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We use the newly developed Multi-Reference In-Medium Similarity Renormalization Group to
study all even isotopes of the calcium and nickel isotopic chains, based on two- plus three-nucleon
interactions derived from chiral effective field theory. We present results for ground-state and two-
neutron separation energies and quantify their theoretical uncertainties. At shell closures, we find
excellent agreement with Coupled Cluster results obtained with the same Hamiltonians. Our results
confirm the importance of chiral 3N interactions to obtain a correct reproduction of experimental
energy trends, and their subtle impact in neutron-rich Ca and Ni isotopes. At the same time, we
uncover and discuss deficiencies of the input Hamiltonians which need to be addressed by the next
generation of chiral interactions.

PACS numbers: 13.75.Cs,21.30.-x,21.45.Ff,21.60.De

a. Introduction. As experimental capabilities for
the production of rare isotopes grow, so does the need
for a reliable description and prediction of their prop-
erties from nuclear many-body theory, including quan-
tified uncertainties. Systematically improvable ab initio
methods like Coupled Cluster (CC) [1–3], Self-Consistent
Green’s Functions [4–8], and the In-Medium Similarity
Renormalization Group (IM-SRG) [9–11] routinely access
medium-mass closed-shell nuclei and even heavy systems
beyond A = 100 due to their modest computational scal-
ing. At the same time, great effort has been invested to
quantify the theoretical uncertainties of these methods
[2, 10, 12, 13].
Nuclear interactions from chiral effective field theory

are the input of choice for ab initio many-body theory, be-
cause they provide formally consistent two-, three-, and
up to A-nucleon forces and operators (see, e.g., [14, 15]).
Current chiral Hamiltonians have been employed with
great success, but there are open issues regarding the
power counting, the determination of the low-energy con-
stants (LECs) etc., motivating a concerted effort to con-
struct next-generation chiral interactions for the nuclear
structure and reactions community [16].
Ab initio studies of medium-mass and heavy nuclei,

particularly away from closed shells, allow us to con-
front chiral Hamiltonians with a wealth of experimental
data from existing and forthcoming rare-isotope facilities.
Such nuclei are sensitive to features of the Hamiltonian
which are not probed in few-body systems, and exotic
nuclei, in particular, are an excellent laboratory to study
the interplay of the two-nucleon (NN) and three-nucleon
(3N) interactions, as well as continuum effects. For in-
stance, chiral 3N forces have been crucial for a proper
description of the neutron drip lines in the region around
oxygen [5, 8, 11, 17–22].
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In this work, we study the even calcium and nickel iso-
topes with the Multi-Reference IM-SRG (MR-IM-SRG)
for open-shell nuclei, using chiral NN+3N interactions as
input. Such a study is timely, because neutron-rich cal-
cium isotopes have been the focus of ongoing experimen-
tal campaigns [23–28], and investigations of proton-rich
Ca isotopes are planned for the near future. Likewise,
there is continued interest in neutron-rich Ni isotopes
[29–36].
b. Multi-Reference In-Medium SRG. The basic for-

malism of the (MR)-IM-SRG is presented in Refs. [9–11].
The Hamiltonian is normal-ordered with respect to an
arbitrary reference state |Φ〉 via the generalized normal-
ordering developed by Kutzelnigg andMukherjee [37, 38],
and plugged into the operator flow equation

d

ds
H(s) = [η(s), H(s)] . (1)

With a suitable choice of generator η(s), Eq. (1) imple-
ments a continuous unitary transformation that decou-
ples the ground state of the Hamiltonian H(s) from ex-
citations as we evolve s → ∞, solving the many-body
problem [9–11]. We close the system of flow equations by
truncating η(s) and H(s) at the two-body level for all s,
obtaining the scheme we refer to as MR-IM-SRG(2).
For an arbitrary reference state |Φ〉, the flow equa-

tions do not only depend on the one-body density matrix

λ1
2 ≡ 〈Φ| a†1a2 |Φ〉 [39], but also on irreducible two-,. . . ,A-

body density matrices, which encode information on the
correlations in the state [37, 38, 40]. They are defined
recursively by subtracting reducible contributions from
the full n-body density matrices, e.g.,

