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We discuss the building blocks for a consistent inclusiorctafal three-nucleon (3N) interactions into ab
initio nuclear structure calculations beyond the lowehpts We highlight important technical developments,
such as the similarity renormalization group (SRG) evolutin the 3N sector, dT-coupled storage scheme
for 3N matrix elements withfcient on-the-fly decoupling, and the importance truncatdare shell model
with 3N interactions. Together, these developments makeerged ab initio calculations with explicit 3N
interactions possible also beyond the lower p-shell. Wéyaaan detail the impact of various truncations of the
SRG-evolved Hamiltonian, in particular the truncationtwd harmonic-oscillator model space used for solving
the SRG flow equations and the omission of the induced begdhdentributions of the evolved Hamiltonian.
Both truncations lead to sizabldfects in the upper p-shell and beyond and we present optionsniedy
these truncationféects. The analysis of theftiérent truncations is a first step towards a systematic waingrt
quantification of all stages of the calculation.

PACS numbers: 21.30.-x, 21.45.Ff, 21.60.De, 05.10.Ca®Oz

I. INTRODUCTION When pushing the ab initio frontier to nuclei beyond the
lower p-shell, a particular challenge is the proper indnsif
the 3N interaction at all stages of the calculation. Parhif t
Ab initio nuclear structure theory has undergone an amazehallenge is the computation and handling of the 3N matrix
ing development over the past few years, strengthening itslements entering the many-body calculations for largeehod
role for our understanding of nuclear structure propexies spaces. The huge numbermfscheme 3N matrix elements
the basis of the strong interaction physics. One of the moshat need to be stored in memory limited the range of previ-
active frontiers is the extension of ab initio theories todga ous NCSM calculations [29-32]. New developments regard-
heavier nuclei, i.e., beyond the limit around mid p-sheditth ing the computation and handling of 3N matrix elements are
was characteristic for ab initio approaches a decade ago [Imandatory to extend the ab initio frontier beyond the lower
5]. On the one hand, existing many-body frameworks, suclp-shell. Similarly, the unitary transformations that ased
as the no-core shell model (NCSM) [6-8] or quantum Monteto enhance the convergence behavior of the many-body cal-
Carlo methods [9-11], have been improved and extended t@ulations have to be extended to the 3N sector. In many of
wards heavier systems. A specific example is the importancgie recent ab initio applications the similarity renorrmation
truncated NCSM (IT-NCSM) [12, 13], which extends the group (SRG) is used, since its formal extension to 3N and
domain of NCSM-type calculations into the lower sd-shell. multi-nucleon interactions is straightforward [32, 33]ow+
On the other hand, a new generation of many-body methever, the various truncations, e.g., regarding the modelep
ods have been introduced to ab initio nuclear theory, such assed for the numerical solution of the SRG flow equations
coupled-cluster theory [14-17], self-consistent Gre&n&-  or the particle rank of the induced many-body contributjons
tion methods [18-20], or the in-medium similarity renormal need to be validated. The uncertainties associated witlethe
ization group [21-24], aiming directly at medium-mass nu-truncations are expected to become more significant with in-
clei. In many of the recent applications two-nucleon (NN)creasing particle number. Finally, the many-body approach
and three-nucleon (3N) interactions from chirfitetive field  has to be extended tdfeiently include the 3N contributions.
theory (EFT) are being used as starting point and connectioln the case of the NCSM this step is straightforward, for meth
to the underlying physics of the strong interaction [25,.26] ods like coupled-cluster theory it requires a non-trivigs-
In comparison to the more phenomenological realistic Hamil sion of the formalism [15, 34, 35]. Alternatively, one can re
tonians used a decade ago, chiral EFfers a consistent and  sort to controlled approximations, such as the normalmde
systematically improvable approach to two-, three-, antlimu  approximation discussed in Refs. [15, 36], to partiallylinie
nucleon interactions as well as the corresponding ele@gem 3N interactions while avoiding extensions of the formalism
netic and weak operators. From the point of view of nucleaibeyond the level of two-body interactions.
structure observables in light nuclei, already the pregent
eration of chiral NN-3N interaction provides a quantitative
description comparable to the best previous realisitc Hami
nians [27, 28].

