range corrections to the dibaryon

propagators. Using the ERE parametrization the amplitude Y has been calculated to N2LO

in EFT 6π [34, 39] and to NLO in dEFT 6π in the resummed ERE [30, 42]. Summing the

diagrams we find in the Z-parametrization a LO Y amplitude

Y
(Z)

LO =
2κ1

MN

√
γtπ

1

γ2
t + p2

(
1− γt + i|p|

γs + i|p|

)
, (23)
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and in the resummed ERE

Y
(R)

LO =
2κ1

MN

√
γtπ

1

γ2
t + p2

(
1− γt + i|p|

γs − 1
2
rsp2 + i|p|

)√
Zt . (24)

The NLO Z-parametrization correction is

Y
(Z)

NLO =
2κ1

MN

√
γtπ

1

γ2
t + p2

(
1

2
(Zt − 1) (25)

− 1

γs + i|p|

{
1

2
(Zt − 1) +

Zs − 1

2γs
(γs − i|p|)

}
(γt + i|p|)

)
− L1

MN

√
γtπ

1

γs + i|p|
,

and the resummed ERE correction is

Y
(R)

NLO = − L1

MN

√
γtπ

1

γs − 1
2
rsp2 + i|p|

√
Zt . (26)

In EFT6π, there are no LO contributions to the isoscalar M1 amplitude X in the zero recoil

limit [43]. The first nonzero contribution occurs at NLO from the four-nucleon-one-photon

LEC L2 [36] given in Eq. (16). The NLO contribution to X is given by the sole diagram in

Fig. 3, where the circle represents an L2 vertex. The resulting X at NLO in dEFT6π in the

FIG. 3. (Color online) NLO diagram contributing to the amplitude X. The orange circle represents

an insertion of L2.

Z-parametrization is given by

X
(Z)
NLO =

L2

MN

√
γtπ

1

γt + i|p|
, (27)

and in the resummed ERE by

X
(R)
NLO =

L2

MN

√
γtπ

1

γt − 1
2
ρt(p2 + γ2

t ) + i|p|
√
Zt . (28)

11



B. Parity-violating amplitudes

The PV amplitudes V and W are given by the sum of diagrams in Fig. 4, where the square

vertex represents an insertion from the PV Lagrangian of Eq. (17). The initial NN state and

the first dibaryon propagators in diagrams 4(a)-(d) are in the 3S1-wave for the amplitude

W and in the 1S0-wave for V . Diagrams (a)-(e) have been calculated in the resummed ERE

parametrization in EFT 6π and dEFT6π at LO in the threshold limit in Refs. [18–20]. Here

we calculate these amplitudes beyond threshold in the Z-parametrization and resummed

ERE up to NLO. Diagram (f) is zero in the threshold limit and thus was not considered in

previous calculations. For the V and W amplitudes no new types of diagrams enter at NLO.

FIG. 4. (Color online) LO diagrams contributing to the PV amplitudes W and V . The blue box

represents an insertion of a PV operator.

In the Z-parametrization the NLO contributions stem from effective range corrections to

the dibaryon propagators and the deuteron wavefunction renormalization. For the LO PV
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isoscalar E1 amplitude W in the Z-parametrization we find

W
(Z)
LO = −

√
8γt
MN

(
1− 1

3

1

γ2
t + p2

{
p2 +

(γt + i|p|)3

γt + ip

})
g

3S1−3P1 , (29)

and in the resummed ERE

W
(R)
LO = −

√
8γtZt
MN

(
1− 1

3

1

γ2
t + p2

{
p2 +

(γt + i|p|)3

γt − 1
2
ρt(p2 + γ2

t ) + ip

})
g

3S1−3P1 . (30)

The NLO Z-parametrization correction is

W
(Z)
NLO = −

√
8γt
MN

(
1− 1

3

1

γ2
t + p2

{
p2 +

(γt + i|p|)3

γt + ip

(
1 +

1

γt
(γt − i|p|)

)})
Zt − 1

2
g

3S1−3P1 ,

(31)

and the resummed ERE correction is

W
(R)
NLO = 0. (32)

The LO PV isovector E1 amplitude V in the Z-parametrization is

V
(Z)

LO =−
√

8γt
MN

[(
1− 1

γs + i|p|

{
i|p|+ 2

3

γ3
t − i|p|3

γ2
t + p2

}
− 1

3

p2

γ2
t + p2

)
g

3S1−1P1

+
1

γs + i|p|

{
γt −

2

3

γ3
t − i|p|3

γ2
t + p2

}(
g

1S0−3P0

(∆I=0) − 2g
1S0−3P0

(∆I=2)

