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We discuss the general features of the electromagnetic radiation from a thermal hadronic gas as
constrained by chiral symmetry. The medium effects on the electromagnetic spectral functions and
the partial restoration of chiral symmetry are quantified in terms of the pion densities. The results
are compared with the electromagnetic radiation from a strongly interacting quark-gluon plasma in
terms of the leading gluon condensate operators. We use the spectral functions as constrained by
the emission rates to estimate the electric conductivity, the light flavor susceptibility and diffusion
constant across the transition from the correlated hadronic gas to a strongly interacting quark-gluon
plasma.

PACS numbers:

I. INTRODUCTION

One of the chief objectives of the ultra-relativistc heavy ion program at RHIC and LHC is to excite enough of the
QCD vacuum in the form of a quark-gluon plasma. The plasma expands and hadronize relatively quickly making its
identification only implicit through the high hadronic multiplicities or electromagnetic emissivities [1–10].

Electromagnetic emissions in the form of dileptons or photons occur throughout the life-time of the expanding
fire-ball. The early stages are dominated by the emission from the partonic constituents, while the late stages of the
emission are dominated by the hadronic constituents. Both the early and late stages are well-described by a hydro-
dynamical fire-ball. In this letter, instead of integrating over the space-time of the evolving fire-ball, we discuss the
basics of the electromagnetic emissivities from a hadronic gas [11–16] and a strongly coupled plasma (sQGP) which
is described in terms of Born diagrams [17] corrected by leading order gluon condensates [18–20]. The comparison
with the newly reported lattice simulations of the electromagnetic spectral functions at zero momentum puts some
constraints on the importance on the gluon condensates [21–23].

Dilepton and photon emissions are the results of many reaction processes involving the quark-gluon plasma in
the early stage and hadrons and the strong character of their interactions in the later stage. For the emissions
from the hadronic gas, the only organizational principles are broken chiral symmetry and gauge invariance, both of
which are difficult to assert in individual reaction processes. In the spectral analysis [24, 25], if hadrons thermalize
with the pions and nucleons as the only strongly stable constituents, there is a way to systematically organize the
electromagnetic emissivities by expanding them not in terms of processes but rather in terms of final hadronic states.
Then the emissivities from the hadronic gas can be represented by spectral functions by chiral reduction[11, 12].
These spectral functions are either tractable from other experiments or amenable to resonance saturation[26]. The
spectral analysis allows us to represent the partial chiral symmetry restoration in terms of the mixing between vector
and axial correlators.

In section II, we review the spectral function approach to the photon and dilepton rates emphasizing the nature
of the dynamical restoration of the partially broken chiral symmetry in the hadronic fire-ball through the mixing of
vector and axial correlators. We also discuss the electric conductivity and the quark number susceptibilities in the
correlated hadronic gas near the chiral transition. In section III we review the sQGP corrected by the soft electric
and magnetic condensates and show that they may enhance the soft photon and dilepton emissions. The electric
conductivity and the flavour diffusion constant in the sQGP are derived and compared to current lattice data. Our
conclusions are in section IV.

II. ELECTROMAGNETIC RADIATION FROM HADRONIC GAS

A. Dilepton and Photon Rates

In this section we review the spectral approach for the dilepton and photon production from a hadronic gas in
thermal equilibrium [11, 16, 25]. The main advantage of the spectral function approach is that the calculation can
be organized in a virial-like expansion and in principle all possible reaction channels can be included in the zero
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temperature spectral densities. The dilepton rate R, the number of dileptons produced per unit four volume, can be
expressed using the current-current correlator as

dR

d4q
=
−α2

6π3q2

(
1 +

2m2
l

q2

)(
1− 4m2

l

q2

)1/2

W(q) (1)

where α = e2/4π is the fine structure constant, M ≡
√
q2 is the dilepton invariant mass, ml is the lepton mass and

the un-ordered electromagnetic current-current correlator is given by [12, 27]

W(q) =

∫
d4xe−iq·xTr

[
e−(H−F)/T Jµ(x)Jµ(0)

]
. (2)

Here H is the hadronic Hamiltonian, F is the Helmholtz free energy, T is the temperature and eJµ is the hadronic
part of the electromagnetic current,

Jµ(x) =
∑
f

ẽf qfγµqf (x) (3)

with ẽf = (2/3,−1/3,−1/3). Note that we consider only three flavors which will be valid for the thermal electromag-
netic emission below the charmonium peak.

