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Abstract
We use a nonlinear response formalism to describe the event plane correlations measured by the

ATLAS collaboration. With one exception (〈cos(2Ψ2 − 6Ψ3 + 4Ψ4)〉), the event plane correlations

are qualitatively reproduced by considering the linear and quadratic response to the lowest cumu-

lants. For the lowest harmonics such as 〈cos(2Ψ2 + 3Ψ3 − 5Ψ5)〉, the correlations are quantitatively

reproduced, even when the naive Glauber model prediction has the wrong sign relative to experi-

ment. The quantitative agreement for the higher plane correlations (especially those involving Ψ6)

is not as good. The centrality dependence of the correlations is naturally explained as an average

of the linear and quadratic response.
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I. INTRODUCTION

The collective expansion of the deconfined fireball created in high energy heavy-ion col-
lisions maps the initial state of the Quark-Gluon Plasma (QGP) to the final state particle
spectrum. The measured correlations in this spectrum can clarify the initial conditions and
subsequent expansion dynamics of the QGP [1–3].

On an event-event basis the azimuthal distribution of produced particles can be decom-
posed into a Fourier series

dN

dφp

=
N

2π

(
1 + 2

∞∑
n=1

vn cos(nφp − nΨn)

)
, (1.1)

and the measured two particle correlation function determines the root mean square of the
these harmonics,

√
〈v2
n〉. The magnitude of these harmonics is reasonably reproduced by

event-by-event viscous hydrodynamics provided the shear viscosity is not too large [1]. The
correlations between the harmonics can provide new tests of the hydrodynamic description,
constrain the simulation parameters, and provide an estimate of the uncertainties in the
computation. In this work we will describe the correlations between the observed event
plane angles Ψn in order to clarify the expansion dynamics, and ultimately to determine the
shear viscosity of the QGP with credible systematic error bars.

Clearly, an important input to the hydrodynamic simulations is the distribution of energy
density in the transverse plane, which is usually estimated from the known probability distri-
bution of nucleons in the incoming nuclei. There is reasonable evidence, both experimental
[4] and theoretical [5], that v2 and v3 are to a good approximation linearly proportional to
the corresponding angular fluctuations in the transverse energy density. However, event-by-
event hydrodynamic simulations have shown that the higher harmonics, v4 and v5, reflect
both the response to corresponding angular harmonics in the initial state, and the non-linear
hydrodynamic response which mixes lower order harmonics [5, 6]. For example, the 5-th
flow harmonic, v5, is determined in part by the medium response to the 5-th harmonic of
the initial energy density distribution, and in part by the non-linear mixing between v2 and
v3. Such mode-mixing is especially important at high pT where the non-linearities of the
phase-space distribution play an important role [7]. Indeed, there are indications that the
dominant source of mode mixing comes from freezeout as opposed to the hydrodynamic evo-
lution [8]. Motivated by these simulation results, and especially the simulation analysis of
Ref. [6], we developed a non-linear response formalism to describe the mixing between modes
of different order, and we investigated how the response coefficients depend on centrality,
shear viscosity, and transverse momentum [9].

These theoretical calculations preceded the corresponding experimental studies by the
ATLAS [10] and ALICE collaborations [11], which qualitatively confirmed the mode mix-
ing picture by measuring significant correlations between the event-plane angles of different
orders1, e.g. between Ψ2,Ψ3, and Ψ5. Event-by-event hydrodynamics [13] and AMPT calcu-
lations [14] largely reproduce the structure of these correlations. The goal of this paper is to
compare the response formalism outlined in our previous work to the event-plane correlations
measured by the ATLAS collaboration [9].