In this technical paper we discuss a chain of key develop-
ments enabling the consistent inclusion of chiral 3N irtera
tions into ab initio calculations beyond the lower p-shbil,
addressing each of the challenges mentioned above. InISec. |
we discuss the computation of 3N matrix elements starting
from a harmonic-oscillator (HO) basis formulated in three-
. ) . body Jacobi coordinates. We discuss the transformatidreof t
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them-scheme. In Sec. lll we discuss the consistent SRG evadn a second step, the relative HO matrix elements can be con-
lution of the Hamiltonian at the three-body level. We focas o verted through a Talmi-Moshinsky transformation plus angu
the evolution in a HO representation and introduce new tooldar momentum recouplings [40, 41] into-scheme matrix el-
such as the frequency conversion, to overcome limitatidns ocements with respect to the antisymmetrized two-body states
the HO model space. [Nala jamama; Nplp joMpMy,)a With single-particle HO quantum
Utilizing these tools, in Sec. IV, we critically assess thenumbers. In order to reduce the storage requirements for the
role of various truncations introduced in the SRG-transfed  two-body matrix elements and to exploit the symmetriesef th
Hamiltonian. We show ways to remedy truncation errors retwo-body interaction, one generally does not stokscheme
sulting from the SRG model space and analyze the emematrix elements directly, but a simplr-coupled form with
gence and the origin of induced beyond-3N interactions. Weespect to the basis staté®la; Nplp; (jajo)IM; (%%)T Mr)a.
show that reducing the initial chiral cufoof the 3N interac- The decoupling to purerscheme matrix elements is done on
tion quickly suppresses the SRG-induced beyond-3N contrithe fly during the many-body calculation.
butions leading to an SRG-evolved Hamiltonian with accept- For the 3N interaction, we follow the exactly same route,
able truncation uncertainties that was already adopteehin s though each of the steps is significantly more involved. Agai
eral applications to medium-mass nuclei [18, 19, 21, 22, 34+the 3N interaction is initially given in an operator form or
36]. Finally, in Sec. V we compare our results to a recenin a partial-wave decomposed Jacobi-momentum basis. In
NCSM study [30] using a more conventional toolchain anda first step, the latter can be transformed into a partialewav
discuss dierent model-space extrapolations. Jacobi-coordinate HO basis, which also gives an easy handle
on antisymmetrization. Then in a second step, we couldtrans
form from Jacobi tan-scheme HO matrix elements through

I[l. THREE-BODY MATRIX ELEMENTS a sequence of two Talmi-Moshinsky transformations and re-
couplings. This strategy was used in previous large-scale
A. Generalities applications of chiral 3N interaction in the NCSM, see e.g.

Ref. [8, 32, 42]. We propose to usd-coupled three-body
atrix elements for a mordfecient storage and retrieval com-
ned with an on-the-fly decoupling during the many-body
calculation [33], in complete analogy to the standard proce
?ure for two-body matrix elements. We will discuss the de-
ails and the advantages of this scheme in the following.

The basic input for any many-body approach using a bas:jg.'
expansion within a truncated many-body Hilbert space are a !
propriate matrix elements of the Hamiltonian. In the cohtex
of the NCSM, the underlying basis is given by the eigenstate
of the spherical harmonic oscillator (HO), either in thetiaof
A-body Slater-determinants of single-particle HO statks, t
so-calledm-scheme, or in the form of relative HO states with

respect tcA-body Jacobi coordinates. We will focus on the B. Initial 3N matrix elements
scheme formulation, since it is much more convenient when
going beyond the lightest nuclei [6, 7]. Furthermore, it isrm For the chiral 3N interaction, the computation of initial

universal and directly applies to other many-body schemesyartial-wave decomposed relative matrix elements can be
such as Hartree-Fock calculations, general configuration i challenging already. To be specific, we consider three-body

teraction approaches, or the coupled-cluster method. matrix elements with respect to the two Jacobi momeita
For anm-scheme calculation a Hamiltonian containing NN andz, in the three-body system, defined by [43, 44]

and 3N interactions enters in terms of two- and three-body

matrix elements with respect to Slater determinants of twb a L . 511

three HO single-particle states. A prerequisite for a many- = ﬁ(ﬁa —Pb), 2= \/;[E('ja + Pb) - ’30] @)

body calculation is that these matrix elements can be com-

puted and storedigciently for suficiently large basis sizes.  wherepy,c are the single-particle momenta of the three nu-
The computation of thesa-scheme matrix elements typi- cleons. The Jacobi momentuty characterizing the center-

cally involves a multi-step process, which is well estdigid ~ of-mass motion is irrelevant for the description of the in-

for the two-body matrix elements of the NN interaction. Thetrinsic dynamics. We systematically use numeric indices fo

starting point is an initial representation of the inteimet  quantities defined with respect to relative Jacobi cootdma

Typically, one starts with either an operator represemtati and latin indices for quantities defined with respect to lsing

of the interaction or, more conveniently, with a basis repre particle coordinates. For example; denotes a relative or-

sentation in a partial-wave decomposed relative-momenturhital angular-momentum quantum number with respect to the

basis |q(LS)JM; T Mr)a, Whereq is the relative momentum first Jacobi coordinaté;, whereas, denotes a single-particle

of the nucleon pair anf{LS)JM; T M} are the standardS-  orbital angular momentum. As a general rule, we use capi-

coupled partial-wave quantum numbers including totalpgos  tal letters for angular momentum, spin and isospin quantum

T and isospin projectiody. This basis representation ap- numbers that involve more than one particle and lower-case

proach has been established as a standard for the chiral NRftters for single-particle quantum numbers.

interactions [37-39]. In a first step, we compute relative HO The starting point for the following calculation is a pakia

matrix elements for the basidN(LS)JM; T My ), with radial ~ wave representation of the Jacobi-momentum basis in the