)]
,

(33)

and in the resummed ERE

V
(R)

LO =−
√

8γtZt
MN

[(
1− 1

γs − 1
2
rsp2 + i|p|

{
i|p|+ 2

3

γ3
t − i|p|3

γ2
t + p2

}
− 1

3

p2

γ2
t + p2

)
g

3S1−1P1

+
1

γs − 1
2
rsp2 + i|p|

{
γt −

2

3

γ3
t − i|p|3

γ2
t + p2

}(
g

1S0−3P0

(∆I=0) − 2g
1S0−3P0

(∆I=2)

)]
.

(34)

The NLO Z-parametrization correction is

V
(Z)

NLO = −
√

8γt
MN

[(
1

2
(Zt − 1)

− 1

γs + i|p|

(
1

2
(Zt − 1) +

Zs − 1

2γs
(γs − i|p|)

){
i|p|+ 2

3

γ3
t − i|p|3

γ2
t + p2

}
− 1

3

p2

γ2
t + p2

1

2
(Zt − 1)

)
g

3S1−1P1

+
1

γs + i|p|

(
1

2
(Zt − 1) +

Zs − 1

2γs
(γs − i|p|)

){
γt −

2

3

γ3
t − i|p|3

γ2
t + p2

}(
g

1S0−3P0

(∆I=0) − 2g
1S0−3P0

(∆I=2)

)]
,

(35)
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and in the resummed ERE

V
(R)

NLO = 0. (36)

The LO PV amplitudes, U1, U2, and U3 receive contributions from the diagrams in Fig

5. In the zero recoil limit at threshold these diagrams give zero contribution and therefore

did not appear in previous calculations. The LO PV isovector M1 amplitude U1 in the

FIG. 5. (Color online) LO diagrams contributing to the PV amplitudes U1, U2, and U3. The blue

box represents an insertion of a PV operator.

Z-parametrization is

U1
(Z)
LO =

√
8γt
MN

1

γ2
t + p2

(
κ0g

3S1−3P1 − 2κ1
γt + ip

γs + ip

(
g

1S0−3P0

(∆I=0) − 2g
1S0−3P0

(∆I=2)

))
, (37)

and in the resummed ERE

U1
(R)
LO =

√
8γtZt
MN

1

γ2
t + p2

(
κ0g

3S1−3P1 − 2κ1
γt + ip

γs − 1
2
rsp2 + ip

(
g

1S0−3P0

(∆I=0) − 2g
1S0−3P0

(∆I=2)

))
. (38)

The LO PV isovector M1 amplitude U2 in the Z-parametrization is

U2
(Z)
LO =

√
8γt
MN

1

γ2
t + p2

(
κ1g

3S1−1P1 − 2κ0g
3S1−3P1

)
, (39)

and in the resummed in the ERE

U2
(R)
LO =

√
8γtZt
MN

1

γ2
t + p2

(
κ1g

3S1−1P1 − 2κ0
γt + ip

γt − 1
2
ρt(p2 + γ2

t ) + ip
g

3S1−3P1

)
. (40)

Finally the amplitude U3 in the Z-parametrization is given by

U3
(Z)
LO =

√
8γt
MN

1

γ2
t + p2

κ0g
3S1−3P1 , (41)
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and in the resummed ERE

U3
(R)
LO =

√
8γtZt
MN

1

γ2
t + p2

(
2

γt + ip

γt − 1
2
ρt(p2 + γ2

t ) + ip
− 1

)
κ0g

3S1−3P1 . (42)

At NLO the amplitudes U1, U2, and U3 receive wavefunction renormalization corrections

as well as corrections to the dibaryon propagators. In addition, the diagrams shown in Fig. 6,

resulting from a combination of a PV vertex with the L1 and L2 interactions, contribute at

NLO. The NLO Z-parametrization contribution to U1 is

FIG. 6. (Color online) NLO diagrams contributing to the PV amplitudes U1, U2, and U3. The blue

box represents an insertion of a PV operator. The green diamond represents an insertion of L1 and

the orange circle an insertion of L2.