1 The ATLAS measurement did not precisely measure Ψn [12]. Ultimately, this important first measurement

will need to be redone, weighting the event averages with the Q vector to provide an unambiguous quantity

which can be fairly compared to simulations. See below for further discussion.
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As discussed more technically in Section II B we will use a non-linear response formalism
to describe the observed event plane correlations, rather than event-by-event hydrodynamics.
In practice, this means that we decompose the initial state into an average event plus small
fluctuations, which are systematically analyzed with cumulants. The linear and quadratic
response to each cumulant is found by perturbing the average background, and finally the
observed plane correlations are found by weighting the response functions with the spectrum
of fluctuations. Thus, the response formulation provide a transparent link between the initial
state and the final state, which contains only the linear and quadratic response through a
specified order in the cumulant expansion. As we will see, this approach reproduces a lot
of the observed event plane correlations, suggesting that most of the microscopic details of
the initial state (beyond the lowest cumulants) are irrelevant. Ideally, a limited number
of initial state parameters can be extracted from experiment, and compared to available
theoretical frameworks such as the Color Glass Condensate to demonstrate the consistency
and uniqueness of the approach. There are indications that the spectrum of fluctuations
from the Color Glass Condensate is consistent with the observed harmonics [15], but the
uniqueness of this approach is not obvious.

A review of the non-linear flow response formalism will be given in Section II. This has
several ingredients. First, the spectrum of initial fluctuations in various Glauber type models
is described in Section II A, and this spectrum is analyzed with the cumulant and moment
expansions. Then, we describe how the response coefficients are calculated, and how these
coefficients determine the plane correlations in Section II B and Section II C. Finally, we
compare the response formalism to the ATLAS data in Section III and discuss the results.

Throughout the paper Φn will denote participant plane angle based on the cumulants
rather than moments. (The correlations in the Glauber model between the cumulant angles
Φn are markedly different from the correlations found using the analogous moment based
angles – see Section II A.) Ψn denotes the event plane angle extracted from the final state
momentum spectra.

II. REVIEW OF NONLINEAR FLOW RESPONSE FORMALISM

A. Characterizing the initial state with cumulants

As discussed in the introduction, an important input to the hydrodynamic calculations
is the spectrum of initial fluctuations. This spectrum is traditionally [4] quantified with the
participant plane anisotropy based on moments2

εne
inΦn ≡ −

〈
rneinφr

〉
〈rn〉

(Not used). (2.1)

Here the brackets 〈. . .〉 denote an average over the participating nucleons of a single event,
while reiφr = x+ i y notates the transverse coordinates of the participants. It is convenient
to use a complex notation z ≡ x+ iy so that εne

inΦn = −〈zn〉 / 〈rn〉. As emphasized in our
previous work, it is often useful to characterize the fluctuations with cumulants rather than

2 In this formula we are using a moment based definition of εn and Φn. For most of the text we will use a

cumulant based definition.
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moments. The cumulants subtract off the lower order correlation functions of z to describe
the irreducible correlations

εne
inΦn ≡ − 1

rn
[〈zn〉 − subtractions] . (2.2)

For example, the fourth order cumulant is

ε4e
i4Φ4 ≡ − 1

〈r4〉

[〈
z4
〉
− 3

〈
z2
〉2
]
, (2.3)

where the factor of three arises because there are three ways to pair four objects. Here
and below we have assumed that we are working in the center of mass coordinate system
where 〈z〉 = 0. The usefulness of cumulants can be understood by considering a Gaussian
distribution,

ρ(x, y) ∝ e
− x2

2〈x2〉−
y2

2〈y2〉 , (2.4)

whose fourth order moment anisotropy 〈z4〉 is non-zero, and is trivially correlated with the
eccentricity, 〈z2〉. The fourth order cumulant takes out these trivial correlations, and for a

Gaussian distribution we have ε4 ∝ 〈z4〉 − 3 〈z2〉2 = 0.