λ12
34 ≡ 〈Φ|A12

34 |Φ〉 − λ1
2λ

3
4 + λ1

3λ
2
4 , (2)

where A1...k
l...N ≡ a†1 . . . a

†
kaN . . . al is a compact notation

for strings of creation and annihilation operators.
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The MR-IM-SRG reference state is a Hartree-Fock-
Bogoliubov (HFB) quasiparticle vacuum which has been
projected on the proton and neutron number of the tar-
get nucleus, |Φ〉 = PNPZ |HFB〉 [11]. For such states, it
is sufficient to truncate terms in the flow equations that
are non-linear in λ12

34 or contain irreducible three-body
density matrices: Energy changes due to this truncation
are negligible compared to other sources of uncertainty
discussed in the following.
In the present work, we use the notation of Ref. [11]

but a different ansatz for the generator η(s). Its matrix
elements are defined as (λi

k = niδ
i
k, n̄i = 1− ni)

η12 ≡ sgn(∆1
2)n̄1n2f

1
2 − [1 ↔ 2] , (3)

η1234 ≡ sgn(∆12
34)n̄1n̄2n3n4Γ

12
34 − [(12) ↔ (34)] , (4)

where f and Γ are the one- and two-body parts of the
normal-ordered Hamiltonian H . Indicating normal or-
dering by colons, the expressions

∆1
2 ≡ 〈Φ| :A2

1 : H :A1
2 : |Φ〉 − 〈Φ|H |Φ〉 , (5)

∆12
34 ≡ 〈Φ| :A34

12 : H :A12
34 : |Φ〉 − 〈Φ|H |Φ〉 (6)

are evaluated using the generalized Wick theorem [37,
38], truncating irreducible densities as in the flow equa-
tions. This generator suppresses the off-diagonal one-
and two-body matrix elements that couple to the refer-
ence state |Φ〉 to excitations like e−|∆|s as s → ∞, where
∆ is the corresponding energy difference (5) or (6). We
refer to η as the imaginary-time generator due to its rela-
tion to imaginary-time projection operators as used, e.g.,
in Green’s Function Monte Carlo [41, 42]. It is of similar
efficiency as the White-type generator used in Ref. [11]
due to its low construction cost and the moderate stiff-
ness of the flow equations it generates, but does not suffer
from instabilities due to small energy denominators.
c. Hamiltonians and Implementation. In this work,

we use the chiral N3LO NN interaction by Entem and
Machleidt, with non-local cutoff ΛNN = 500 MeV/c
[43, 44]. Where indicated, it will be accompanied by a
local N2LO 3N interaction with initial cutoffs Λ3N = 350
and 400 MeV/c [11–13, 45]. The reduced values of Λ3N

avoid strong induced 4N interactions if this Hamiltonian
is softened via free-space SRG evolution [13, 45]. While
ΛNN and Λ3N are nominally inconsistent, we note that
the NN and 3N interactions are regularized in different
schemes, so their values should not necessarily be the
same [46]. This issue will be revisited with a new gen-
eration of consistently regularized chiral Hamiltonians in
the future [16].
The Hamiltonians are softened by a free-space

SRG evolution at the three-body level to λSRG =
1.88, . . . , 2.24 fm−1 [13, 47, 48]. Hamiltonians that
only contain SRG-induced 3N forces are referred to as
NN+3N-induced, those also containing an initial 3N in-
teraction as NN+3N-full.
Working with harmonic oscillator (HO) single-particle

states, we truncate the 3N matrix elements in the to-
tal energy quantum number according to e1 + e2 + e3 ≤

ò

ò

ò

ò

ò

ò

ò

ò
ò
ò
ò
ò
ò
ò ò

à

à

à

à
à

á

á

á

á
á

ô

ô

ô

ô
ô

õ

õ

õ

õ
õ

-500

-450

-400

-350

-300

-250

.