U1
(Z)
NLO =

√
8γt
MN

1

γ2
t + p2

(
κ0g

3S1−3P1
1

2
(Zt − 1) (43)

−2κ1
γt + ip

γs + ip

(
1

2
(Zt − 1) +

Zs − 1

2γs
(γs − i|p|)

)(
g

1S0−3P0

(∆I=0) − 2g
1S0−3P0

(∆I=2)

))
− L1

√
8γt
MN

1

γs + ip

(
g

1S0−3P0

(∆I=0) − 2g
1S0−3P0

(∆I=2)

)
,

and in the resummed ERE

U1
(R)
NLO = −L1

√
8γtZt
MN

1

γs − 1
2
rsp2 + ip

(
g

1S0−3P0

(∆I=0) − 2g
1S0−3P0

(∆I=2)

)
. (44)

The NLO Z-parametrization contribution to U2 is

U2
(Z)
NLO =

√
8γt
MN

1

γ2
t + p2

(
κ1g

3S1−1P1 − 2κ0g
3S1−3P1

(
1 +

1

γt
(γt − i|p|)

))
1

2
(Zt − 1) (45)

− L2

√
8γt
MN

1

γt + ip
g

3S1−3P1 ,
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while in the resummed ERE

U2
(R)
NLO = −L2

√
8γtZt
MN

1

γt − 1
2
ρt(p2 + γ2

t ) + ip
g

3S1−3P1 . (46)

Finally the NLO Z-paramertrization correction to U3 is

U3
(Z)
NLO =

√
8γt
MN

1

γ2
t + p2

κ0g
3S1−3P1

(
1

2
+

1

γt
(γt − i|p|)

)
(Zt − 1) (47)

+ L2

√
8γt
MN

1

γt + ip
g

3S1−3P1 ,

and in the ERE

U3
(R)
NLO = L2

√
8γtZt
MN

1

γt − 1
2
ρt(p2 + γ2

t ) + ip
g

3S1−3P1 . (48)

There are additional contributions from these diagrams proportional to g
3S1−1P1 , which how-

ever do not contribute to the asymmetry to the order we are considering and which we

therefore neglect.

IV. PARITY-VIOLATING ASYMMETRY AND RESULTS

The unpolarized np capture cross section up to NLO is given by

σ =
2e2

|vrel|
1

4π

[
|YLO|2

1

M3
N

(p2 + γ2
t )

3 + 2Re[Y ∗LOYNLO]
1

M3
N

(p2 + γ2
t )

3 (49)

+|E1vLO|2p2 1

MN

(p2 + γ2
t ) + 2Re[E1v

∗
LOE1vNLO]p2 1

MN

(p2 + γ2
t )

]
.

This and the following expressions are valid for amplitudes in both the Z-parametrization

and resummed ERE formalisms. To obtain predictions for the cross section we fit the value

of L1 to the cold np capture cross section of σexpt = 334.2 ± .5 mb at an incident neutron

speed of v = 2200 m/s, which yields a value of L1 ' −6.90 fm in the Z-parametrization, and

L1 ' −4.02 fm in the resummed ERE. The isoscalar M1 amplitude X starts to contribute

to the unpolarized np capture cross section only at N2LO. Using detailed balance, the total

cross section for the time-reversed process γd→ np is related to that of np capture by

σ(γd→ np) =
2MN(k0 − Ed)

3k2
0

σ(np→ dγ), (50)
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where k0 ≈ p2+γ2t
MN

is the photon energy and Ed = 2.224575 MeV is the deuteron binding

energy.

Next we consider the asymmetry AγL which is the asymmetry in the break-up cross sections

with positive and negative helicity photons σ+ and σ− in ~γd→ np and is defined as

AγL =
σ+ − σ−
σ+ + σ−

. (51)

The asymmetry results from an interference between the PC amplitude Y and the PV

amplitude V , the PC E1v and PV U1, U2, and U3 amplitudes, as well as the PC X and PV

W amplitudes, and up to NLO is given by

AγL = − 2

k0

1

|YLO|2 + |E1vLO|2 p2

k20

[
Re[Y ∗LOVLO + Y ∗NLOVLO + Y ∗LOVNLO] (52)

−
(

Re[Y ∗LOVLO]− 1

3
p2Re[ULOE1v

∗
LO]

) 2Re[Y ∗LOYNLO] + 2Re[E1v
∗
LOE1vNLO]p

2

k20

|YLO|2 + |E1vLO|2 p2

k20

+ 2Re[X∗NLOWLO]− 1

3
p2Re[ULOE1v

∗
LO]− 1

3
p2Re[UNLOE1v

∗
LO]− 1

3
p2Re[ULOE1v

∗
NLO]

,
where ULO = U1LO + U2LO + 3U3LO and UNLO = U1NLO + U2NLO + 3U3NLO.

