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If the observed quasi-periodic oscillations in magnetar flares are partially confined to the crust, then the
oscillation frequencies are unique probes of the nuclear physics of the neutron star crust. We study crustal
oscillations in magnetars including corrections for a finite Alfvén velocity. Our crust model uses a new nuclear
mass formula that predicts nuclear masses with an accuracy very close to that of the Finite Range Droplet
Model. This mass model for equilibrium nuclei also includes shell corrections and an updated neutron-drip
line. We perturb our crust model to predict axial crust modes and assign them to observed giant flare quasi-
periodic oscillation frequencies from SGR 1806-20. We find magnetar crusts that match observations for various
magnetic field strengths, entrainment of the free neutron gas in the inner crust, and crust-core transition densities.
We find that observations can be reconciled with smaller values of the symmetry energy slope parameter, L, if
there is a significant amount of entrainment of the neutrons by the superfluid or if the crust-core transition
density is large. We also find neutron star masses and radii which are in agreement with expectations from what
is known about low-density matter from nuclear experiment. Matching observations with a field-free model we
obtain the approximate values of M = 1.35 M� and R = 11.9 km. Matching observations using a model with the
surface dipole field of SGR 1806-20 (B = 2.4 × 1015 G) we obtain the approximate values of M = 1.25 M� and
R = 12.4 km.

PACS numbers: 97.60.Jd 21.65.Mn 26.60.Gj

I. INTRODUCTION

Highly magnetized and isolated neutron stars, known as
magnetars, emit irregular and extremely energetic gamma ray
flares. These flares are thought to occur following a starquake,
in which a reconfiguration of the magnetic field fractures the
magnetar’s crust. Quasi-periodic oscillations (QPOs) are ob-
served in the tails of giant flare emissions [1–4]. Following the
proposal by Duncan [5], many have attempted to model the
QPOs as torsional modes of the crust [e.g., 6–8]. If this is in-
deed the cause of the QPOs, then magnetars can give a unique
insight into the microphysics of the neutron star crust [9], e.g.,
the nuclear symmetry energy S (n), here defined as the dif-
ference in energy between pure neutron matter and proton-
neutron symmetric matter as a function of the baryon density,
n. In particular, crust frequencies are sensitive to the quantity
L ≡ 3n0 (∂S/∂n)n=n0

[9, 10]. In addition, different modes have
different scalings with the neutron star mass and radius; it fol-
lows that observations of two or more modes, such as a funda-
mental and harmonic, can constrain the magnetar’s mass and
radius [8, 11] and hence the equation of state (EOS) of dense
matter.

∗Electronic address: deibelal@msu.edu

In this paper, we explore the impact on constraints of the
symmetry energy and the properties of the crust under the as-
sumption that one of the lower frequency QPOs and a higher
frequency QPO, such as the 626 Hz mode observed from
SGR 1806-20 [4], represent the fundamental and first har-
monic modes of the crust. Our study extends previous work
by using a modern EOS to predict torsional mode frequen-
cies and by matching observations for various magnetic field
strengths, entrainment fractions for free neutrons in the in-
ner crust, and crust-core transition densities. The crust EOS is
based on a liquid droplet model which predicts nuclear masses
to within 1.2 MeV [12], close to the accuracy obtained in the
Finite Range Droplet Model [13]. By adding the effect of the
magnetic field on electrons, as in Broderick et al. [14], we re-
vise the magnetic composition of the crust [15] with a new
determination of equilibrium nuclei. The core EOS is based
on recent neutron star mass and radius constraints from ob-
servations of photosphere radius expansion bursts (PREs) and
the quiescent emission of low-mass X-ray binaries (LMXBs)
[16, 17].

While this initial study incorporates a modern EOS, it nec-
essarily makes many simplifying assumptions. The basis of
our approach is the assumption that the QPOs in question are
indeed due to torsional crust modes. An alternative model as-
sociates the QPOs with magnetohydrodynamic (MHD) modes
in the core [18, 19]. We note that neither model is able to
predict all of the observed mode frequencies. Crustal oscilla-
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tions cannot easily reproduce all of the low-frequency modes
[8]. Recent studies of core MHD modes with crust-core cou-
pling in a dipolar magnetic field found that core MHD modes
could explain most of the QPOs, but only with a magnetic
field larger than observed surface dipole fields [20]. In ad-
dition, core MHD models have been unable to reproduce the
highest QPO frequencies observed [21]. Stratification and en-
trainment can increase core MHD frequencies, but this does
not yet completely explain the data either [22]. We also do
not include a consistent treatment of the nuclear pasta or its
shear viscosity. We comment on how this might modify our
results at the end.