The azimuthal anisotropies through ε6 are

E2 ≡ ε2e
i2Φ2 ≡− 〈z

2〉
〈r2〉

, (2.5)

E3 ≡ ε3e
i3Φ3 ≡− 〈z

3〉
〈r3〉

, (2.6)

E4 ≡ ε4e
i4Φ4 ≡− 1

〈r4〉

[〈
z4
〉
− 3

〈
z2
〉2
]
, (2.7)

E5 ≡ ε5e
i5Φ5 ≡− 1

〈r5〉
[〈
z5
〉
− 10

〈
z2
〉 〈
z3
〉]
, (2.8)

E6 ≡ ε6e
i6Φ6 =− 1

〈r6〉

[〈
z6
〉
− 15

〈
z4
〉 〈
z2
〉
− 10

〈
z3
〉2

+ 30
〈
z2
〉3
]
, (2.9)

where En = εne
inΦn denotes the eccentricity and its phase. The ε1 which drives v1 is a special

case, and is given by

E1 = ε1e
iΦ1 ≡ − 1

〈r3〉
〈
z2z∗

〉
. (2.10)

Given an initial state Glauber model for the distribution of nucleons such as Glissando [16] or
the Phobos Monte Carlo Glauber model [17] one can calculate the correlations between the
angles Φn. Fig. 1 and Fig. 2 show such a calculation from the Phobos Monte-Carlo model.
Here and below the double brackets 〈〈. . .〉〉 indicate an average over events, while the single
brackets 〈. . .〉 denote an average over one event. In the Phobos Glauber the participant
centers are used to define the averages in eq. (2.5), while in the Glissando model a slightly
different prescription is used, which is based on the wounding profile of the nucleon [16].

It is interesting to compare the correlations between the cumulant and moment based
angles. For example, the 〈〈cos 4(Φ4 − Φ2)〉〉 correlation is strongly negative with the moment
based definitions, while the corresponding correlations with cumulant angles are positive. In
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FIG. 1. (Color online) Participant 2-plane correlations from Phobos Monte Carlo Glauber model

[17] as measured by the cumulant and moment expansions. The measured event plane correlations

[10] are presented for reference and as a point of contact, and are not supposed to be directly

compared to the Glauber model results.
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FIG. 2. (Color online) Participant 3-plane correlations from Phobos Monte Carlo Glauber model

[17] as measured by the cumulant and moment expansions. The measured event plane correlations

[10] are presented for reference and as a point of contact, and are not supposed to be directly

compared to the Glauber model results.
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the moment definition the Φ4,Φ2 correlation arises because the fourth order eccentricity E4

is trivially correlated with the second order eccentricity E2 through the average geometry.
These trivial geometric correlations are removed with the cumulant definition, and the resid-
ual correlation is positive. The correlation between Ψ4 and Ψ2 seen in the data is positive,
but does not seem to be directly related to the participant plane correlation between Φ4 and
Φ2. The interpretation of the data is described in Section III.

B. Formulation of flow response

The harmonic flow vn and the corresponding flow angle Ψn are defined by the Fourier
decomposition of the final state particle spectrum,

dN

dφp
=
N

2π

[
1 +

∑
n

(
vne
−in(φp−Ψn) + c.c.

)]
. (2.11)

Here we use a complex expression, with c.c. standing for complex conjugate. For simplicity,
we also define a complex flow coefficient which takes into account the flow and its angle
simultaneously,

Vn ≡ vne
inΨn . (2.12)

Following the same strategy and notation as in our previous work [9], the magnitude of
the flow and its corresponding angle is given by the response formula

Vn =

(
wn
εn

)
En +

∑
quadratic

(
wn(pq)

εpεq

)
EpEq + . . . . (2.13)

Here wn is the n−th linear response coefficient to a given En, and wn(pq) are the n−th
quadratic response coefficients. The ellipses in eq. (2.13) stand for higher order nonlinear
contributions which are generally neglected in this work. The only exception to this rule is
for V6 where we included the contribution from E3