We fit the parameter L2 occurring in X, U2, and U3 to reproduce the deuteron magnetic

dipole moment which up to NLO in EFT6π in the Z-parametrization is given by 4

µ
(Z)
M =

(
2Ztκ0 + 2L2γt

)
, (53)

and in the resummed ERE by

µ
(R)
M =

(
2Ztκ0 + 2L2γtZt

)
, (54)

where µM = .85741 is the deuteron magnetic dipole moment. From the fit we find L2 ' −

1.36 fm in the Z-parametrization, and L2 ' − 0.805 fm in the resummed ERE.

To obtain estimates for the PV LECs we relate them to the DDH parameters using

the results in Ref. [44]. As discussed, no definite determination of these DDH parameters

4 For analogous expressions using different conventions see Refs. [35, 36].
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currently exists. We therefore use three different sets of values, which are labeled DDH,

DDH-adj, and Bowman in the following. DDH represents the DDH “best values” [23].

DDH-adj refers to a set in which two combinations of ρ and ω couplings are fit to data on

the ~pp longitudinal asymmetry, while the remaining couplings take the DDH “best values”

[17]. The set labeled Bowman is obtained by fitting the PV couplings to a variety of available

data [45]. With these three sets, we obtain the NLO results in Fig. 7. The thin solid line

is the NLO AγL using DDH “best values” in the Z-parametrization and the thicker solid

line is the same result in the resummed ERE. The long-dashed thin line is the NLO AγL

using the DDH-adj values in the Z-parametrization and the thicker long-dashed line is the

result in the resummed ERE. Finally, the small-dashed thin line is the NLO AγL using the

Bowman values and the small-dashed thick line is the same result, but using the resummed

ERE. The difference between the Z-parametrization and resummed ERE results is at most

approximately 10% at threshold and this is in line with the 10% error that we expect in

the Z-parametrization at NLO. We also note that between the DDH “best values” and the

Bowman values there is about a factor of two difference. We want to stress that because of

the uncertainties in the DDH values the predictions in the plots are merely representations

of possible values for AγL. Using the full DDH allowed ranges we find a large variation in the

value of AγL over several orders of magnitude and different signs. In addition, as pointed out

in Ref. [4], the relations between LECs and model parameters contain sizable uncertainties

as they can strongly depend on several regularization scales. Therefore, even with the LECs

estimated using the DDH “best values,” a comparison with previous model calculations is

not very reliable. Keeping these caveats in mind, we note that in using the matched LECs the

magnitude of our results tends to be larger than the values found in model calculations. For

example, the asymmetries using the AV18 potential and DDH “best values” in Refs. [16, 17]

are about an order of magnitude smaller. The difference is smaller when the Bonn potential

is used [17]. We also note that our results are in better agreement with those of Ref. [14].

However, as explained above, due to the uncertainties in matching the DDH parameters to

the LECs as well as the strong dependence on the choice of PC interactions in the model

calculations, such differences are not surprising. Using power counting arguments, we stress

that for a given set of LECs, we estimate the theoretical error of our calculation to be of the
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order of 10%.
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FIG. 7. (Color online) The PV asymmetry AγL, as a function of the photon energy. The lowest

photon energy on the plot is the breakup threshold value corresponding to the deuteron binding

energy. The thin lines are Z-parametrization calculations and the thick lines ERE calculations.

In addition to values based on the DDH estimates, we also match the LECs to values

of PV meson-nucleon couplings obtained from a nonlinear chiral Lagrangian in combination

with a soliton model of the nucleon [46, 47]. These values tend to be smaller than those

from the DDH approach. The obtained asymmetry is also smaller than in the case of DDH-

matched LECs as can be seen in Fig. 8. However, the values of AγL based on the soliton

model are included in the variation of AγL when considering the complete DDH ranges.