E
[M

eV
]

A
Ca

(a) NN+3N-induced

△/N MR-IM-SRG(2)

�/� CCSD
△
/
N

CR-CC(2,3)

λSRG=1.88/2.24 fm−1

E3max = 14

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ æ æ æ æ

à

à

à

à
à

á

á

á

á
á

ô

ô

ô

ô
ô

õ

õ

õ

õ
õ

34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

A

-500

-450

-400

-350

-300

-250

.

E
[M

eV
]

(b) NN+3N-full

❍/● MR-IM-SRG(2)

�/� CCSD
△
/
N

CR-CC(2,3)

λSRG=1.88/2.24 fm−1

E3max = 14

FIG. 1. (Color online) Ground-state energies of the Ca iso-
topes for the NN+3N-induced (a) and NN+3N full (b) Hamil-
tonians, with λSRG = 1.88 fm−1 (open symbols) to 2.24 fm−1

(solid symbols). The bands for the MR-IM-SRG(2) results
indicate the variation of the results with the resolution scale
λSRG. Experimental data (black bars) are taken from [26, 50].

E3max, due to memory requirements [2, 10–12, 45]. Un-
certainties caused by this truncation are investigated be-
low. As discussed in Refs. [2, 13], the free-space SRG
evolution of the input Hamiltonian must be performed in
a sufficiently large model space for pf -shell and heavier
nuclei. Therefore, we rely on the model space B from
Ref. [2] for the evolution of the 3N force. The oscilla-
tor parameter of the Jacobi HO basis is chosen to be
~ω = 36 MeV. Matrix elements for smaller ~ω are ob-
tained by frequency conversion [13].
Our results are converged with respect to the size of

the single-particle basis: At the ~ω value of the energy
minimum, the change in the ground-state energy is 0.1%
when we increase the basis from 13 to 15 major shells.
To obtain reference states for the MR-IM-SRG(2), we

solve HFB equations in 15 major HO shells, and project
the resulting state on proton and neutron numbers
[10, 11, 49]. The intrinsic NN+3NHamiltonian is normal-
ordered with respect to the reference state, and the
residual 3N interaction term is discarded. This normal-
ordered two-body approximation (NO2B) is found to
overestimate binding energies by less than 1% in the cal-
cium and nickel isotopes [2, 10, 12, 45].
d. Calcium isotopes. In Fig. 1, we show MR-IM-

SRG(2) ground-state energies for 34−62Ca, along with
CC results including doubles (CCSD) [51] and triples ex-
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citations (CR-CC(2,3)) [52, 53] for closed-shell isotopes.
Surveying the results, we note that MR-IM-SRG(2) and
CR-CC(2,3) results are in very good agreement. It is a
recurring theme that (MR-)IM-SRG(2) provides results
comparable to CC approaches that include triples (3-
particle, 3-hole) excitations at the computational cost of
a doubles (2p2h) method [9–11].

For the NN+3N-induced Hamiltonian shown in
Fig. 1(a), we overbind the Ca isotopes for the consid-
ered values of λSRG. However, the ground-state energies
vary significantly with the resolution scale λSRG due to
omitted induced beyond-3N forces. Other sources, such
as the E3max truncation and NO2B approximation, can
be ruled out because they are only weakly sensitive to
λSRG variations [2, 10–12]. Furthermore, the λSRG de-
pendence of MR-IM-SRG(2) and CR-CC(2,3) is compa-
rable despite their different many-body content, which
implies that missing many-body effects cannot be its pri-
mary source, either.

In Fig. 1(b), we show that the inclusion of an initial
3N force reduces the λSRG dependence drastically. As
discussed in Ref. [2], this is a result of cancellations be-
tween induced forces from the initial NN and 3N interac-
tions. With this reduced dependence on λSRG we find an
overbinding that is robust under variations of λSRG and
slowly increasing from 8% for 36Ca to 12% for 54Ca.