HO quantum numbeN using a simple basis transformation. three-nucleon system. UsingJaJ,-coupling scheme for the
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two total angular momentd, and J, associated with the Ja- isospin. These are the only good quantum numbers of the anti-

cobi momentar; andmr, we write the basis states as symmetrized Jacobi-HO basis. The indéxbels the dierent
L L antisymmetrized basis states that emerge for gign J7,,
Imima; @) = |mimg; [(L1S1)d1, (L25)J2] di2; (T13) T12) (2)  andT.,—it does not correspond to a physically meaningful

_ N L ) quantum number. The transformation to the antisymmetrized
with @ = {[(L1S1)J1. (L23)J2]d12; (T13)T12} as a collective  jacobi-HO basis can be written as
index for all angular momentum, spin and isospin quantum

numbers defining the partial wave. We omit the projection [E12iJ7,T12)a = Z OEs 2Ny +Lp)+ (2N +L5) O gr 3 6T1, T,
guantum numberbl;, and M1, for brevity. Note that these N7,Ng,o/ (4)
basis states have a well-defined transposition symmetsy onl % Cl, o INCNG: @)
with respect to the particlesandb, we will discuss the com- NiNer 7717727
plete antisymmetrization in the context of the Jacobi-HG mawhere the overlap of the non-antisymmetrized and the anti-
trix elements in Sec. 11 C. symmetrized Jacobi-HO states defines so-calledficgnts
The computation of matrix elements of the chiral 3N in- of fractional parentage (CFP) [44, 50, 51]
teraction in this basis is the first step. For 3N interactions , )
at N2LO there are only five dierent momentum-spin-isospin Chune = (N1N2; @|E12i 3T, T12)a (5)
structures, for which a partial wave decomposition can lve pe
formed explicitly. This is discussed in detail in Refs. [45)
and in Ref. [44] for diferent formulations of the regulators.
For the chiral 3N interaction atiO the situation changes
radically. Recently, the derivation of cartesian momentum
space structures of the 3N interaction atL® was com-
pleted [47, 48]. In view of the many fiierent momentum-
12

spin-isospin operators involved, a manual partial-wave dethe eigenvalue 1 define the CFPs withs a degeneracy in-

composition I hardly feasﬂ_al_e. Therefore, an automa-ye, [43]. The Kronecker deltas in Eq. (4) reduce the summa-
tized partial-wave decomposition was recently proposed b

1 - . )

Skibihski et al. [49], which uses numerical integrationsﬁic()jneS to the Eaz, J1,, Taz) block defined through the left-hand

ouer fue angulr vaiables to SAact Parlwate JACObY Transtoraton () s a Hghiycient way to prject
: ?Jacobi—HO stategN;Ny; @) onto a complete orthonormalized

jllglcuoet? I?nfotr:']zr:?;m.)l(l SLeszqu?enfgr fsoug;%'mzﬁ'ggﬁlﬁgfoo basis of antisymmetric states. The numerical simplicitihef
! Wi val ubsequ 19" transformation to the antisymmetrized basis is the main ad-

T:r?s?\zt;?:;:Ivzﬁ\é?ed;c;nmopnost;tilr?n(lf)lr;bmof’);[tiggorenvaltlziﬂl':ﬁ: € vantage of working with a Jacobi-HO basis as compared to
P going the Jacobi-momentum representation [52].

LENPIC [73] collaboration to generate those matrix eleraent
for the chiral interaction at RLO for use in nuclear structure
calculations.

with E;2 = (2Ng + L1) + (2N2 + L). The numerical values of
the CFPs can be determined by solving the eigenvalue prob-
lem of the antisymmetrization operatgt in the Jacobi-HO
basis|N1Ny; ). This matrix exhibits a block structure >,

Ji,, andTyy, indicating that these are good quantum numbers
in both representations. The eigenvectors of the matriaame
(E12, J7,, T12) block that belong to the degenerate subspace to

D. Transformation to JT-coupled matrix elements

The most demanding step in the preparation of three-body
matrix elements for many-body calculations is their transf

Wh - t bod lculat . HO b mation from the Jacobi-HO basis into a three-body Slater-
. .te_n aiming a Ttan%/- 0 fy ca '::hu atll]ons lés'gg jm bi 3 determinant basis of HO single-particle states, also d¢afie
SIS, 1L1S convenient to transform he three-body Jacobl Mag neme states. We are interested in matrix elements with

C. Jacobi-HO matrix elements

partial-wave Jacobi-HO basis of the form composed of HO single-particle states

ININ2; @) = [N1Ng; [(L1S1) 1. (L23) J2]d12; (T23)T1)  (3) |30E: Japd: TapTa =

with radial HO quantum numbet; andN, defined with re- = Inalanblbncle; [(jajb) Jabs jcl J; [(53) Tabs 31 T)a
spect to the first and second Jacobi coordinate and the €ollec - . . .
> . ; . . Whered = {ny, la, ja}, etc. is a short hand for the radial and
tive partial-wave indexr as in the Jacobi-momentum repre-

sentation. The transformation of three-body matrix eletsien ang_ula_r momentum single-particle quantum n_umbers and the
from the |r172; @) to the [N1Ny; @) basis is straight forward. projection quantum numbefd and My are omitted. These