Using the un-ordered correlator, Eq. (2), the number of real photons produced per unit volume and unit three
momentum can also be obtained as

q0dR

d3q
= − α

4π2
W(q) (4)

with q2 = 0. This equation with Eq. (1) enables us to link the quasireal virtual photon rate N∗ with dielectron data
in the low mass region below two pion threshold [1, 28, 29],

dR

d4q
=

2α

3πM2

(
1 +

2m2
l

M2

)(
1− 4m2

l

M2

)1/2 (
q0dR∗

d3q

)
. (5)

In the limit of M → 0, R∗ ≈ R.
Symmetry and spectral analysis allows us to re-express the un-ordered correlator in terms of the absorptive part of

the Feynman correlator[30],

W(q) =
2

eq0/T + 1
ImWF (q) (6)

where the Feynman correlator with time-ordering (T ∗) is given by

WF (q) = i

∫
d4xeiq·xTr

[
e−(H−F)/TT ∗Jµ(x)Jµ(0)

]
. (7)

One can also obtain the retarded correlator from the Feynman correlator [30]

ImWR(q) = tanh
(
q0/2T

)
ImWF (q). (8)

Using the retarded correlator one can obtain the electric conductivity from the linear response theory as we discuss
later[21].

B. Mixing of Vector and Axial Correlators in Pionic Gas

In Steele et al. [12] pion and nucleon contributions to the Feynman correlator were obtained within the context
of a density expansion. For the heavy ion collisions where the net nucleon density is not negligible both pion and
nucleon contributions are important [16]. However, for high energy collisions at RHIC and LHC, the pion contribution
will dominate because the net baryon density of the fire ball becomes negligible. In this work, we focus on the pion
contributions. By taking the pion density as an expansion parameter, the pion contributions to the Feynman correlator
can be expressed as

WF (q) = WF
0 (q) +

1

f2π

∫
dπWF

π (q, k) +
1

2!

1

f4π

∫
dπ1dπ2W

F
ππ(q, k1, k2) + · · · (9)
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FIG. 1: Pion Density parameter κ vs temperature for different µπ

where

WF
0 (q) = i

∫
d4xeiq·x〈0|T ∗Jµ(x)Jµ(0)|0〉

WF
π (q, k) = if2π

∫
d4xeiq·x〈πa(k)|T ∗Jµ(x)Jµ(0)|πa(k)〉

WF
ππ(q, k1, k2) = if4π

∫
d4xeiq·x〈πa(k1)πb(k2)|T ∗Jµ(x)Jµ(0)|πa(k1)πb(k2)〉 (10)

and ∫
dπ =

∫
d3k

(2π)3
n(E − µπ)

2E
(11)

with E =
√
k2 +m2

π and n(ω) = 1/(eω/T − 1). Note that the finite pion chemical potential µπ and the isospin sum
over index a and b are included.

The first contribution WF
0 in (10) is dominated by ΠV , the transverse part of the vector correlator 〈0|T ∗VV|0〉,

which can be fixed by the measured electroproduction data[13, 25],

ImWF
0 = −3 q2 ImΠV (q2). (12)

This term vanishes for real photons with q2 = 0 because the hadronic gas in thermal equilibrium is stable against
spontaneous photon emission. One pion contribution WF

π can be represented by the measurable vacuum correlators
using the chiral reduction formulae [11, 12],

ImWF
π (q, k) = 12 q2 ImΠV (q2)

− 6 (k + q)2ImΠA

(
(k + q)2

)
+ (q → −q)

+ 8
(
(k · q)2 −m2

πq
2
)

ImΠV (q2)× Re∆R(k + q) + (q → −q) (13)

where Re∆R = PP
[
1/(k2 −m2

π + iε2)
]

is the real part (principle value) of the retarded pion propagator and ΠA is
the transverse parts of the axial correlator 〈0|AA|0〉 which also can be fixed using experimental data [13, 25]. The
full expression for the two pion contribution is more complicated [12, 16] and the important contributions to ImWF

ππ

are summarized in Appendix A.
The mixing of vector and axial correlators as an indication of chiral symmetry restoration has been discussed in the

literature in the limit of zero chemical potential and zero pion mass [24, 25]. In this work we extend the discussion
in the presence of finite pion chemical potential and pion mass. The pion density plays a major role for the mixing
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between the vector-axial correlators. In order to see the main idea of mixing, we focus on the contributions up to
leading order in pion density. Firstly, if we take k → 0 and mπ → 0 before the integration over the pion momentum
[24, 25], one can have a very schematic relation

ImWF (q) ≈ −3 q2
[
(1− 4κ) ImΠV (q2) + 4κ ImΠA(q2)

]
(14)

where κ is the dimensionless pion phase-space factor

κ =
1

f2π

∫
dπ . (15)

The mixing is maximum for κ ≈ 1/8, leading to the equal contribution from vector and axial correlators

ImWF (q) ∝ Im
(
ΠV (q2) + ΠA(q2)

)
. (16)

In Fig. 1 we show the dependence of κ on the temperature for different pion chemical potentials µπ. The vector-axial
mixing (14) is enhanced at high temperature and/or higher µπ as κ increases. With the full expression, since Eq. (13)
depends on the pion momentum, the dependence on κ is not-trivial. In Fig. 2 we show the partial contributions
of Eqs. (12) and (13) to the imaginary part of the correlator, −ImWF . In this figure one can clearly see that the
one-pion contributions becomes significant as the pion chemical potential increases. The 50-50 mixing schematized
in (16) is apparent qualitatively at µπ = 100 MeV with which there is a large cancellation among the contributions
with ImΠV . In Fig. 3 the dilepton rates are summarized with various pion chemical potentials. Due to the mixing,
the low invariant mass dilepton production is enhanced while the ρ-peak around 0.78 GeV is reduced indicating the
partial restoration of chiral symmetry.