With these caveats, we construct magnetized crust mod-
els for equations of state with extreme values of L, free neu-
tron entrainment, crust-core transition densities, and different
high-density equations of state. In Section II we present the
magnetized crust composition based on our mass model (a
detailed description of this formalism is in Appendix A). Sec-
tion III contains a summary of the axial perturbation equations
for the crust modes. We then use, in Section IV, the predicted
fundamental and harmonic frequencies, along with the mag-
netized crust composition, to investigate the role of the nuclear
symmetry energy in determining magnetar masses, radii, and
crust oscillation frequencies. In Section V, we discuss our
results.

II. CRUST COMPOSITION

For an isolated neutron star we determine the crust com-
position by finding the ground-state nucleus at a given baryon
density n. The outer crust consists of a lattice of nuclei embed-
ded in a degenerate electron Fermi gas [23]. The neutron-drip
point, the point at which it becomes energetically favorable
for neutrons to exist outside of the nuclei, defines the bound-
ary between the outer and inner crust. The inner crust can
then be described as a lattice of nuclei embedded in both an
electron and neutron gas [23]. We use a liquid droplet model
with “squared-off” nuclear density distributions [24] and as-
sume that the number density of neutrons and protons inside
nuclei is fixed and that the number density of neutrons outside
nuclei is fixed in a way as to obtain equilibrium. The nuclei
occupy a fraction, χ, of the total volume of a Wigner-Seitz cell
and the dripped neutrons in the inner crust occupy a fraction,
1 − χ, of the total volume. This separation of the neutron gas
from the nuclei is convenient for modeling the properties of
matter at high densities. [25]. As described in Appendix A,
at a given n, proton number Z, and atomic number A, the to-
tal energy density of the crust will have contributions from
the nuclear binding energy, the Coulomb lattice, the electron
gas, and the neutron gas. Both the bulk energy of the nucleus
and the energy of the neutron gas are determined by the same
Skyrme interaction, either SLy4 with L = 46 MeV or Rs with
L = 86 MeV. The liquid drop model parameters [25] are fit
to experimental nuclear masses separately for each interac-
tion. The fits for each interaction differ because the value of
L determines the surface energy and surface symmetry energy
parameters. Both models give similar quality fits to the data.
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FIG. 1: (Color online) Equilibrium composition of the crust without
a magnetic field for a model that neglects shell effects (left panel)
and for a model that includes them (right panel). The blue lower
curve corresponds to the proton number Z and the black upper curve
corresponds to the neutron number N.

Chamel et al. [26] obtained qualitatively similar results using
Hartree-Fock-Bogoliubov models.

At a given n the equilibrium nucleus minimizes the total en-
ergy density of the system. The most energetically favorable
nuclei tend to contain a closed shell of protons or neutrons due
to shell corrections [27, 28]. As n increases equilibrium nu-
clei will move to higher closed shells of protons and neutrons
with the most neutron-rich nuclei seen between the neutron-
drip point and the crust-core transition. The above features of
the crust composition can be seen in Figure 1. We ignore the
deformation of nuclei at high densities in the crust composi-
tion.

In the outer crust a strong magnetic field will force elec-
trons to occupy the lowest Landau levels. At higher baryon
densities electrons can occupy higher Landau levels and thus
their energy density approaches the field-free case. For this
reason, as seen in Table I, only the outer crust equilibrium
composition is significantly altered. For B < 1018 G we can
ignore both the effect of the magnetic field on the structure
of the nuclei in the crust [see, e.g., 29, 30] and on the gross
structure of the neutron star [31].

III. TORSIONAL OSCILLATIONS IN A STRONG
MAGNETIC FIELD

We describe the axial crust modes of an oscillating neu-
tron star in the relativistic Cowling approximation follow-
ing the work of Schumaker and Thorne [32] and Samuels-
son and Andersson [8]. We combine two forms of the axial
perturbation equation. In the non-magnetic case, the equa-
tion for the axial perturbation ξ can be written in the form
[8] ξ′′ + F′ξ′ + Gξ = 0, in which primes indicate deriva-
tives with respect to the radial coordinate, and F and G are
functions of the shear velocity 3s and the metric functions ν
and λ for a static and spherically symmetric spacetime metric,
ds2 = −e2νdt2 + e2λdr2 + r2

(
dθ2 + sin2 θ dφ2

)
. Because of the
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TABLE I: Magnetic Equilibrium Nuclei Below Crust-Core Transition

ρmax (g cm−3)