We now consider the two-neutron separation energies
S2n shown in Fig. 2. Such differential quantities filter out
global energy shifts due to missing induced many-body
forces, as well as many-body and basis truncations. For
instance, the absolute variation of the S2n with λSRG

in the NN+3N-induced case is much weaker than the
variation of the ground-state energies in Fig. 1(a).

The S2n for the NN+3N-induced Hamiltonian in
Fig. 2(a) show a pronounced shell closure at 40Ca, with
S2n dropping by more than 20 MeV. The 48Ca shell clo-
sure is weak in comparison, albeit close to experimental
data, and there are even weaker hints of shell closures
in 52,54Ca (the reference states exhibit pairing in both
cases). The S2n increase notably from 42Ca to 48Ca, and
weakly from 50Ca to 52Ca. This is an indication that
interaction components which are being accessed as neu-
trons are added to the pf -shell are too attractive, which
is consistent with the observed overbinding. However,
shell structure effects clearly also play a role, because
the overbinding becomes less severe around 48Ca before
increasing again with the neutron number N , while the
S2n are always decreasing between shell closures beyond
52Ca.

The NN+3N-induced Hamiltonian produces a distinct
drip-line signal in Figs. 1(a) and 2(a): 62Ca is consis-
tently unbound by 5 − 6 MeV with respect to 60Ca for
our range of λSRG. The change in S2n is much larger
than the uncertainties due to many-body and basis trun-
cations, or missing induced forces (see below). The inclu-
sion of continuum effects in Ref. [19] reduced the energy
of low-lying unbound states only by about 2 MeV, which
is insufficient to bind isotopes with N > 40 with respect
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FIG. 2. (Color online) Two-neutron separation energies of
the Ca isotopes for the NN+3N-induced (a) and NN+3N-
full Hamiltonian with Λ3N = 350, 400 MeV/c (b), for a range
λSRG = 1.88 fm−1 (open symbols) to 2.24 fm−1 (solid sym-
bols). Panel (c) compares MR-IM-SRG(2) and second-order
GGF [6–8] results with the same input Hamiltonian, but
slightly different SRG evolution [54]. Experimental values
(black bars) are taken from [26, 50].

to 60Ca. Without the inclusion of initial 3N forces, the
drip line is therefore expected at N = 40.

In Fig. 2(b), we show S2n for NN+3N-full Hamilto-
nians with Λ3N = 350, 400 MeV/c. The N = 20 shell
closure is weakened by the 3N forces, although the cal-
culated S2n are still larger than experimental data. As
before, we observe an increase of the separation energies
for 42−48Ca and 50−52Ca, but we note that the overbind-
ing consistently increases with N in this case (Fig. 1(b)).
Interestingly, the S2n trends in these nuclei are flatter for
Λ3N = 350MeV/c than for 400MeV/c, which suggests a
change in the shell structure of these nuclei. Overall, the
S2n are consistent under this variation of the 3N cutoff.
In contrast to the NN+3N-induced case, both 52Ca and
54Ca exhibit magicity, in agreement with experimental
and Shell Model results [24–26, 55, 56].

For large neutron numbers, the trends shown in
Figs. 1(b) and 2(b) are different from the NN+3N-
induced case. 56−60Ca are unbound with respect to 54Ca
by a mere 1− 2 MeV (also see [19]). Consequently, these
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FIG. 3. (Color online) Uncertainty of Ca two-neutron separa-
tion energies: (a) variation as E3max = 12 → 14 for different
Λ3N and λSRG = 1.88 to 2.24 fm−1. (b) Variation E3max =
12 → 14 → 16 for Λ3N = 400 MeV/c, λSRG = 1.88 fm−1.

isotopes are sensitive to continuum effects and details of
the interaction, which could lead to phenomena like neu-
tron halos as proposed in [57]. Figure 2(b) also shows
that the flat plateau of the S2n for 56−60Ca in the vicin-
ity of zero is remarkably robust under the variation of
the cutoff of the initial 3N interaction from 400 MeV/c
to 350 MeV/c.