C. Electric Conductivity

To assess the electric conductivity from the hadronic gas we can use linear response and the Kubo-like formula for
the spectral function

ρV (M,~q) = − 2

ẽ2
ImWR(M,~q) (17)
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where the sum of the squared flavor charge ratios ẽ2 ≡
∑
f ẽ

2
f and ρV = −ρ00 + ρii[32]. In the ~q = 0 limit

ρii(M,~0) = ρV (M,~0) (18)

because the time-like component ρ00(M,~0) vanishes due to current conservation. In Fig. 4 we show ρV including
terms upto κ2 order for different values of T, |~q|, and µπ. As µπ increases, one can clearly see the mixing between the
vector and axial correlator. The contribution from φ remains largely unaffected by the hadronic medium effects due to
the OZI suppression rule. In Fig. 5 we summarize ρV /MT for various values of |~q| at T =190 MeV. In the left panel,
one can see that the ρV is enhanced as the momentum ~q increases especially in the low invariant mass region. In the
right panel, we plot the same quantity with and without the A1 meson. In the region of M/T = 1 ∼ 3, the mixing
between the vector and axial correlators are significant and the contribution of the A1 meson is very important.

The electric conductivity in unit of e2 can be defined in the limit of |~q|/M → 0 and M → 0 as

σE = lim
M→0

ẽ2ρii(M,~0)

6M
= lim
M→0

−ImWR(M,~0)

3M
= lim
M→0

−ImWF (M,~0)

6T
. (19)

One can easily confirm that there is no contribution to σE from WF
π because ImΠA(m2

π) = 0. In Fig. 5, from the
curves with |~q| = 0, ρV /MT increases very rapidly as we decrease M . This behavior is caused by the pole of the
retarded pion propagator in WF

ππ in the region ε�M . In order to separate the finite contribution from the hadronic
gas, one can take the limit of M/ε→ 0 for Re∆R(k + q),

lim
M/ε→0

Re∆R(k + q) = lim
M/ε→0

M2 + 2ME

(M2 + 2ME)2 + ε4
→ 0. (20)

In this limit, one can obtain a simple finite expression for the electric conductivity to order κ2,

σE
T
≈

(N2
f − 1)

2T 2

∑
s=±

∫
dπ1
f2π

dπ2
f2π

(k1 + sk2)2 ImΠV

(
(k1 + sk2)2

)
. (21)

In Fig. 6 the electric conductivities from a hadronic gas are compared with recent lattice results [21, 31] and the
lower bound [32] which are discussed in Sec. III B. The T and µπ dependence of the hadronic gas is mainly caused by
the pion distribution function. The hadron contribution to the electric conductivity is about an order of magnitude
smaller than the reported lattice results [21, 31] but comparable to the results of unitarized chiral perturbation [33].

For completeness, we note that to one-loop in ChPT the vector spectral function in Eq. (21) can be explicitly
assessed. The result for the electric conductivity is

σE
T
≈

(N2
f − 1)

96π T 2

∑
s=±

∫
dπ1
f2π

dπ2
f2π

Θ
(
(k1 + sk2)2 − 4m2

π

)
(k1 + sk2)2

(
1− 4m2

π

(k1 + sk2)2

)3/2

(22)
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which vanishes in the chiral limit as

σE
T
≈

(N2
f − 1)T 4

96π f4π
f
(mπ

T

)
=

(N2
f − 1)

24π

κ2m2
π

T 2
+O

(
m3
π

T 3

)
. (23)

In the low temperature limit we have

σE
T
≈

(N2
f − 1)m6

π

96πT 2 f4π
g

(
T

mπ

)
(24)

which is seen to vanish exponentially with the temperature since g(T/mπ) ∝ e−2mπ/T .