Nucleia B∗ = 0 B∗ = 1 B∗ = 10 B∗ = 102 B∗ = 103

64
28Ni 2.23 × 108 2.33 × 108 1.63 × 109 1.75 × 1010

66
28Ni 1.37 × 109 1.40 × 109 2.92 × 109 2.71 × 1010

84
34Se 5.66 × 109 4.87 × 109 5.29 × 1010

82
32Ge 1.73 × 1010 1.69 × 1010 7.62 × 1010

80
30Zn 3.99 × 1010 3.94 × 1010 1.01 × 1011

78
28Ni 1.56 × 1011 1.57 × 1011 1.61 × 1011

76
26Fe 1.86 × 1011 1.85 × 1011 1.76 × 1011

122
40 Zr 2.51 × 1011 2.52 × 1011 1.98 × 1011

120
38 Sr 3.54 × 1011 3.54 × 1011 4.04 × 1011

118
36 Kr 5.17 × 1011 5.15 × 1011 5.77 × 1011

116
34 Se 8.11 × 1011 8.13 × 1011 8.56 × 1011

114
32 Ge 2.35 × 1012 2.25 × 1012

112
30 Zn 3.94 × 1012 4.02 × 1012

110
28 Ni 8.64 × 1012 8.65 × 1012

166
40 Zr 1.07 × 1013 1.08 × 1013

aWe adopt the format of Lai and Shapiro [15] where ρmax is the maximum
mass density where the equilibrium nucleus is present. If a density value is
unchanged the following column is blank. Here B∗ = B/(4.414 × 1013 G),
which is the ratio of the magnetic field to the critical field, defined as the field
at which the cyclotron energy equals the electron rest-mass.

strong vertical stratification, radial perturbations are driven to
small amplitudes and high frequencies and are much less rel-
evant in the crust. Working in the isotropic limit, we incor-
porate corrections for a finite Alfvén velocity 3A = B/

√
4πρi

in the radial direction by analogy with the Newtonian expres-
sions [6, 9]. A more complicated magnetic field configuration
is worthy of study, but we find below that crustal frequencies
are more sensitive to entrainment and the EOS and thus we
choose a uniform magnetic field for now. The result is

(32s + 32A)ξ′′ + 32s
d
dr

{
ln

[
r4eν−λ (ε + p) 32s

]}
ξ′

+ e2λ

e−2νω2
1 +

32A

c2

 −
(
l2 + l − 2

)
32s

r2

 ξ = 0. (1)

In this expression r is the radius, ε is the energy density, p is
the pressure, ω is the angular frequency, and l is the angular
wavenumber. The shear velocity is 3s =

√
µ/ρ, which is plot-

ted with the Alfvén velocity in Figure 2. Here µ is the shear
modulus, for which we use the formulation appropriate for a
body-centered cubic lattice [33],

µ =
0.1194Γ

1 + 0.595(Γ0/Γ)2 nikBT. (2)

We integrate Equation (1) over the solid crust, which lies be-
tween the crust-core interface at r = Rcore and where the lat-
tice melts at r = Rcrust. The melting transition is determined

by where the plasma coupling parameter Γ = (Ze)2/akBT =

Γmelt = 175 [34, 35]. Here a = (3/4πni)1/3 is the radius of the
Wigner-Seitz cell, Z is the atomic charge number, ni is the ion
number density, and the temperature is T = 3.0 × 108 K.

For the boundary conditions needed to solve Equation (1),
we require the traction, ξ′, to vanish at the top and bottom of
the crust. This is a good approximation near the surface where
pressure vanishes. The description of matter near the crust-
core transition is complicated by the appearance of nuclear
pasta. Since the quasi-free neutrons are superfluid, assuming
the traction vanishes at the crust-core boundary may also be
a good approximation. An additional impact of the superfluid
is that some fraction, fent, of the quasi-free neutrons are en-
trained with the nuclei [36, 37]. We assume zero traction at
the crust-core transition and leave a more complete descrip-
tion of matter at the highest densities to future work.

For a given l, Equation (1), when integrated over the crust
with the boundary conditions described here, has an eigen-
value ω that is uniquely determined by the crust thickness
∆ = Rcrust − Rcore and the neutron star radius. These in turn
depend on the equation of state.