Within the Jacobi-HO representation we can also performant|symmetr|zed states can be generated fdbcoupled

the complete antisymmetrization of the three-body matrix e g)r(o?lﬁﬁlt states by applying the antisymmetization opeator
ements in a convenient manner. Following Refs. [44, 50] we plicitly

denote antisymmetrized Jacobi-HO states|B&iJ],T12)a, ADE 3o d: TorTa = V6 A 1BDE Jopd: TorT v
whereEj, = (2N1 +L1) + (2N, + L) is the principal HO quan- 185C; Jan; Tab T 180 Japndi Tao ), (7)
tum number of the Jacobi-HO statd], is the total angular where we introduce a normalization factor and, thus, define
momentum and parity of the relative motion ang the total  as projection operator. To connect the non-antisymmetrize

(6)
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JT-coupled basis with the center-of-mass frame relativanass part analogously to Eq. (8),
Jacobi-HO states, we have to augment the latter with an ex-

plicit center-of-mass componenN.mLcy) again using the

HO basis. Starting from the non-antisymmetrized Jacobi-HO A= _ Z Z

states (3) we define Biz.03 T1z NomLem )

|E12iJ71r2T12; Nembem; JYaal E12iJ71r2T12; Nembem; JI
IN2N2; @; Nembem; 3) = {INtN2; @) ® [NemLem)?  (8) (12)

whereJ results from the coupling ad;, for the relative mo-
tion with L.y, for the center of mass. As before, all projection
quantum numbers are suppressed for brevity. The overlap
theJT-coupled laboratory-frame staté¢; JapJ; TapT ) With
the Jacobi states (8) defines the transformatioffioient

Plugging this into Eg. (11) and inserting additional resiolus
the unit operator in the non-antisymmetrized Jacobi-tO b
sis (3) using

(NN @ Nemlam: JIE;5975T 1 Nt 3)a = Chy

Té-BéJab-] — nalajanblbjbnclcjc JapJ —
N1N2aNembem NiL1S1J1 NoL2 iz J12 Nembem 9) X 6(2N1+L1)+(2N2+L2),E£26JI2,J£§’ (5T12,T£2(5Ncm,Ném(chm,L’cm(sJ,J’
= (N1Ng; @; Nembem; JIADE; Jand; TapT) (13)

This overlap is independent of the isospin quantum num- o ) )
bers and non-vanishing only fof; = Ta and Ty, = T.  as well as the definition of the coeficients (9), we arrive at

Through multiple angular-momentum recouplings and Talmi-the final transformation equation
Moshinsky transformations one can work out the following
analytic form of theT codficients, as discussed in Ref. [50] 2(8D& Japd; TanTIV |EDE; Jdi ToTa =
TnalajanblbjbnclcijabJ = = 6 Z Z Z Z
N1L1S1J1N2L232312Nembem Ny.Np. N/ -N? NeLem 17

=2,2.0. 0,00, 1Ty T B0, a9

N.LLp L Sz Liz A . . Fx
5 o TabE Jpd apeyd i cV
2Ng+la+ 20y +p+2nc+H e, 2N+ Lom+2N1 + L1 +2No+Lo NiN2aNembem — N;Njo/ Nembem —NiNaar ~NjNja’
lc+A+Lap+L+Sio+L1+J
X _1 c -ab’ 12TL1 . ’ o
1) X o(Exad I,T1dl V [Ep " B, Tiz)a
AN AR 232 A A0 0D 2D 22D
X JajbJeJdabdJ1J2S1ST, L5 LLT, LA

X ((N L, N1L1; LaplNplb, Nala))1 (10) with Ezz = (2N1+L1)+(2N2+L2) andE;, = (2N;+L7)+(2Ny+
X ((NemLems NoL2; AIN L, nle))2 L%). _The first fo_ur Krpnecker deltas eliminate the isospin sum-
mations contained in the,a’ sums and ensur€; = Tap,
|a|b Lab Lablc L LiloLa T»=T. etc
X432 2S1${S1 2512745152812 127 = ] ] _ _
iaind Jnic I 11333 The transformation given by Eq. (14) is computationally
JalbJab ab Jc 1 J2 J12 ) :
demanding, mainly because of the sheer number of relevant
X {IC LA }{Lcml‘z A }{LCleZ L } T codficients. Some of the computational aspects and lim-
LilLlapf | Lo L Liof |S12 J Jio itations for evaluating this transformation are discussed
Sec. IIF.

with the short-handx "= +2x+ 1. Due to the change
of the underlying coordinate system for the description of
the three nucleons, two harmonic-oscillator brackets (HOB
(...]... 012 appear [40]. The HOBs always require a cou-
pling of orbital angular momenta, which implies various
angular-momentum recouplings, resulting in the &nd 9-
symbols. TheN summation can be eliminated using the For many-body calculations using amscheme basis, it is
energy-conservation property of the first HOB. crucial to dficiently obtain the three-body matrix elements in

We now have all components to formulate the matrix el-a corresponding uncoupled mrscheme representation
ements of the three-body operatiin the antisymmetrized
JT-coupled basis