D. Quark number susceptibility

The electric conductivity in unit of e2 can be tied with the flavour diffusion constant Df through the identity [32]

σE = χf


 Nf∑
f=1

ẽf

2

DS
f +

 Nf∑
f=1

ẽ2f

 DNS
f

 (25)

with DS,NS the singlet (S) and non-singlet (NS) flavour diffusion constants and χf the flavour susceptibility

χf =
1

TV3

〈
Q2
f

〉
(26)

defined in terms of the conserved flavour charge

Qf =

∫
d~x J0

f (0, ~x). (27)

Note that the singlet susceptibility vanishes for 3 flavours.
In the hadronic gas, the flavor susceptibility is better sought in terms of the fluctuations in the baryon number,

isospin, and hyper-charge density through the linear transformation Qu

Qd

Qs

 =

 1 1 1
2

1 −1 1
2

1 0 −1

 QB

QI

QY

 (28)
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where

QB =

∫
d~x q†

1

3
q =

∫
d~x

1

3

(
u†u+ d†d+ s†s

)
QI =

∫
d~x q†

λ3

2
q =

∫
d~x

1

2

(
u†u− d†d

)
QY =

∫
d~x q†

λ8√
3
q =

∫
d~x

1

3

(
u†u+ d†d− 2s†s

)
. (29)

Here QB, QI and QY correspond to the baryon number, isospin and hyper-charge operators, respectively.
In the pionic gas which we are considering in this work, the flavor susceptibility becomes flavour-dependent because

the SU(3) symmetry is partially broken due to the explicit mass differences in the meson octet, χu
χd
χs

 =
1

TV3

 1 1 1
4

1 1 1
4

1 0 1

 〈(QB)2〉
〈(QI)2〉
〈(QY)2〉

 (30)

where 〈(QB)2〉 = 〈(QY)2〉 = 0 and χs = 0 for the pionic gas.
Using the pion density expansion we have

〈(QI)2〉 = 〈(QI)2〉π + 〈(QI)2〉ππ + ... (31)

with

〈(QI)2〉π =

∫
dπ 〈πa(k)|(QI)2|πa(k)〉 = I2πV3Nπ

∫
d3k

(2π)3
n(E − µπ) (32)

and

〈(QI)2〉ππ = +
1

2!

∫
dπa(k1)dπb(k2)

[〈
πa(k1)|(QI)2|πb(k2)

〉 〈
πb(k2)|πa(k1)

〉
+ (a, k1 ↔ b, k2)

]
+

1

2!

∫
dπa(k1)dπb(k2) Im

〈
πa(k1)πb(k2)| (S− 1) (QI)2|πa(k1)πb(k2)

〉
(33)

where I2π = 2, Nπ = 3, 〈πb(k2)|πa(k1)〉 = δab(2π)3 2E(k1)δ3(k2 − k1) and (2π)3δ3(~0) = V3.
The first exchange but disconnected contribution is shown separately. The connected contribution involves the full

S-matrix after using (6). The result is the on-shell and forward ππ scattering amplitude Tππ. The result is

〈
(QI)2

〉
ππ

=
2I2π
2!
V3Nπ

∫
d3k

(2π)3
[n(E − µπ)]

2

+
2I2π
2!

∫
dπa(k1)dπb(k2) (2π)4δ4(k1 + k2 − (k1 + k2)) ReT ab,abππ (k1, k2). (34)

where (2π)4δ4(0) ≡ V3/T . Thus

χu,d =
1

TV3

〈
(QI)2

〉
≈ I2π

[
Nπ
T

∫
d3k

(2π)3
n (1 + n) +

1

T 2

∫
d3k1
(2π)3

n1
2E1

d3k2
(2π)3

n2
2E2

ReTππ(s, t, u)

]
(35)

with the Mandelstam variables s = (k1 + k2)2, t = (k1 − k2)2, u = 0. To leading order in ChPT the ππ scattering
amplitude is given by the Weinberg term. Specifically,

χu,d ≈ I2π

[
Nπ
T

∫
d3k

(2π)3
n (1 + n)− κ2Nπ(Nπ − 2)

m2
πf

2
π

T 2

]
(36)

where the tree level ππ contribution is seen to be negative and vanishing in the chiral limit. The full result for the
second order correction using the chirally reduced forward ππ-scattering amplitude is given in the Appendix B in
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terms of the pion scalar and vector form factors and vacuum correlators [34, 35]. In Fig. 7, the flavor susceptibilities
of the pionic gas are summarized. At low temperature the leading contribution dominates compared to the Tππ
contribution. However, as the temperature increases, the Tππ contribution dominates due to the extra T 2 dependence
compared to the leading contribution. The increase in the two pion correlations around the transition temperature
is expected. While the diluteness factor 4κ ≈ 0.2 in this temperature range (see Fig. 1) is small, the forward two
pion scattering amplitude is large due to the threshold enhancement in the vector channel. Such kinematical effects
are expected in the hadronic organization of the thermal averages. They do not invalidate the κ-expansion. Indeed,
we do not expect further three pion etc. kinematical enhancements in the bulk susceptibilities. We recall that the
two pion contribution in Eq. (9) is very important for the dilepton rate enhancement, especially at very low invariant
mass M . Note that there are finite external 4-momentum (q2 = M2) for the dilepton rate which suppress the two
pion contribution via vector and axial correlators for large invariant mass M . In Fig. 7 the leading QGP contribution
is given by the red thin lines. Higher order corrections to the sQGP susceptibility are discussed later in Sec. III C.