IV. THE NUCLEAR PHYSICS OF THE CRUST

QPO frequencies have been detected in two magnetars,
SGR 1806−20 and SGR 1900+14 [2–4, 7]. The 29 Hz mode
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FIG. 2: (Color online) Alfvén velocity (blue curve) and shear ve-
locity (black curve) in the crust as a function of mass density. The
composition is that of a 1.4 M� neutron star using the SLy4 crust
EOS.

in SGR 1806−20 and the 28 Hz mode in SGR 1900+14 are
often assumed to be the fundamental torsional modes, but
an 18 Hz mode was also observed in SGR 1806−20 and a
lower frequency mode is not ruled out by the 1900+14 data.
SGR 1806−20 also showed a very clear 626 Hz mode, possi-
bly matching the first radial harmonic (n = 1). Several other
modes are observed between 50 and 200 Hz, and these can be
matched with higher angular momentum harmonics, l > 1.
However, the frequency spacing is small between the l > 1
harmonics and this makes matching observed modes to partic-
ular angular momentum harmonics ambiguous. We exclude
an analysis of the higher angular momentum harmonics be-
cause they do not lead to superior mass and radius constraints.

A. The equation of state

For the core, we use the probability distribution for the EOS
determined by Steiner et al. [17] from observations of PREs
and from the quiescent emission of LMXBs. We construct
five EOSs corresponding to the most probable mass-radius
relation along with its 1- and 2-σ lower and upper bounds.
Our core model is distinct from the interaction used to de-
scribe matter in the crust (Skyrme models SLy4 or Rs) be-
cause we wish to avoid the additional assumption that the
physics of matter at low and high densities is correlated. If
we were to use the SLy4 EOS in the core, the radius of a
1.4 M� neutron star is 11.65 km [38], a bit larger than the
lower 1-σ results from Steiner et al. [17]. For the Rs EOS,
the radius of a 1.4 M� neutron star is 13.04 km, which is
very similar to the largest radius implied by the mass and
radius observations from Steiner et al. [17]. Each equation
of state gives mass-radius combinations with different crust
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FIG. 3: Frequency of the fundamental l = 2 mode as a function of
the magnetar mass for the core EOS probability distribution (cen-
troid and ±2σ) from Steiner et al. [17] and an SLy4 crust EOS. The
dashed black line indicates the observed 29 Hz QPO of SGR 1806-
20. The frequencies are evaluated for a crust-core transition density
of 0.12 fm−3 with B = 0 G.

thicknesses, and hence a unique fundamental mode (n = 0)
and harmonic mode (n = 1). We can constrain the masses and
radii of magnetars by matching predicted fundamental modes
and harmonic modes to observed QPOs. While GR tends to
decrease the frequencies, softer core equations of state with
smaller radii tend to increase the frequencies. Because of this
latter effect, we get frequencies which are larger than that ob-
tained in Steiner and Watts [9]. The n = 0, l = 2 mode cor-
responds to the 29 Hz QPO of SGR 1806-20. Our model pre-
dicts n = 1 harmonic modes near 600 Hz and we compare
these predicted modes with the 626 Hz QPO of SGR 1806-20.

To find crusts with fundamentals that match the 29 Hz
QPO we model crust perturbations in magnetars between
0.8–2.0 M� with magnetic fields matching the surface dipole
field of SGR 1806-20. Whichever crust has an n = 0, l = 2
mode that matches the 29 Hz QPO we take as the crust of the
magnetar. This method is demonstrated in Figure 3 where
crusts are constructed using the SLy4 crust EOS [39]. Crusts
with harmonics that match the 626 Hz QPO are found using
an identical technique. We take whichever crust has a n = 1
mode that reproduces the observed QPO as the crust of the
magnetar. The same analysis is repeated for the 1 and 2-σ
lower and upper bounds on the core EOS.

A comparison of masses and radii from fundamental and
harmonic modes can be seen in Figure 4. The intersection
of fundamental and harmonic masses and radii on the mass
versus radius plot gives a crust that best matches the properties
of SGR 1806-20. The mass and radius found for SGR 1806-
20 depend on the properties of the interior of the magnetar
which determine the fundamental and harmonic modes. This
study focuses on varying three aspects of the interior physics
that remain unknown, namely, the magnetic field strength in
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the crust, the crust-core transition density, and the degree of
free neutron entrainment in the inner crust.

Different EOSs have different values of L and thus different
fundamental mode frequencies. The SLy4 EOS has a 29 Hz
n = 0, l = 2 fundamental mode. The Rs EOS gives frequen-
cies between 15–20 Hz for the n = 0, l = 2 fundamental mode.
Therefore, we must assign the predicted fundamental modes
from Rs to the observed 18 Hz QPO. The Rs model has a
smaller fundamental frequency than SLy4 because its symme-
try energy increases more rapidly with density than does that
of SLy4. With the density dependence of the nuclear symme-
try energy defined as L ≡ 3n0 (∂S/∂n)n=n0

, the Rs model has
L = 86 MeV at n0 = 0.16 fm−3, the nuclear saturation density,
whereas the SLy4 model has L = 46 MeV. The shear modu-
lus is proportional to the plasma coupling parameter Γ, which
goes as Z2/a (see Equation (2)). A larger value of L tends to
increase the nucleon number A, which leads to larger a; the
charge number Z is almost unchanged, however, due to nu-
clear shell effects. Thus a larger value of L decreases the shear
modulus and also the fundamental QPO frequency [9, 10].