An alternative to determining the LECs that avoids model dependence is to estimate their

size based on the assumption that they are “natural,” i.e., that the magnitude of the LECs

is of order 1 in the correct units. However, this does not determine the signs of the LECs nor

the relative size of different LECs, and can therefore only be viewed as an order-of-magnitude
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FIG. 8. (Color online) The PV asymmetry AγL, as a function of the photon energy. The lowest

photon energy on the plot is the breakup threshold value corresponding to the deuteron binding

energy. The thin lines are Z-parametrization calculations and the thick lines ERE calculations.

estimate. As discussed in Ref. [48], naturalness arguments lead to an estimate of∣∣g(X−Y )
∣∣ ≈ 10−10MeV−

3
2 . (55)

Similarly, by comparison of the dEFT6π calculation of ~pp scattering [4] with the experimental

result at 13.6 MeV [8], the size of the LECs can be estimated to be5∣∣g(X−Y )
∣∣ ≈ 10−11MeV−

3
2 . (56)

The values obtained from matching the LECs to DDH model parameters agree with these

estimates. In particular, considering the full “reasonable ranges” of the DDH couplings

covers the range of LEC values one would obtain from naturalness arguments.

5 The asymmetry in ~pp scattering constrains one particular linear combination of LECs in dEFT6π. Here,

we consider this as an estimate of the size of individual LECs. However, it is possible that the individual

LECs are larger and that a cancellation occurs for this particular linear combination.
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Naively one would like to measure the asymmetry AγL at the photon momentum for which

it is maximum. This value occurs at threshold for γd → np where the cross section in the

denominator of Eq. (51) is zero. However, this also means that the resulting count rate will be

negligible. Therefore, it is important to find a photon energy for which the asymmetry is not

too small, but the expected count rate is large enough to perform the experiment. A detailed

determination of this energy would also include an analysis of systematic uncertainties and

various issues of the actual construction of the experimental apparatus. Such an analysis

is beyond the scope of this paper. Here, we merely try to find a suitable range of photon

energies which balance the size of the asymmetry and the requirement for large enough count

rates. To do so, we choose as a crude figure of merit f = (AγL)2 × σ(γd → np). Using our

results for AγL and again the DDH, DDH-adj, and Bowman values, as well as Eqs. (49) and

(50) we find the figure of merit f as is given in Fig. 9. The notation used for Fig. 9 is the
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FIG. 9. (Color online) The figure of merit (AγL)2 × σ as a function of photon energy. The lowest

photon energy on the plot is the breakup threshold value corresponding to the deuteron binding

energy. The thin lines are Z-parametrization calculations and the thick lines ERE calculations.

same as in Fig. 7. The figure of merit f is maximized at a photon energy of k = 2.264 MeV

for both the Z parametrization and resummed ERE using DDH and DDH-adj values. For

the Bowman values, the figure of merit is maximized at a photon energy of k = 2.259 MeV
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photon energy on the plot is the breakup threshold value corresponding to the deuteron binding
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for both the Z-parametrization and the resummed ERE formalism.

As an additional estimate, we also consider the product AγL×σ as an alternative figure of

merit. As shown in Fig. 10 and expected from the energy dependence of the asymmetry and

the cross section, the maxima for this function correspond to slightly higher photon energies

than those of Fig. 9. The figures of merit using the soliton LECs show maxima for similar

photon energies. While these are only very rough approximations to more reliable figures

of merit, their combination suggests performing a measurement of the asymmetry around a

photon energy of approximately 2.26 MeV to 2.3 MeV.

V. CONCLUSION

We have calculated the energy dependence of the PV asymmetry AγL for deuteron breakup

with polarized photons in EFT 6π to NLO, in which PC and PV interactions were treated

within a consistent framework. Based on power counting arguments, the theoretical errors

in our results were estimated to be about 10%. Using various estimates for the PV LECs,
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which have not been reliably determined at this stage, the asymmetry AγL is expected to be

of the order of 10−7. However, considering the large “reasonable ranges” for PV couplings

that have been given in Ref. [23], variations of AγL of several orders of magnitude are possible.

With the continuing development of high-intensity photon sources and improvements

in the required high control of systematics, a measurement of AγL might be possible in the

future, and is currently being explored as a possibility at an upgraded HIγS. While a detailed

analysis of possible sources of false asymmetries and of the experimental set-up is beyond

the scope of this paper, we considered two simplified figures of merit to determine a range

of photon energies that is suitable to balance the expected size of the asymmetry with the

expected count rates. We found that measurements between 2.26 MeV and 2.3 MeV might

be best suited for an experimental determination of AγL.

Together with the existing measurement of the longitudinal asymmetry in ~pp scattering [8]

and the expected results from the photon asymmetry in polarized neutron capture on protons,

~np→ dγ, [10] such a measurement would provide important input into the determination of

the PV coupling constants. The restriction to two-body systems should significantly reduce

the theoretical uncertainties that are often present in the extraction of these couplings from

systems involving larger numbers of nucleons.
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