III. ELECTROMAGNETIC RADIATION FROM A STRONGLY INTERACTING QUARK-GLUON
PLASMA

A. Non-Perturbative Thermal Condensates

There has been great progress in the calculation of the perturbative photon emission rates in a weakly coupled
QCD plasma at asymptotic temperatures [36]. The leading contribution to the photon rates comes from two-loop
diagrams corresponding to the process q+ q → γ+ g and compton g+ q(q)→ q(q) + γ processes. However these rates
are plagued with collinear singularities. Instead, a complete leading order photon emission requires the inclusion of
collinear bremsstralung and inelastic pair annihilations and their subsequent suppression through the LPM effect [36].
The extension of these calculations to the dilepton rates at asymptotic temperatures is not available.

At current collider energies the QCD plasma is strongly coupled or sQGP. The perturbative calculations are at best
suggestive and a more non-perturbative framework for time-like processes is needed to separate the hard partonic
physics which is perturbative from the soft partonic physics which is not. A useful framework for this approach is
the one advocated long ago by Hansson and one of us [18] whereby the vacuum OPE expansion for current-current
correlators is re-ordered at high temperature to account for the soft thermal gluon corrections through pertinent
electric and magnetic condensates much in the spirit of the QCD-sum-rules in the non-perturbative vacuum. Its
application to thermal dileptons was already used in [19].

The approach works as follows: The leading order contribution to the retarded current-current correlator, Eq. (8),
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is the ”Born” qq̄ annihilation term,

Im WR
0 (q) =

Ncẽ
2

4π
q2
[
1 +

2T

|~q|
ln

(
n+
n−

)]
(37)

where Nc is the number of colors and n± the quark occupation numbers

n± =
1

e(q0±|~q|)/2T + 1
. (38)

Note that this contribution vanishes at the photon point, q2 = 0, due to energy momentum conservation [19]. The
sQGP around the critical temperature is expected to display non-perturbative effects in the form of soft gluons, which
can be characterized by thermal condensates of gauge-invariant operators of leading mass dimensions such as

〈
A2

4

〉
,〈

E2
〉

and
〈
B2
〉
. Their contributions to the dilepton emissivities in leading order are [18, 19]

Im WR
2 (q) =

Ncẽ
2

4π
q2
〈αs
π
A2

4

〉( 4π2

T |~q|

)
(n+(1− n+)− n−(1− n−)) (39)

and

Im WR
4 (q) =

Ncẽ
2

4π

[
−1

6

〈αs
π
E2
〉

+
1

3

〈αs
π
B2
〉]( 4π2

T |~q|

)
(n+(1− n+)− n−(1− n−)) . (40)

Across the phase transition temperature Tc which is first order for pure gluo-dynamics, the electric and magnetic
condensates fall by about half their value in the QCD vacuum in the temperature range (1−3)Tc, and remain about
constant in this range [37]. Thus for Tc < T < 3Tc in Euclidean signature this translates to〈

αsB
2
〉
≈
〈
αsE

2
〉
≈ 1

2
× 1

4

〈
αsG

2
〉
0

(41)

in terms of the vacuum gluon condensate [37]. We use the updated value of the gluon condensate 〈αsG2〉0 = 0.068 GeV4

[38]. In Fig. 8, the dilepton rates from the sQGP are summarized for various temperatures and momenta q = |~q|. In
order to check the contribution from 〈A2

4〉, we used 〈αsπ A
2
4〉/T 2 ≈ 0.4 for the plot [19]. The presence of

〈
A2

4

〉
appears

to be ruled out by a comparison to the recent lattice data [23]. In the left panel, for the comparison, we also plot
the contribution form the HTL (hard thermal loop) [39]. One can see that the enhancement in the low mass region
mainly comes from the 〈E2〉 and 〈B2〉 contributions even though they are smaller than the HTL results. In Braaten
et al. [39], power counting is taken into account even for the Fermi-Dirac distribution function, which is valid in the
soft energy region. However, in this work, we kept the full expression of the Fermi-Dirac distribution function in the
HTL calculation in order to compare with other results. In the right panel of Fig. 8, the temperature and momentum
dependence of the sQGP rate are summarized. By comparing results for T = 190 MeV in Figs. 3 and 8, one can see
that the hadronic contributions are significantly higher than the sQGP contributions in the low mass region below
0.1 MeV as the chemical potential increases.

In Fig. 9 we plot the vector spectral densities, which can be compared with the results from the hadronic gas
summarized in Fig. 5. In the left panel of Fig. 9 we compare the results at two high temperatures of 1.1 Tc and
1.45 Tc with the critical temperature for quenched calculation Tc = 270 MeV [21]. The leading Born contribution is
compared to the contribution including the soft gluon condensates as well as the hard thermal loops [39, 40]. In the
right panel the same spectral densities are shown for different momenta ~q 6= 0 at T = 190 MeV. With finite thermal
condensate 〈E2〉 and 〈B2〉 contribution, the ρV /MT increases as the momentum increases for any given M , especially
in the low mass region the enhancement is significant. A comparison with recent lattice results confirms the important
of the thermal condensate in the sQGP[23].