The Ca isotopes were also studied recently with the
second-order Gor’kov Green’s Function (GGF) method.
The S2n published in Ref. [8] were obtained with the same
NN+3N-full Hamiltonian with Λ3N = 400MeV/c, but a
smaller 3N Jacobi HO model space was used for the SRG
evolution than in our calculations. While the S2n sys-
tematics remain the same, we show updated GGF results
[54] in Fig. 2(c) to allow a more quantitative comparison
with our MR-IM-SRG(2) separation energies. The two
methods agree well for mid-shell Ca isotopes, implying
that the difference between second-order GGF and MR-
IM-SRG(2) ground-state energies is primarily a global
shift for these nuclei. Around shell closures, the broken
particle-number symmetry in the GGF approach causes
smoother trends due to pairing fluctuations (compare,
e.g., HFB and number-projected HFB S2n in Ref. [58]).
Overall, our results are consistent with the findings and
conclusions of Ref. [8].

Let us now discuss the uncertainties of the calcium two-
neutron separation energies in more detail. From the CC
ground-state energies included in Fig. 1 we can determine
S2n in 54Ca. We find a difference of only 150 keV between
the CCSD and CR-CC(2,3) results, almost independent
of Λ3N and λSRG. Due to the rapid convergence of the
many-body expansion for soft Hamiltonians, we can in-
terpret this as a measure for many-body effects that are
not included in the MR-IM-SRG(2), by analogy with CC.

The uncertainties of the S2n due to the E3max trun-
cation are explored further in Fig. 3. The contributions
of the many-body and E3max truncations are of compa-
rable size: Increasing E3max from our default 14 to 16,
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FIG. 4. (Color online) Ground-state energies of the Ni iso-
topes for the NN+3N-induced (a) and NN+3N full (b) Hamil-
tonians, for resolution scales λSRG = 1.88 fm−1 (open sym-
bols) to 2.24 fm−1 (solid symbols). Experimental data (black
bars) are taken from [50].

the S2n change by less than 100 keV for 38−50Ca, and
200−500 keV for 52−60Ca (Fig. 3(b)). Comparing to the
increase E3max = 12 → 14, which causes variations as
large as 1 − 1.5 MeV in the S2n of the mid- and upper
pf -shell calcium isotopes, we see clear signs of conver-
gence. Given the flat ground-state energy trend beyond
54Ca for the NN+3N-full Hamiltonians (cf. Figs. 1 and 2),
we conclude that our uncertainties are still too large to
clearly identify the neutron dripline. A first step towards
a more accurate calculation would be the exploration of
E3max ≥ 16 [2].

e. Nickel isotopes. We now focus on the nickel iso-
topes. Figure 4 shows the ground-state energies for the
NN+3N-induced and NN+3N-full Hamiltonians (Λ3N =
400 MeV/c). The basic features are very similar to
the Ca case. MR-IM-SRG(2) and CC results are in
very good agreement. The NN+3N-induced Hamiltonian
(Fig. 4(a)) yields energies that are close to experimen-
tal binding energies for lighter Ni isotopes, but produces
overbinding with growing neutron excess. The λSRG de-
pendence serves as an indicator for the size of missing 4N
forces. With the inclusion of the initial 3N interaction
(Fig. 4(b)), the overbinding is increased, while the λSRG

dependence is reduced due to cancellations between in-
duced beyond-3N terms. Beyond 74Ni, the ground-state
energy curve becomes flat. In contrast to the Ca case,
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FIG. 5. (Color online) Two-neutron separation energies of
the Ni isotopes for the NN+3N-induced (a) and NN+3N-full
Hamiltonian with Λ3N = 350, 400 MeV/c (b), for a range
λSRG = 1.88 fm−1 (open symbols) to 2.24 fm−1 (solid sym-
bols). Experimental values (black bars) are taken from [50].

the NN+3N-induced also produces a very flat trend for
these isotopes.