E. Decouplingto m-scheme

[ab0a = [NalajaMjaMia; Nblb joMjpMip; NelejeMjcMic)a, (15)
a(8DE; Japd; TapTIV IED'E; 303 T Tha =

. . 11
= 6 (&DT; Japd; Tap TIAVA|ND'E; 3,3 T, T) 1)

wherea = {nalajamjama} is a short hand for the single-
particle quantum numbers, including all projection quamtu
where we again omit all projection quantum numbers. Wenumbers. Thus, the final step in the computational scheme is
can express the antisymmetrization operator using the antthe complete decoupling of the antisymmetrizeldcoupled
symmetrized Jacobi-HO basis, augmented by a HO center-ofnatrix elements to obtain pure antisymmetrizeescheme
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numberEs max Of the three-body states. For a NCSM calcu-
lation of a mid p-shell nucleus iNmax = 8, corresponding to
Esmax = 11, about 33 GB are needed to store the necessary
3N matrix elements in single precision exploiting all symme
tries [29]. Moreover, disk/D and memory access is nontriv-
ial for these huge sets. In order to extend the NCSM model
space toNmax = 12 or even 14 for mid p-shell nuclei, we
have made a first step towards a 'recompute instead of store’
strategy in Ref. [33]. Instead of precomputimgscheme ma-
trix elements, we only precompute and store dfiecoupled
s g matrix elements defined by Eq. (14). All the computationally
20 25 demanding steps of the transformation are still done in the
precompute phase. However, as illustrated in Fig. 1, the sto
age needed for th&T-coupled matrix elements is reduced by
codficients (1), as well as the three-body matrix elements in the UP to. three orders of magnltude_. Forlfa = 8 p-shell cal-
antisymmetrized-Jacobimj, JT-coupled @), and m-scheme ¢) culat_|on only 04 QB _of storage is needed for the three-body
representation as function of the maximum three-body gngugn- ~ Matrix elements in single precision.
tum numberEsmax. All quantities are assumed to be single-precision  The price to pay for this gain is the on-the-fly decou-
floating point numbers. pling (16) of the three-body matrix elements during the many
body calculation. We have optimized the storage scheme for
the JT-coupled matrix elements to facilitate a fast and cache-
optimized on-the-fly decoupling: we store the values of the

102

10°F

memory [GB]

1072k

107

15
E3max

FIG. 1: (color online) Memory required to store thé-

matrix elements

a@abdViah'c), = Z Z matrix elements in a one-dimensional vector. The order and
Ja- T d Tao, T2, T position of the matrix elements is defined via a fixed loop-
g ARV R Tl T order for all quantum numbers of tid-coupled matrix ele-
v (Ja Ib Mab)(Mab le M)( 2 2 Mab )(Mab 2 M ) ments._The six outer loops are defined by the quantum num-
MeMy| Mab) \ Map el M/ \MaMp| MTab) \Mragic| VT bersd, b, & &, b, & of the single-particle orbitals, where we
MIAARSIRSAR Sl T\ (T 31T exploit antisymmetry and hermeticity. The six inner loops a
myny | M2 \MZgme [ M AmE g (M1 AME gt M _dreflr_lreq l;)%/ the co;l.pleddqua%t]ur?hnumbéﬁ I tJ and'!'at)l,
. . rEr e 1 1 ' T inthis specific order. The three innermost isospin loops
X a{abC; JapJ; Tan TIVIAD'T: Jopd: TopTa (16) run over all 5 possible combinations of the isospin quantum

numbers and can be unrolled manually. We do not exploit

with all M andMy quantum numbers determined by sums ofantisymmetry constraints for matrix elements with ideaitic
the single-particlen and m; quantum numbers, e.gM., =  Single-particle orbitals to keep a fixed stride for this inseg-
m, +my,. This decoupling is trivial and requires only Clebsch- ment. The angular-momentum loops use the triangular con-
Gordan co#iicients. Therefore, the decoupling can be easilystraints defined through the single-particle quantum numbe

and dficiently done on the fly during the many-body calcula- To evaluate a specificrscheme matrix element we jump to
tion. the position in the vector defined by the orbital quantum num-

bers and then evaluate the decoupling loops as a linear sweep

over a contiguous segment of the storage vector. Thus, the de
F. Computational strategy coupling operation is very simple and highly caclficént.

This simplicity and its moderate memory footprint makes the

After discussing the formal steps for the calculation of thed€coupling routine an excellent candidate for porting te ac
three-body matrix elements entering NCSM-type many-bodyFelerator cards and first developments along these lines hav
calculations, we would like to address a few computationaP&en successful already [S3]. The standard implementation
aspects, since they are crucial for practical applicatmms the JT-coupled scheme has already been adopted in various
set the limits for present ab initio calculations. many-body methods [18, 21, 22, 29, 34-36, 54].