2 . Even in this case, the E3
2 contribution

was found to be numerically small compared to the quadratic E2E4 and the E2
3 results. The

current calculation uses the following minimal set of response coefficients

w1, . . . , w6 w1(32), w3(21), w4(22), w5(23), w6(24), w6(33), w6(222) . (2.14)

We found that additional non-linear terms such as w2(31), w4(13), and w5(14) were not numeri-
cally important for the current set of correlations. Thus, we reverted the code to the minimal
set of response coefficients listed in eq. (2.14). The effects of including additional (radial)
modes in the linear response was studied in [18, 19]. While a complete analysis will be
presented in future work, a preliminary investigation shows that these (radial) contributions
are small for the inclusive correlations studied here.

The form of eq. (2.13) indicates the dependence of the n-th order harmonic flow and its
angle on the linear response coefficient wn and the quadratic response coefficients wn(pq).
These response coefficients are calculated by perturbing the (smooth) background geometry
and determining the resulting flow. The details of this procedure have been given in our
previous work [9], and here we will simply review the most important features.
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Linear and nonlinear flow response coefficients are obtained from “single-shot” 2+1D
hydrodynamic simulations. In this approach the average geometry for a given centrality
class is modeled with a cylindrically symmetric Gaussian, i.e. the initial entropy density in
the event at Bjorken time τo is

s(x, y, τo) =
Cs

τoπR2
e−r

2/R2

. (2.15)

The rms radius of the Gaussian is adjusted to match the rms radius of a smooth (or aver-
aged) Glauber model for a given centrality. The overall constant of the Gaussian is adjusted
as a function of centrality to reproduce the measured dNch/dy at the LHC [20]. The re-
sponse coefficients are calculated by perturbing this radially symmetric Gaussian by small
deformations; running the perturbed Gaussian through the hydro tool chain; and finally
calculating wn or wn(pq). For example, for we calculate w5/ε5 by deforming the Gaussian by
a tiny ε5 and calculating v5. Similarly we calculate w5(23)/(ε2ε3) by deforming the Gaussian
by ε2 and by ε3 and calculating v5, which is proportional to ε2ε3. To summarize, all of the
response coefficients and their dependence on centrality are obtained by simulating slightly
deformed cylindrically symmetric Gaussian initial conditions.

We have implemented 2nd order hydrodynamics [21], taking the necessary second order
transport coefficients from the AdS/CFT results. The numerical scheme (but not the code)
is similar to the scheme developed in Ref. [22]. The shear viscosity to entropy ratio η/s is
constant throughout the whole evolution, and is set to the canonical value of 1/4π. We use
an equation of state that parametrizes the lattice results [23], which was used previously by
Romatschke and Luzum [24]. Finally, we use a constant freeze-out temperature Tfo = 150
MeV, and adopt the widely used quadratic ansatz for the first viscous correction to the
freeze-out distribution function [25].

C. Formulation of plane correlations

The plane correlations are measured by event-plane method [10], and a multi-particle
correlation method [11, 26]. We will focus on the event plane method which was used by the
ATLAS collaboration. The details of this method were clarified by Luzum and Ollitrault
who showed that if the event plane method is used, the quantity that is measured depends
on the reaction plane resolution of the detector [12].

We are interested in describing the correlations involving two and three event plane angles.
For definiteness we will present formulas for a specific correlation, 〈〈cos(4Ψ4 − 2(2Ψ2))〉〉,
which can be easily generalized to other harmonics. (To aid the reader we have written
4Ψ2 = 2(2Ψ2) to expose the general pattern.) The 4-2 plane correlation is related to V4 and
V2 through

〈〈cos(4Ψ4 − 2(2Ψ2))〉〉 =
〈〈 Re (V4V

∗
2

2)√
(V4V ∗4 )(V2V ∗2 )2

〉〉
=
〈〈w4 cos 4(Φ4 − Φ2) + w4(22)

|w4e−i4Φ4 + w4(22)e−i4Φ2 |

〉〉
. (2.16)

Thus, both the linear and nonlinear response coefficients enter this formula for the event
plane correlation.