B. Electric Conductivity

The electric conductivity σE at high temperature plays an important role in recent developments related to the
chiral magnetic effects in the early stage of the sQGP. Our condensate corrections to the Euclidean spectral function
allow us to make an estimate of σE across the transition region by tying it to the spectral function in the zero mass
limit as in Eq. (19). The only drawback is that the re-organized OPE expansion at high temperature [18, 19] is an
expansion in M2/|~q|2 < 1, with M the soft scale in the matrix element which is typically the magnetic scale. The
extrapolation of the leading operator corrections to |~q| → 0 while finite calls for corrections of order 1 from the higher
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operator insertions. This notwithstanding, an estimate of the electric conductivity is set by the leading dimension 4
operators at high temperature

σE ≈
πNcẽ

2

48T 3

(
−1

6

〈αs
π
E2
〉

+
1

3

〈αs
π
B2
〉)

. (42)

Lattice results show that σE/T is weakly dependent on the temperature and the value lies in the range 0.3 < σE/ẽ
2T <

0.8 [21, 31]. Recent analysis with PHENIX data gives slightly larger value 0.5 < σE/T < 1.1 [41]. The temperature
dependence of σE/T has been also reported in the literature [42–46], in which σE/T increases as the temperature
increases above Tc. Burnier & Laine [32] got a lower bound for the electric conductivity, or σE/T ≥ 0.07, which is
significantly smaller than previous leading-order weak-coupling expansion results [47, 48].

In Fig. 10, we plot the electric conductivity for the sQGP with constant 〈B2〉 and 〈E2〉. Our sQGP results with
constant 〈B2〉 and 〈E2〉 are much smaller than the lattice estimates [21, 31]. At large temperatures the electric and
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FIG. 11: Dilepton rates and spectral function from the sQGP with T -dependent 〈E2〉 and 〈B2〉 in Eq. (43).

magnetic condensates are T dependent with 〈B2〉 ≈ 〈E2〉 ≈ (bπ2/20)× T 4 and b ≈ 1− 1.2 [49]. On the other hand,
a fit to the currently reported lattice conductivities suggest

〈αsE2〉 ≈ 〈αsB2〉 ≈ 288

Nc

〈 σE
ẽ2T

〉
T 4 ≈ 48T 4 (43)

with 〈σE/ẽ2T 〉 ∼ 0.5 at about the mean value of the lattice results [21, 31]. Therefore, the electric conductivity as well
as the comparison with lattice results appear to rule out the sQGP approach with T -independent condensates 〈B2〉
and 〈E2〉. In Fig. 11, we plot the dilepton rate and spectral density with T -dependent condensates. In comparison
with Figs. 8 and 9 one can see the significant enhancement in the low mass region. The Born term dominates in the
high mass region and the results are rather insensitive to the details of the thermal condensates.
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C. Flavor Diffusion Constant

The partonic flavor susceptibility can be sought along the same arguments as those developed for the hadronic
parts, using the QCD Hamiltonian at high temperature, as summarized in Appendix C. However, in this work,
instead of calculating the contributions of Tqq explicitly, we compare our pionic gas results in Fig. 7 with the recent
lattice results [50]. Lattice results indicate that the quark susceptibilities drop by about 15 ∼ 25 % compared to
the Stefan-Boltzmann limit near the phase transition temperature. The leading contribution from the pionic gas is
close to the lattice results. However, as noted earlier, the higher order corrections from Tππ become significant in the
critical temperature region and the perturbative treatment is not valid.

Since DNS
f /DS

f ∼ Nc this makes the non-singlet contribution dominant for Nc = 3 assumed large. Thus, with

χf = (Nc/3)T 2,

TDNS
f ≈ TσE

ẽ2χf
≈ 3

Nc

σE
T ẽ2

≈ 1

2
(44)

where in the last estimate we used the central value of the lattice estimate for the electric conductivity [21, 31],
across the transition temperature. Note that this value lies between the results from the AdS/CFT [51] and the
phenomenological approach [52]. In the intermediate regime of temperatures (1− 3)Tc the light flavour quarks carry
a thermal mass of the order of the Matsubara mass mT ≈ πT > T making the light flavors somehow heavy in
comparison to the typical thermal excitations. In the large Nc limit and using the Einstein relation we can estimate
the drag ηf on the light quarks in the transition region [53, 54]

ηf
T
≈ 1

mTDNS
f

≈ NcT

3mT

ẽ2T

σE
. (45)

If we use the central value of the lattice result for the electric conductivity, then ηf/T ≈ 2/π across the transition
temperature. This drag quantifies the amount of Brownian motion for the light flavors in the sQGP.