The calculation of three-body matrix elements is a prime One could consider to push the boundary further towards
example for the 'recompute versus store’ paradigm. In manyecompute in order to save even more memory. Presently we
NCSM applications including chiral 3N interactions [8, 30, compute and store th&T-coupled matrix elements via the
42], the complete set afrscheme matrix elements (16) was transformation (14) before the many-body calculation. The
computed and stored before the actual many-body calculaF codficients as well as the HOBs,j &nd 9 symbols that
tion. As mentioned earlier, the sheer number of three-lmady enter Eq. (10) are cached for performance reasons. Both, the
scheme matrix elements sets a severe limit to the modekspastorage of the resultingT-coupled matrix elements and the
sizes that are accessible with this approach. This isifitesi  caching of theT codficients requires similar and substantial
in Fig. 1 which shows the memory needed to stokrscheme  amounts of memory, as illustrated in Fig. 1. Therefore, an
matrix elements of the 3N interaction exploiting all basims ~ on-the-fly evaluation of the transformation (14) using pree
metries as function of the maximum total energy quantunputedT codficients will not reduce the storage needs as com-



pared to the simple decoupling starting from the-coupled  other first-order dierential equation
matrix elements as we use it now. In order to save more mem-
ory, one would have to evaluate thecodficients on the fly

as well, which results in a significant increase of the compu-
tational cost. For present CPU-based architectures thagsto with initial conditionU, g = 1.

ﬁ; éZc%%%?ilﬁg t??;gg&?ggifgggggg ){I(V)Itget?ﬁ eoonpetig :I At th_e heart of the SRG is the definition of the_ generator
compromise. Nas Wh_lch represents the physu?s gncapsulated in the trans-
formation. Once the generator is fixed, the above equations
determine the evolved Hamiltonian and all other evolved op-
1. SIMILARITY RENORMAL I ZATION GROUP erators. A variety of SRG generators have been investigated
in different physics contexts [62, 64]. However, the majority
of nuclear structure applications of the SRG use the folgwi
definition of the generator

iua = _Uana s (19)
da

A. Generalities

Although the interactions from chiral EFT are compara- Mo = (21)? [Tine, Hol (20)
tively soft due to the momentum-space diitased to regu-
larize the chiral interactions, it is still flicult to converge with the intrinsic kinetic energ\flint = T — Tem and the re-
NCSM-type calculations beyond the lightest nuclei. There-duced nucleon mags Evidently, this generator vanishes if
fore, additional transformations are used to enhance the cothe evolved Hamiltonian and the kinetic energy commute, i.e
vergence behavior of the many-body calculation. The twdf the Hamiltonian is diagonal in the eigenbasis of the kimet
transformation methods that have been successfully uged wienergy operator. This defines a trivial fixed point of the evo-
3N interactions are the Okubo-Lee-Suzuki (OLS) similar-lution. With increasing flow parameterthe Hamiltonian ap-
ity transformation [55, 56] and the similarity renormaliza proaches this fixed point and, thus, it is evolving into a band
tion group (SRG) [57-60]. The OLS transformation aimsdiagonal structure with respect to the eigenbasis of thetkin
at a complete decoupling of a specific many-body modeknergy, i.e., momentum eigenstates. For this specific gener
space from the excluded space—as a result the similarityator it makes sense to associate the flow parameteith a
transformed Hamiltonian depends on basis, model-spaee siznomentum scaldsgg = a~* as its often done in the litera-
and nucleus. The SRG transformation in its standard forture [32, 62]. It is important to notice that the generatd))(2
mulation [57, 61-63] aims at a generic decoupling of low-is not connected to a specific choice of nucleus or basis used
momentum or low-energy states from high-lying states andn the subsequent many-body calculations. It only refléws t
leads to a universal, model-space- and nucleus-independegeneric goal of decoupling low- and high-momentum compo-
Hamiltonian. This has significant practical advantagexesi  nents of the model space through a unitary transformatian th
the same transformed interaction can be used ffe@int  preserves the complete information of the initial Hamilgon
many-body approaches, from simple Hartree-Fock-type ap- Owing to its flexibility, the SRG framework can also be
proaches to coupled-cluster theory and the NCSM. Particuadapted to other decoupling scenarios. ConsideringAthe
larly, within the NCSM the fact that the interaction is model body ground state of a specific nucleus one can design SRG
space independent conserves the variational characteeof tgenerators that decouple a reference state, e.g., a simple
NCSM and enables robust extrapolations to the infinite modeHartree-Fock determinant representing the nucleus urater ¢
space. Therefore, we focus on the SRG transformation in theideration, from all particle-hole excitations. Once a eom
following. plete decoupling is achieved, the energy expectation \@lue
The basic formulation of the SRG is simple. The Hamilto- the reference state yields the exact ground-state enéngg, s
nianH and all other operatoi® of interest are subjected to a e.g., a full configuration interaction calculation would ad-
continuous unitary transformation that can formally betteri  mix any particle-hole excitation to this state anymore. i o
as der to handle the SRG evolution #k-body space, one can
use normal-ordering with respect to the reference stateto d
Hy =UHU, . O, =UjOU, (17) rive evolution equations for the normal-ordered zero- @met
with a unitary operatod, depending on a continuous param- tWo-body terms of the Hamiltonian, which are an approxima-
etera, the so-called flow parameter. For= 0 we assume tion to Fhe full A-body evolution. This defines the so-called
Ua-o = 1 and thusH,_o = H. Instead of attempting to eval- iN-medium SRG [21, 22, 24].
uate the explicit form of the unitariy transformation, w&da
the derivative of (17) with respect to the flow parameter - ) )
and arrive at a first-order fierential equation for the evolved B.  Cluster decomposition and basisrepresentation
Hamiltonian
d All the above equations are general operator relations in an
—Ha =170, Hel (18)  A-body Hilbert space or even Fock space. In order to solve
da them numerically we have to switch to a basis representation
with the initial conditionH,-o = H. The anti-hermitean gen- in a Hilbert space and we will typically not be able to handle
eratorr, is connected to the unitary operatdg through an-  the solution inA-body space. We have to rely on solutions