The ATLAS collaboration quantified the event plane correlations by measuring related
correlations between the experimental planes, Ψ̂n, as determined by the Qn-vectors, ~Qn =
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|Qn|e−inΨ̂n [10]. Further investigation showed that the measured quantity can not be directly
interpreted as an event plane correlation in the form of eq. (2.16). The measured correlation
equals eq. (2.16) when the experimental event plane resolution approaches unity,

〈cos(4Ψ̂2 − 2(2Ψ̂2))〉{EP} '
〈〈 Re (V4V

∗
2

2)√
(V4V ∗4 )(V2V ∗2 )2

〉〉
(high resolution limit). (2.17)

Here we have notated the experimental quantity with {EP} [10], and refer to Ref. [12] where
the precise definition is carefully examined. The notation for the experimental quantity is
somewhat misleading since the experimental definition does not actually correspond to the
average of a cosine, and can be greater than one. In the limit of low event plane resolution,
the measured quantity equals

〈cos(4Ψ̂2 − 2(2Ψ̂2))〉{EP} '
〈〈

Re (V4V
∗

2
2)
〉〉√

〈〈V4V ∗4 〉〉 〈〈(V2V ∗2 )2〉〉
(low resolution limit) . (2.18)

Clearly eq. (2.18) differs from eq. (2.17) by how the events are weighted. The event plane

measurements by the ATLAS collaboration (such as 〈cos(4Ψ̂2 − 2(2Ψ̂2))〉{EP}) interpolate
between the high and low resolution limits depending on the reaction plane resolution.

As the experimental resolution depends on the harmonic number, the detector accep-
tance, and centrality, we will compute both the high and low resolution limits and compare
both curves to the experimental data. In the future, such ambiguities in the measurement
definition can be avoided by measuring〈

v4v
2
2 cos(4Ψ̂2 − 2(2Ψ̂2))

〉
√
〈v2

2〉
2 〈v2

4〉
=

〈〈
Re (V4V

∗
2

2)
〉〉√

〈〈V4V ∗4 〉〉 〈〈(V2V ∗2 )〉〉2
, (2.19)

as originally suggested in [27], and more recently in [12]. Such angular of correlations
have already been measured by the ALICE collaboration [11], but we will not address this
preliminary data here. Certainly eq. (2.19) is the most natural from the perspective of the
response formalism developed in this work.

Finally, we give one additional example, −8Ψ2+3Ψ3+5Ψ5 of how a three plane correlation
function is calculated in the high and low resolution limits:

〈cos(−4(2Ψ̂2) + 3Ψ̂3 + 5Ψ̂5)〉{EP} '
〈〈 Re (V ∗2

4V3V5)√
(V2V ∗2 )4(V5V ∗5 )(V3V ∗3 )

〉〉
(high resolution),

(2.20)

〈cos(−4(2Ψ̂2) + 3Ψ̂3 + 5Ψ̂5)〉{EP} '
〈〈

Re (V ∗2
4V3V5)

〉〉√
〈〈(V2V ∗2 )4〉〉 〈〈V3V ∗3 〉〉 〈〈V5V ∗5 〉〉

(low resolution).

(2.21)
In the future the quantity which is most easily compared to theoretical calculations is

〈v4
2v3v5 cos(−4(2Ψ̂2) + 3Ψ̂3 + 5Ψ̂5)〉√

〈v2
2〉

4 〈v2
3〉 〈v2

5〉
=

〈〈
Re (V ∗2

4V3V5)
〉〉√

〈〈V2V ∗2 〉〉
4 〈〈V3V ∗3 〉〉 〈〈V5V ∗5 〉〉

. (2.22)
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III. DISCUSSIONS AND CONCLUSIONS

Figs. 3 and 4 show a comparison of the measured two and three plane correlation func-
tions with the response formalism in the high and low resolution limits using the PHOBOS
Glauber. To test the sensitivity to the Glauber model in the high resolution limit we com-
pare two widely used monte-carlos – the PHOBOS Monte Carlo Glauber [17] and Glissando
[16]. In Figs. 5 and 6, the predictions of viscous hydrodynamics based on these two initial
state models are shown by the blue and green lines, respectively. The two Glauber models
give similar results, although the correlations from Glissando are somewhat stronger.