IV. CONCLUSIONS

Our hadronic rates are based on the use of spectral functions. Unlike kinetic processes whereby each emission
is associated with particular Feynman diagrams, our spectral analysis enforces all the constraints of broken chiral
symmetry, and through the spectral weights accounts for tails of resonances. It does not rely on any effective
Lagrangian, and therefore does not suffer the drawback of a strong interaction expansion and the ambiguities associated
to hadronic form factors. However, it is limited by a reorganization of the leptonic emissivities around the resonance
gas model to leading order, with one- and two-pion final re-scattering in the initial states. Carrying out the expansion
to three-pion re-scattering in the initial state is formidable.

We have shown that the mixing between the vector and axial correlators becomes more significant with increasing
pion chemical potentials indicating the partial restoration of chiral symmetry. This mixing enhances the dilepton rate
significantly at low invariant mass. The evolved rates account well for the dilepton emissivities reported by the SPS
(see [6] and reference there in). Although the inclusion of baryons, should improve slightly the fit, we are confident
that our organization of the dilepton emissivities through the virial expansion works at collider energies.

Since our photon rates fit reasonably well the low mass photon spectra at collider energies [16] we can use them
to extract both the electric conductivity and the flavor susceptibility constant in the hadronic phase. We have found
that the electric conductivity at T ≈ mπ is substantially smaller than the currently reported lattice conductivities.
While we have not included the contributions of order κ3 and higher, we believe that our chiral expansion provides a
sound starting estimate based on the strictures of spontaneously broken chiral symmetry. The flavor susceptibility in
the correlated hadronic gas is reasonably close to the reported lattice results at the transition temperature.

We have provided first principle estimates of the corrections to the electromagnetic emissivities in the partonic phase
and near the transition temperature using the high temperature QCD sum rule method [18, 19], whereby the effects
of soft gluons are retained in the form of gluonic matrix elements. A reasonable account of the electric conductivities
reported on the lattice at high temperature is reproduced with temperature dependent condensates.

The approach we have discussed can be extended to most transport coefficients in QCD both below and above the
transition temperature. It is well motivated by the structures of chiral symmetry below the transition temperature,
and by a reorganization of the OPE expansion at high temperature. The dual nature of the interacting resonance gas
model near the transition temperature with its high-temperature partonic description, provides us with an interesting
non-perturbative tool for computing the transport parameters of QCD matter near equilibrium.
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Appendix A. Two-Pion Contribution WF
ππ

The two-pion contribution WF
ππ which is important both for the rate and the electric conductivity is more in-

volved [12, 26]. We summarize the dominant contributions [16]

1

f4π
ImWF

ππ(q, k1, k2) =
2

f2π
[gµν − (2k1 + q)µk1νRe∆R(k1 + q)] ImT µνπγ (q, k2)

+ (q → −q) + (k1 → −k1) + (q, k1 → −q,−k1)

+
1

f2π
kµ1 (2k1 + q)νRe∆R(k1 + q)εa3eεe3gImBagµν(k1, k2)

− 1

f2π
[gµν − (k1 + q)µ(2k1 + q)νRe∆R(k1 + q)]

×εa3eεa3f ImBefµν(k1 + q, k2)

+
1

f2π
(k1 + q)µ(k1 + q)ν(2k1 + q)2 [Re∆R(k1 + q)]

2

×εa3eεa3f ImBefµν(k1 + q, k2) + (k1 → −k1). (46)

The pion-spin averaged πγ forward scattering amplitude ImTπγ is given as [26]

ImT µνπγ (q, k) =
2

3f2π
(2kµ + qµ)(−q2kν + k · q qν)Re∆R(k + q)ImΠV (q2) (47)

+ (q → −q) + (k → −k) + (q, k → −q,−k)

+
4

3f2π
(gµνq2 − qµqν)ImΠV (q2) (48)

− 2

3f2π

(
gµν(k + q)2 − (k + q)µ(k + q)ν

)
ImΠA

(
(k + q)2

)
(49)

+ (k → −k), (50)

and the contribution B reads [16, 26]

ImBefµν(k1, k2) =
2

f2π
δef
[
gµν(k1 + k2)2 − (k1 + k2)µ(k1 + k2)ν

]
ImΠV

(
(k1 + k2)2

)
+ (k2 → −k2)

− 4

f2π
δef
[
gµνk

2
1 − k1µk1ν

]
ImΠA

(
k21
)
. (51)

All additional spectral contributions to WF
ππ are thoroughly discussed in [12, 26]. Their contribution to the photon

and dilepton emissivities in the low and intermediate mass range is negligible.