of the flow equations in few-nucleon spaces to construct the C. Evolution in three-body space
evolved Hamiltonian.

This limitation becomes a potential problem since the uni-  For the numerical solution of the flow equation for the
tary transformation induces many-body contributions t® th Hamiltonian one can use any computationally convenient ba-
evolved operators that go beyond the particle rank of the inigjs representation. Two common choices are momentum or
tial operator. If we assume an initial Hamiltonian conta@i 1O eigenbases for the relative motion. The center-of-mass
a two-nucleon interaction, then it is evident from Eqs. (18)degree of freedom can be separated from the beginning, since
and (20) that an (infinitesimal) step of the flow evolution the Hamiltonian and the generator only act on the relative pa
will induce irreducible operator contributions beyondtwe-  of the many-body Hilbert space. Furthermore, in order to ex-
body level. Atany finite flow parameterthe evolved Hamil-  p|ojt the symmetries of the Hamiltonian we use a basis with
tonian contains irreducible operator contributions tqpailti- good total angular momentum, parity, and isospin.
cle numbers. This is a simple formal consequence of the fact |, two-body space we, thus, use relative LS-coupled mo-
that the generataoy, is a two-body operator at least. The samementum or HO eigenstates, i.6q(LS)JT) or [N(LS)JIT),
holds for any other evolved operatoras well. _respectively. The resulting evolution equations in these r

We can decompose the evolved Hamiltonian into contriyesentations and their solutions are discussed in detail in
butions to diferent particle ranks through a cluster expan-Refs. [57, 62, 63] and we will not repeat the details of the
sion [63, 65] two-body evolution here.

1 > 3 2 In three-body space we can use the antisymmetrized Jacobi-
Ho = H -+ HEZ o+ HE 4 HET - @D momentum ory chobi-HO states introdu)éed in Secs. 1IB
and 11 C, respectively. For reasons dfieiency and technical
convenience we use the antisymmetrized Jacobi-HO states to
formulate the matrix representation of the evolution eigunast
Mo 1 Z Because ispspin breaking at the_threg-body Ieyel is expecte
@ = )2 opy  tohaveaminorect, we omit the isospin projection quantum
¥tk BB (22) numberMr1, and use averaged initial three-body matrix ele-
alar..a HM |B1.. Bda a}‘;l.-.a;‘;kagk...agl . ments [44]. Since neither the Hamiltonian nor the generator
h i el ¢ the irreduciblebod ibut connect states of fierentJ], and Ty, the evolution equations
© matrix elements of the irreduciblebody contribution  gecqyple for dferent 7, T12) channels. For each channel

[K] s ; . 2 . ]
H;" in k-body space can be constructed from the matrix eleye optain, after expansion of the commutators and insertion
ments of the evolved Hamiltoniat, in k-body space by sim-  of two completeness relations,

pl?/ subtracting the matrix elements of all irreducible Giers
HI with n < k;

whereH!¥ is an irreduciblek-body operator that can be for-
mulated in second quantization as

d EIZSESRG E/l/éSESRG
——(Eual Ha [Egpl") = (20)° (
1.l HY |B1.. Bi)a = da E;‘ E;
k-1 . v 7" 105000 105000 s
(Ea2l| Tint [E751) (B[ Hq [E11) (B Ha [Eql")
_ _ [n] 12 12 12 12 12
a(al---a'k| Ha |,Bl---,3k>a ; a(al---a’k| Ha Iﬂl---ﬁk>a . —2<E12i| Ha/ |Ei/2i"> <Ei/2i"| Tint |E1/éi///> <E1/éin/| Ha/ |E12|,>
(23) +(Ex2d| Ho [E) (B[ Ho [EY1) (EL51” | Tint [Eq1"))
(24)