For the highest harmonics (such as v6), viscous corrections in peripheral collisions can
become too large to be trusted. In this regime the linear and non-linear response coefficients
can become negative as a result of the first viscous correction to the distribution function [9].
Second order corrections to the viscous distribution are positive [25], suggesting that such
negative response coefficients are artificial. Indeed, kinetic theory simulations have positive
response coefficients for all values of the Knudsen parameter [28]. To understand when
viscous corrections to the response coefficients are out of control, we have performed two
simulations. In the first case (un-cut), we blindly allow the response coefficients to become
negative. In the second case (cut), we set these coefficients to zero (as a function of centrality)
when they turn negative. In Figs. 5 and 6 we show the correlation results of the un-cut
(solid) and cut (dashed) response coefficients. As seen in these figures, the ambiguity is
noticeable only for peripheral collisions, and for correlations involving the highest harmonic,
Ψ6. Examining the 〈〈cos 6(Ψ6 −Ψ3)〉〉 correlation, we see that the negative dive in peripheral
collisions is an artifact of out-of-control viscous corrections. A similar negative dive is seen
in event-by-event hydro simulations [13].

Inspecting these correlations, we make the following observations. First, many of the most
important correlation functions are reasonably reproduced, at least if the high resolution
limit is used. The agreement with the low resolution limit is not as good. The ambiguities in
the measurement can be avoided by taking definite moments as in eq. (2.19) [27]. Examining
the definitions of the high and low resolution limits (Eqs. 2.17 and 2.18), we see that the
difference between the two measurements can be best quantified by measuring the probability
distribution P (vn) [29], or the moments of this distribution [30], e.g. for v2

(v2{2})2 ≡
〈
v2

2

〉
and (v2{4})4 ≡ −

[〈
v4

2

〉
− 2

〈
v2

2

〉2
]
. (3.1)

It is then a separate and important question whether the response formalism outlined here
can reproduce these probability distributions. This will be addressed in future work.

There are a few correlations which are seemingly not well reproduced even in the high
resolution limit. First, one could hope for better agreement with the correlations involving
Ψ6 such as cos(6Ψ3 − 6Ψ6) and cos(6Ψ2 − 6Ψ6). v6 is a relatively high harmonic, and
viscous corrections are not in perfect control in peripheral collisions [25]. This is clearly
evident in Fig. 5 which estimates the contributions of higher order viscous corrections to the
distribution function (see above). For the Ψ6-correlations (and no others), these corrections
are large in peripheral collisions.

The most troubling correlation function, which is not qualitatively reproduced by the
response formulation, is cos(2Ψ2 − 6Ψ3 + 4Ψ4). It is possible that that this discrepancy
stems from an underestimate of the mixing of v1 with other modes, which naturally mixes
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FIG. 3. (Color online) Two plane correlations using the non-linear response formalism. Here

η/s = 1/4π for PHOBOS Monte-Carlo Glauber initial conditions. The data are from the ATLAS

collaboration [10]. The solid lines indicate the high resolution limit, eq. (2.17), while the dashed

lines indicate the low resolution limit, eq. (2.18).
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η/s = 1/4π for PHOBOS Monte-Carlo Glauber initial conditions. The data are from the ATLAS

collaboration [10]. The solid lines indicate the high resolution limit, eq. (2.17), while the dashed

lines indicate the low resolution limit, eq. (2.18).
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FIG. 5. (Color online) A comparison of the two-plane correlations in the high resolution limit

for two different Glauber models, Glissando [16] and the PHOBOS Glauber [17]. The solid lines