Appendix B. ππ Scattering Amplitude

Here we summarize the ππ scattering amplitudes which are relevant to the flavor susceptibility as [34, 35]

Tππ(s, t, u) ≡
∑

a=d,b=c

Tππ(p2d, k2b← k1a, p1c)|p2=k1,p1=k2

= Ttree(s, t, u) + Tvector(s, t, u) + Tscalar(s, t, u) + Trest(s, t, u) (52)
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with Mandelstam variables

s = (k1 + p1)2 = (k2 + p2)2

t = (k1 − k2)2 = (p1 − p2)2

u = (k1 − p2)2 = (p1 − k2)2. (53)

For the contribution of thermal pions to the flavor susceptibility, δadδ4(k1−p2), δbcδ4(p1−k2), and u = 0 are implicitly
considered and the identity s+ t+ u = 4m2

π is used. The Weinberg tree contribution to the scattering amplitude can
be reduced to a constant value as

Ttree =
∑

a=d,b=c

[
1

f2π
(s−m2

π)δacδbd +
1

f2π
(t−m2

π)δabδcd +
1

f2π
(u−m2

π)δadδbc
]

⇒ Nπ(2−Nπ)
m2
π

f2π
. (54)

The vector contribution to one loop order can be represented as

Tvector =
∑

a=d,b=c

[
εaceεdbe(u− t) 1

4f4π
sΠV (s) + 2 permutation

]
⇒ −Nπ

st

2f4π
[ΠV (s) + ΠV (t)] (55)

where

ΠV (q2) = c1 +
1

72π2
+

1

3

(
1− 4m2

π

q2

)(
J (q2)− ĉ1

)
(56)

and

J (q2) = ĉ1 +
1

16π2
θ(q2 − 4m2

π)

(
2 +

√
1− 4m2

π

q2

[
ln

∣∣∣∣∣
√

1− 4m2
π/q

2 − 1√
1− 4m2

π/q
2 + 1

∣∣∣∣∣+ iπ

])
. (57)

In this work, we take the mean value of the counter term c1 = 0.035 and ĉ1 = 0.023 [34]. The scalar contribution can
be rewritten as

Tscalar =
∑

a=d,b=c

[
2m2

π

f4π
δacδbd

(
sJ (s)− 5

4
m2
πJ (s)

)
+ 2 permutation

]

⇒ 2Nπm
2
π

f4π

(
sJ (s) + tJ (t)− 5

4
m2
π [J (s) + J (t) +NπJ (0)]

)
. (58)

The remaining contribution can be rewritten as

Trest =
∑

a=d,b=c

[
− i

f4π
kα1 k

β
2 p

γ
1p
δ
2

∫
d4y1d

4y2d
4y3 e

−ik1·y1+ik2·y2−ip1·y3
]

× 〈0| T ∗
[
jaAα(y1) jbAβ(y2) jcAγ(y3) jdAδ(0)

]
|0〉conn

]
⇒ Nπ(2 +Nπ)

4f4π

[
(s− 2m2

π)2J (s) + (t− 2m2
π)2J (t) + 4m4

πJ (0)

]
(59)

Appendix C. Partonic Quark Susceptibility

The partonic flavor susceptibility is summarized following the same arguments as those developed for the hadronic
parts in Eq. (35). One can start with flavor charge fluctuations〈

Q2
f

〉
=
〈
Q2
f

〉
q

+
〈
Q2
f

〉
qq

+ ... (60)
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with 〈
Q2
f

〉
q

=

∫
dq(k)

〈
qai(k)|Q2

f |qai(k)
〉

= 4NcV3

∫
d3k

(2π)3
nF (E) (61)

and 〈
Q2
f

〉
qq

= − 1

2!

∫
dq(k1)dq(k2)

(〈
qai(k1)|Q2

f |qbj(k2)
〉 〈
qbj(k2)|qai(k1)

〉
+ a, i, k1 ↔ b, j, k2

)
+

1

2!

∫
dq(k1)dq(k2) Im

〈
qai(k1)qbj(k2)| (S− 1) Q2

f |qai(k1)qbj(k2)
〉
. (62)

The index a is for flavor and the index i is short for color, spin, particle and anti-particle. The integrals count the
number of massless (scalar) fermions in phase space∫

dq(k) =

∫
d3k

(2π)3
nF (E)

2E
. (63)

In the the disconnected matrix element the minus sign is from the antisymmetric switch of the quarks. The connected
contribution is the forward quark-quark scattering amplitude Tqq. Thus

〈
Q2
f

〉
qq

= −4NcV3

∫
d3k

(2π)3
n2F (E)

+
2

2!

∫
dq(k1)dq(k2) (2π)4 δ(k1 + k2 − (k1 + k2)) ReT ai,bjqq (k1, k2) (64)

so that

χf ≈
4Nc
T

∫
d3k

(2π)3
nF (1− nF ) +

1

T 2

∫
dq(k1)dq(k2)ReT ai,bjqq (k1, k2). (65)

For massless quarks, the first term gives the leading QGP contribution χf = (Nc/3)T 2.
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