An apparent deformation instability emerges for 64Ni
in the NN+3N-induced and 64,66Ni in the NN+3N-full
cases. Because spherical symmetry is enforced in our
calculations, we observe strong oscillations in the MR-
IM-SRG(2) ground-state energy and the norm of the gen-
erator. Usually, the latter decreases monotonically until
convergence. Experimental spectra of these Ni isotopes
show spherical and intrinsically deformed states in close
proximity [32–35, 59, 60]. Traditionally, the onset of de-
formation is explained by strong quadrupole interactions
between nucleons in states with single-particle ∆j = 2
and small energy difference. In the reference states for
64,66Ni, the difference between the effective 0f5/2 and
1p1/2 single-particle energies [61] is merely 200 keV, and
therefore sensitive to the balance of NN and 3N tensor
and spin-orbit interactions.

The importance of the initial 3N interaction is evident
from the S2n shown in Fig. 5. Without it (Fig. 5(a)), the
N = 50 and especially theN = 28 shell closures are weak,
while the N = 40 closure is strongly enhanced compared
to experiment. Inclusion of the 3N forces (Fig. 5(b)) im-
proves the shell closure at 56Ni significantly, and shifts
the S2n of 70−78Ni closer to experiment. Variation of
Λ3N moves the theoretical neuton drip line from 86Ni to
78Ni, but the S2n are sufficiently small for the situation
to change as we improve on the present truncations and
include continuum effects. Note also that the experimen-
tally unobserved sub-shell closure in 60Ni vanishes for
Λ3N = 350 MeV/c. This is a more concrete example of

how the internal structure of medium-mass nuclei is af-
fected by variations of Λ3N than the shift in S2n trends
for the Ca isotopes (cf. Fig. 2(b)).

We conclude by discussing the uncertainties of the S2n.
Using the energies for 60,62Ni, we find a difference of
300 − 350 keV between the CCSD and CR-CC(2,3) re-
sults, which serves as a measure for the uncertainty due
to the many-body truncation. The change of |∆S2n| as
E3max = 12 → 14 → 16 is similar to Fig. 3 for the Ca
isotopes. As E3max = 12 → 14, the change for 48−86Ni
is of the order of 500 keV, beyond that 1 − 1.5 MeV
for the range λSRG = 1.88, . . . , 2.24 fm−1. Increasing
E3max = 14 → 16, the change in S2n drops below 250 keV
for 48−86Ni, and to 400− 500 keV for heavier isotopes.

f. Conclusions. We have studied the even Ca and Ni
isotopes with the recently developed MR-IM-SRG, using
chiral NN+3N interactions as input. The application of
the MR-IM-SRG to the chain of even Ni isotopes marks
an important milestone for ab initio nuclear structure
theory, and shows the viability of such calculations for
medium-mass and heavy nuclei. The modest polynomial
scaling of the method makes it feasible to reach the tin
isotopic chain (and beyond), if sophisticated techniques
are implemented to handle or avoid the expensive matrix
element storage for 3N interactions [2].

The current generation of chiral NN+3N Hamiltonians
generally overbind the Ca and Ni isotopes. The fair re-
production of two-neutron separation energies indicates
that a good portion of this over-binding amounts to a
global shift. We find that an initial 3N interaction is re-
quired to reproduce the experimentally confirmed shell
closures of 48,52,54Ca. In the Ni isotopes, the creation
of an artifical sub-shell closure in 60Ni and the strong
enhancement of the 68Ni closure indicate that the spin-
orbit and tensor components of the chiral 3N interaction
might be too strong. Our findings are consistent with
earlier studies of medium-mass nuclei based on the same
chiral NN+3N Hamiltonians [2, 8, 10, 12, 45], and by
extending the range of studied isotopes, we provide fur-
ther evidence for deficiencies in these Hamiltonians which
need to be addressed by the next generation of interac-
tions from chiral EFT.

For neutron-rich Ca isotopes, we predict a very flat
trend for the ground-state and two-neutron separation
energies, which inhibits a clear identification of the drip
line. The interplay of different interaction terms and con-
tinuum effects may give rise to interesting physics in this
region. Fortunately, these specific Ca isotopes will be in-
vestigated in experimental campaigns in the near future.
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