B. The crust magnetic field

We examine the sensitivity of fundamental and harmonic
modes to the strength of the magnetic field. Strong magnetic
fields melt the outermost boundary of the crust (i.e., push the
melting point of the one-component plasma to higher pres-
sures). Since Rcore remains fixed and Rcrust decreases, a strong
magnetic field thins the crust (i.e., decreases ∆). Although
a strong magnetic field can decrease the crust thickness and
change the composition of the outer crust, the overall impact
on predicted fundamental and harmonic mode frequencies is
negligible. We find that predicted fundamental modes from
magnetized crusts are nearly identical to the field-free case, in
agreement with the findings by Nandi et al. [40]. The mag-
netic field is not a determining factor because fundamental
crust modes are entirely set by our choice of radius for the
magnetar. That is, fundamental modes are entirely set by the
equation of state. However, a magnetized crust can signifi-
cantly alter predicted harmonic modes. The n = 1 modes are
sensitive to the magnetic field, especially in the outer crust
where 3A > 3s [6, 40]. For example, to obtain a mass-radius
solution consistent with the findings of Steiner et al. [17] for
the Rs EOS requires B . 1015 G. The magnetized crusts that
match observed QPOs can be seen in Figure 4.

C. The crust-core transition density

We test two extreme values for the crust-core transition
density, nt, from Oyamatsu and Iida [41]. The exact value
of the crust-core transition density is unknown, in part be-
cause the density dependence of the nuclear symmetry en-
ergy in the inner crust is not well constrained and also be-
cause of the possible existence of nuclear pasta [see, e.g.,
42]. Although previous works have found correlations be-
tween nt and L [42], these correlations are still rather model-

dependent. In Figure 4, we examine various magnetic field
strengths to find masses and radii from intersections of fun-
damentals and harmonics for each transition density . For
the SLy4 EOS, nt = 0.12 fm−3, and a surface dipole field
matching that of SGR 1806-20[67] (B = 2.4 × 1015 G) we
find the magnetar to have M = 1.25 M� and R = 12.4 km.
We must extrapolate outside the equation of state curves to
approximate a mass and radius for the lower crust-core transi-
tion density nt = 0.08 fm−3, as can be seen in Figure 5. This
crust-core transition gives M = 0.96 M� and R = 13.5 km for
SGR 1806-20. In either case, if we assume that the magnetic
field inside the crust is larger than the observed surface field,
then a smaller mass and larger radius is implied. If the mag-
netic field is too large, the implied radius will be far outside
radii implied by mass and radius observations from the qui-
escent LMXBs in M13 and ω Cen [16]. Using the Rs EOS,
nt = 0.12 fm−3, and a surface dipole field matching that of
SGR 1806-20 (B = 2.4 × 1015 G) we find the magnetar to
have M = 1.10 M� and R = 13.8 km, which is outside the 2-σ
mass-radius relation of Steiner et al. [17], as can be seen in
Figure 4.

Figure 4 also demonstrates that only harmonic modes are
affected by a change in the crust-core transition density. A
change in the crust-core transition density will change the
crust thickness and harmonic modes scale with the crust thick-
ness. Fundamental modes remain unchanged, however, be-
cause they scale with the radius of the entire star.

D. The entrainment of the free neutron gas

Entrainment of the free neutron gas in the inner crust al-
ters both fundamental and harmonic modes, as shown in Fig-
ure 6. We define the degree of entrainment fent as the fraction
of the free neutron gas that moves with the lattice during a
crust oscillation. Although fent only slightly alters the har-
monic frequency, mainly by changing 3s, it significantly al-
ters the fundamental mode frequency. This occurs because
the fundamental mode energy is concentrated deeper in the
crust, whereas harmonic modes have their energy distributed
more uniformly over the crust [6]. If a lower fraction of the
free neutrons are entrained, then larger masses and radii are
implied for the magnetar. We find that a large degree of en-
trainment, fent > 0.75, is required for predicted crust modes to
match observed QPOs using crust models built upon the SLy4
interaction [39]. As shown in Figure 7, for the Rs EOS the
predicted n = 0, l = 2 fundamental gives frequencies near the
29 Hz QPO of SGR 1806-20 when there is a low degree of
entrainment of the free neutrons. For example, for fent = 0.25
we find the magnetar to have M = 1.12 M� and R = 12.0 km.