(un-cut) include the negative response in peripheral collisions due to a large δf , while the dashed

lines (cut) truncate the negative response – see Section III.
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FIG. 6. (Color online) A comparison of the three-plane correlations in the high resolution limit

for two different Glauber models, Glissando [16] and the PHOBOS Glauber [17]. The solid lines

(un-cut) include the negative response in peripheral collisions due to a large δf , while the dashed

lines (cut) truncate the negative response – see Section III.
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FIG. 7. (Color online) The separate contributions of the linear and non-linear response to a
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The dashed lines show the naive Glauber expectation (see text). The data is from Ref. [10].

v4 with v3. Indeed, a preliminary analysis suggests that this correlation is closely related
to the transverse shift from the geometrical center to the center of participants. The 2, 3, 4
correlation is qualitatively reproduced by event-by-event hydrodynamics [13].

It is important and instructive to understand the hydrodynamic origin of the correlations
presented in these figures. This is best understood by examining the linear and non-linear
contributions separately. Fig. 7(a) and (b) illustrate this decomposition with the correlations
〈cos(4(Ψ2 −Ψ4))〉 and 〈cos(2Ψ2 + 3Ψ3 − 5Ψ5)〉 respectively. For definiteness, we study the
2,3,5 combination shown in Fig. 7(b). The naive expectation of the Glauber model (where
vn is proportional to the n−th order moment based eccentricity) is shown by the dotted
line, and has the wrong sign. In the naive approach the observed correlation between the
event plane angles 2, 3, 5 arises from the correlations between the angles associated with the
corresponding moment based eccentricities.

In the current work the v5 is produced through a combination of the linear and non-linear
response.

• In linear response, v5 is proportional to the 5-th cumulant ε5, and the correlation
between the event plane angles Ψ2,Ψ3,Ψ5 reflects the initial state correlation between
the associated cumulant angles, Φ2,Φ3,Φ5. The predictions of linear response are
shown in Fig. 7, and fail to reproduce the observed correlations in non-central collisions.

• In non-linear response, v5 is determined through the mode mixing of v2 and v3. If
v5 was determined entirely by this mechanism, the Ψ5 event plane would be entirely
determined by Ψ2 and Ψ3, leading to a perfect 2, 3, 5 correlation. This prediction of
non-linear response is also shown in Fig. 7.

In general, v5 is determined by a weighted average of the linear and non-linear response
curves. The relative size of these two contributions is determined by viscous hydrodynamics
which predicts the magnitude of these response coefficients as a function of centrality. Evi-
dently, hydrodynamics and the response formalism reproduces the centrality dependence of
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the observed correlation functions. It is satisfying to see how the data transition between the
linear response curves in central collisions, and the non-linear response curves in peripheral
collisions.

Finally, we conclude by discussing the importance of higher order terms in the response
formalism. First, we have neglected the third order mixing of harmonics. The most im-
portant third order term is proportional to E3

2 , and we have found that this term is small
compared to the E2

3 and E2E4 terms. Thus, the response formalism seems to converge, and
including the mixing of higher harmonics will not change the results of this study signifi-
cantly.

In the future it will be important to characterize the fluctuations around the response
formalism. For any given initial state characterized by a few macroscopic cumulants such as
E2, E3, E4 . . ., the observed vn will on average be given by the response formalism. However,
additional fluctuations (which leave the macroscopic cumulants fixed) will reduce the perfect
correlation between v2, v3, v4, . . . and the predictions of non-linear response. Thus, in general,
the response formalism will overestimate the strength of the correlations that are observed.
Ideally, the fluctuations around the response formalism can be parametrized by universal
Gaussian noise, which will be independent of the microscopic details of the initial state. The
study of fluctuations around the response formalism is left for future work.
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