V. DISCUSSION

Magnetar giant flare QPOs provide a unique opportunity to
probe the nuclear physics of the neutron star crust. Funda-
mental torsional modes are largely independent of the crust-
core transition density and the magnetic field strength. Har-
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FIG. 5: (Color online) The same as Fig. 4, but for the SLy4 crust
EOS with nt = 0.08 fm−3. The thick red solid line indicates masses
and radii determined from a fundamental mode of 29 Hz. Masses
and radii from harmonic modes with magnetized crusts are labeled
accordingly. Arrows indicate masses and radii that match both the
fundamental and the harmonic modes for the field-free case and the
case with the magnetic field of SGR 1806-20 (B = 2.4 × 1015 G).

monic modes are sensitive to the surface gravity, transition
density, entrainment of the free neutrons, and the magnetic
field strength. Comparison of fundamental and harmonic

modes gives solutions for magnetar masses and radii and
hence places constraints on L. In particular, we find values
of L that give results consistent with observed oscillations.
For the SLy4 EOS, solutions most consistent with these con-
straints have large crust-core transition densities and a large
degree of free neutron entrainment; those for the Rs EOS have
large crust-core transition densities and a small degree of free
neutron entrainment.

We find, in agreement with Sotani et al. [10], smaller fun-
damental mode frequencies for crust equations of state with
larger values of L. Both works find that more entrainment de-
creases the fundamental frequency (In the notation of Sotani
et al. [10], Ns/Nd = 1− fent). Our work includes nuclear shell
effects in a more consistent fashion, and thus it is more diffi-
cult to vary L continuously as in Sotani et al. [10]. Also, we
only employ equations of state that are consistent with recent
constraints from neutron star mass and radius measurements
[17] that rule out larger values of L. A complete evaluation of
how the entrainment in the crust might be correlated with L is
needed and work in this direction is in progress.

Although fundamental modes are only slightly affected by
the crust-core transition density, a larger transition density in-
creases the crust thickness, for a fixed mass and radius, and
drives the harmonic frequency lower. To match the observed
harmonic with a larger transition density therefore requires a
larger mass for a fixed radius.

The degree of entrainment of the free neutron gas in the
inner crust alters both fundamental and harmonic modes by
changing the shear velocity [36]. The fundamental mode is
most sensitive to the entrainment fraction at the highest den-
sities in the crust. A recent study of neutron entrainment via
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match both the fundamental and the harmonic modes for fent = 1.0,
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FIG. 7: (Color online) The same as Fig. 6, but for the Rs crust EOS
with B = 0 G. Here the free neutron entrainment fraction fent is var-
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cate masses and radii from the 29 Hz fundamental mode. The shaded
band indicates masses and radii from the 626 Hz harmonic mode. Ar-
rows indicate the masses and radii for fent = 0.30, 0.25, and 0.20 that
match both the fundamental and harmonic modes.

Bragg scattering with the crystal lattice gives fent ≈ 0.35–0.90
throughout the inner crust [36]. Since the density dependence
of neutron entrainment is model-dependent and has not been
studied for the equations of state considered here, we assume
a fixed fraction of neutron entrainment throughout the entire
inner crust. We find that fent & 0.75 is required to have modes
consistent with observed QPOs for the SLy4 crust EOS with
L = 46 MeV. For example, with full entrainment, fent = 1.0,
we find M = 1.35 M� and R = 11.9 km. In contrast, for
fent = 0.5 the solution lies outside the 2-σ M-R relation from
Steiner et al. [17]; extrapolating the fundamental and har-
monic curves gives M = 1.83 M� and R = 13.9 km. The
Rs crust EOS with L = 86 MeV requires fent . 0.30 to have
modes consistent with observed QPOs. In general, to achieve
reasonable values of R with lower values of L requires a larger
fent and a larger nt.

Although the observed surface dipole field strengths are
too weak to affect the fundamental torsional modes of mag-
netars, the harmonic modes are significantly altered by fields
& 1015 G. For a transition density at 0.12 fm−3 (0.08 fm−3) a
magnetic field of B & 4.0 × 1015 G (& 2.0 × 1015 G) gives no
mass and radius solutions consistent at the 2-σ level with the
mass and radius constraints from PREs and LMXBs. For all
crust-core transition densities, a magnetized crust requires a
lower mass than the field-free case in order to contain a mode
consistent with the observed 626 Hz QPO. The field-free case
gives a minimum radius for a crust that can reproduce obser-
vations of SGR 1806-20; our model requires R ≥ 11.9 km for
SGR 1806-20. The sensitivity of the harmonic modes to the
crust magnetic field strength suggests that the local magnetic
field strength cannot greatly exceed the inferred dipole surface
field if the QPOs are identified with torsional modes for neu-
tron star masses and radii consistent with those of PREs and
LMXBs. We have taken our core EOS models from Steiner
et al. [17], which found that smaller radii were disfavored
by recent neutron star radius measurements. Recent analy-
sis of quiescent thermal emission from transient neutron stars
suggest that the radii are < 11.1 km (99%-confidence; Guillot
et al. 44). Matching torsional modes to observed QPOs might
still be possible in this case if either L or fent were sufficiently
large. This would also require that magnetars have a rather
low mass.

Our analysis assumes that the QPOs are due to torsional
modes of the crust and that the crust is decoupled from the
core. That neutrons in the inner crust would form a superfluid
is an idea predating the discovery of neutron stars [45], and
there is both theoretical [see, e.g., 46] and observational ev-
idence from cooling transients [47, 48] that the neutrons are
below their transition temperature in the inner crust. The neu-
tron superfluid can plausibly decouple the crust and core by
eliminating viscous drag [49] and has long been used to ex-
plain the long-relaxation times of pulsar glitches [50–52]. In
the presence of a magnetic field the crust and core are not
completely decoupled. Indeed, Gabler et al. [53] found that
for B & 5 × 1013 G torsional crust modes would be resonantly
damped by coupling to the Alfvén continuum, with damping
timescales ∼ 0.2 s. Their study did not, however, include the
effects of proton pairing in the core nor did it include a re-
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alistic model of the neutron star crust. Observations of cool-
ing of the young neutron star in the Cas A supernova rem-
nant [54, 55] suggest that the proton 1S 0 pairing gap is large
[56, 57], so that the protons are in a superconducting state
throughout the core. The crust-core coupling depends on the
magnetic field configuration and the magnetic field strength
near the crust-core interface [20], neither of which are well
understood. Understanding the coupling between shear modes
and magneto-elastic oscillations in the presence of superfluid-
ity remains challenging. If the threshold field for damping via
coupling to the Alfvén continuum were in actuality substan-
tially larger than B = 5 × 1013 G, then the calculations in this
paper would still apply.

It is also possible that in the presence of superfluidity, ax-
ial perturbations will be pinned to some extent to the core
depending on the strength and configuration of the magnetic
field. We note that for the magnetic fields studied here (≤
2.4 × 1015 G), the Alfvén velocity is more than an order of
magnitude smaller than the shear velocity at the crust-core in-
terface (see Figure 2). In this case, magnetic stresses are likely
to be much smaller than elastic stresses, and our findings are
not likely to change.
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Appendix A: The Crust Equation of State

To compute the energy density of matter in the crust w, we
start with an expression similar to that used by Baym et al.
[23]. We take our crust to be composed of “drops” of nuclear
matter with volume fraction χ; within the nucleus the density
of neutrons and protons are nn and np, respectively, and we
denote nl = nn + np to be the average baryon density inside
a nucleus. The dripped neutrons, with density ndrip, occupy a
fraction 1− χ of the volume. The density of nucleons per unit
volume is thus n = χ(nn + np) + (1 − χ)ndrip, and the density
of electrons is ne. As the density approaches nuclear satura-
tion the fraction of space filled by the neutron gas approaches
unity.

The energy density w has contributions from nuclei (includ-
ing the Coulomb lattice contribution), dripped neutrons, and
electrons:

w(Z, A, n) = χ

[
nnmn + npmp + nl

Ebind(Z, A)
A

]
+(1 − χ)ε(nn = ndrip, np = 0) + we(ne).(A1)

This expression is valid for any baryon density below the tran-
sition density (≈ 1014 g cm−3). Here ε(nn, np) is the energy

density, including rest mass, of homogeneous bulk matter at
a given neutron and proton number density. We compute ε
using the bulk matter Hamiltonian in the Skyrme model [58]
with SLy4 coefficients [39].

The energy density of the nucleus is

nnmn + npmp + nl
Ebind(Z, A)

A
=

ε(nn, np) +
nl

A

(
Esurf + Eshell + Epair

)
+ wCoul.. (A2)

In this expression, nn and np are the neutron and proton den-
sities inside the nucleus. For the nuclear and lattice contribu-
tions to the energy density Ebind, we use a liquid-drop mass
model [23, 59–61] that includes the lattice contribution in the
Coulomb term wCoul., as well as surface (Esurf), shell (Eshell),
and pairing (Epair) corrections to the homogeneous bulk matter
Hamiltonian ε. At lower densities, the energy per particle in
the crust is minimized when ndrip = 0, and after the neutron-
drip point (about 4 × 1011 g/cm3), the energy per particle is
minimized only when ndrip > 0. The baryon number density
inside a nucleus nl is determined from

nl = n0 + n2I2, (A3)

where I = 1−2Z/A is the isospin asymmetry, n0 is the nuclear
saturation density of bulk homogeneous matter, and n2 < 0
is a correction due to both the isospin asymmetry, which de-
creases the saturation density, and the Coulomb interaction,
which increases the saturation density [61]. The average neu-
tron and proton densities within the nucleus are then deter-
mined from nl and I via

nn =
nl

2
(1 + ηI), np =

nl

2
(1 − ηI), (A4)

where η = δ/I = 0.92 is a constant of our model that deter-
mines the thickness of a neutron skin [61], i.e., the difference
between neutron and proton radii, and δ = 1 − 2np/(nn + np)
is the density asymmetry.

The next three terms in Equation (A2) are the surface, shell,
and pairing corrections. The surface correction is proportional
to the surface tension σ, the nuclear surface area A2/3, and
density asymmetry δ,

Esurf = σ

36πA2

n2
l

1/3 (
1 − σδδ2

)
(A5)

where σδ > 0 is a parameter that represents the surface asym-
metry [62, 63]. The shell correction to the binding energy per
baryon is [28]

Eshell(Z,N) = a1S 2 + a2S 2
2 + a3S 3 + anpS np, (A6)

where the ai are fitting parameters,

S 2 =
nvn̄v

Dn
+

zvz̄v

Dz
, (A7)

S 3 =
nvn̄v(nv − n̄v)

Dn
+

zvz̄v(zv − z̄v)
Dz

, (A8)

S np =
nvn̄vzvz̄v

DnDz
, (A9)
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TABLE II: Parameters of the mass model.

parameter SLy4 Rs
n0 0.1740 fm−3 0.1597 fm−3

n2 −0.0157 fm−3 0.0244 fm−3

η 0.9208 0.9043
σδ 1.964 1.465
σ 1.164 MeV 1.041 MeV
a1 −1.217 MeV −1.298 MeV
a2 0.0256 MeV 0.0311 MeV
a3 0.00387 MeV 0.00349 MeV
anp 0.0357 MeV 0.0287 MeV
ap 5.277 MeV 5.265 MeV

and

n̄v ≡ Dn − nv, (A10)
z̄v ≡ Dz − zv. (A11)

The parameters Dn and Dz correspond to the degeneracy of
the neutron and proton shells, i.e., the difference between the
magic numbers enclosing the current amount of neutrons or
protons. The quantities nv and zv are the number of valence
neutrons and protons, i.e., the difference between the current
number of protons or neutrons and the preceding magic num-
ber. The pairing contribution to the nuclear binding energy is
taken from Brehm [64] with updated coefficients,

Epair =


−apA−1/3, even-even
+apA−1/3, odd-odd

0, even-odd
, (A12)

where ap is a constant of our model. The last term in Equa-
tion (A2) is the Coulomb energy density,

wCoul. =
2π
5

n2
pe2R2

p

(
2 − 3χ1/3 + χ

)
, (A13)

where e2 is the Coulomb coupling and Rp is the proton radius
(3Z = 4πnpR3

p). The respective χ terms in parentheses cor-
respond to the Coulomb contribution, the lattice contribution,
and a correction that accounts for the filling fraction χ of the
nuclei. Table II lists the values of the coefficients used in this
mass model.

The electronic contribution to the energy density is that of
an electron gas embedded in a uniform magnetic field. The
electrons acquire an effective mass m f in the presence of the
magnetic field

m2
f = m2

e + 2m2
e

(
x +

1
2

+
1
2
ν

)
B∗, (A14)

where me, x, and ν are respectively the electron mass, prin-
cipal quantum number, and electron spin along the magnetic
field [65, 66]. Here B∗ = ~eB/m2

ec3 = B/(4.414 × 1013 G)
is the ratio of the magnetic field to the critical field, defined
as the field at which the cyclotron energy equals the electron
rest-mass. The electron number density and energy density
are found by summing over electron states and spins in the
limit µe � m f .
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