(04

Thus, if we are able to solve the evolution equations in Hitlbe
spaces of up t& particles, we can extract all irreducible con- where [Epai) = |Eq21J7,T12)a for fixed J7, and Ty, For the
tributions up to thek-body level. Contributions of particle completeness relations we of course have to truncate the sum
ranksn with k < n < A that formally emerge from the unitary mation over the infinite three-body basis to a finite model
transformation ilA-body space cannot be extracted—we havespaces defined by the maximum energy quantum number
to truncate the cluster expansion (21). E?,. E75 < Esre. Note that this flow equation has to be solved
The truncation of the cluster expansion at kAeody level  also forE;» andE7, up to Esrg, since the corresponding ma-
(k < A) formally destroys the unitarity of the transformation trix elements appear at the right hand side of Eq. (24). lopra
in A-body space. As long as we preserve unitarity, all eigentice we reduce the truncation parameiggg with increasing
values of the Hamiltonian i\-body space are not changed J;, since the dimension of the Jacobi-HO basis grows rapidly
by the unitary transformation, in particular, all eigemed  with J;2 and since contributions for higher angular momenta
will be independent of the flow parameter If we discard have less influence on low-energy nuclear structure observ-
higher-order terms of the cluster expansion, there is no-guaables. We will discuss the details and the impact of this-trun
antee that the eigenvalues of the HamiltoniaAibhody space cation in Sec. IV A.
are invariant under the transformation. Stateffiedently, the Within the finite three-body model space, the numerical
dependence of the eigenvalues on the flow parameter providesoblem reduces to a system of coupled linear first-order dif
a measure for the impact of the discarded higher-order termgerential equations for the matrix elementstyf. The right-
We will use a systematic flow-parameter variation as a diaghand-side of the flow equation (24) consists of three-fold ma
nostic for the significance of induced and discarded highertrix products that can be evaluated vefii@ently using opti-
order contributions later on. mized BLAS matrix multiplications. We use standard solvers
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FIG. 2: (color online) Matrix elements in the antisymmesdzHO Jacobi representation for the triton chanidél, (T12)=(1/2*, 1/2) for
hQ = 24 MeV. Plotted are the absolute values of the intrinsic tiirenergy matrix elements (a) as well as the interactioh gfethe evolved
chiral NN+3N Hamiltonian for flow parametets = 0 fm* (b), @ = 0.04 fmi* (c), ande = 0.16 fmi* (d). The dark grid lines separate blocks of
fixed energy quantum numbeks, andE;,.

with adaptive step size control, e.g., embedded RungeaKutt A seeming disadvantage of the Jacobi-HO representations
methods, to evolve the Hamiltonian up to a given flow pa-is the explicit dependence on the HO oscillator frequendy an
rametera. In contrast to early implementations of the SRG the need for separate SRG evolutions for each relevant fre-
evolution in a Jacobi-HO basis [32], the numerical solutionquency. This and related issued are remedied by using the
of the evolution equations is performed velffigently—the  so-called frequency conversion discussed in the followety
evolution for the triton channel{,, T12)=(1/2*, 1/2) fora  tion.
typical value ofw in a model space witksgg = 40 takes less
than one hour on a standard desktop workstation.

An illustration of the SRG evolution of the three- D. Frequency conversion
body matrix elements is presented in Fig. 2. We plot

the absolute values of the kinetic-energy matrix elements gjce the evolution equations are solved in the Jacobi-HO
a(E121J7;T12l Trint|E1z' JpT12)a "f‘nfj Interaction ‘matrix ele- pasis, we fix the HO frequenag from the beginning. Thus,
mentsa(E2id},T1ol Ho — Tint|[E3,i" I, T12)a in the antisym- iy orer to perform many-body calculations fofferent fre-
metrized \3acob|-HO representation for the triton chanifg| ( guencies, we have to perform the SRG evolution for each fre-
Ti2)=(1/2", 1/2) starting from the chiral NN3N Hamilto- o ,ency separately. Depending on the frequéiszythe model
nian discussed in Sec. IV for the flow parameters 0, 0.04, space used for the SRG evolution sparfiedént momentum
and 016 fnt*. The bare interaction shows sizablé-diagonal or energy ranges. At small frequenciéQ the momentum
contributions that are suppressed during the SRG evolutior?ange covered in the SRG model space might not Hicgnt
As a result the Hamiltonian is driven to a band-diagonal formy, ca 0t re the relevant contributions of the initial Haoriiian.
in the Jacobi-HO representation. This is expected from the; re|eyant pieces of the Hamiltonian are discarded alrdzely
band-(_jlagonal structure of the |ntr|nS|c_k!net_|c energyha fore the SRG evolution due to tHEsre truncation, then the
Jacobi-HO basis, which represents a trivial fixed point ef th many-body calculations will exhibit an artificial frequarte-
evolution. pendence.
. W? note that this scheme can be generahzed_to the evolu- there is 5 simple trick to circumvent this problem. We can
tion m_four-body space. The only formal chan_ge is the use Oberform the SRG evolution for a fixed andf§ciently large
an antisymmetrized four-body Jacobi-HO basioBs along  fraquencynsge and afterwards convert the evolved matrix-
these lines are currently under way. __elements to a smaller frequenag through a simple basis
Instead of representing the SRG equations in the Jacobi-H{,nsformation. For this unitary transformation we neegl th
basis (4), one could also use the Jacobi-momentum represegyerjaps of the antisymmetrized Jacobi-HO three-bodstat

tgtion (2) as _shown in Ref. [52]. The momentum repre_sentarElziszTma and |E127JI2T1z>a defined for frequenciQ and
tion has obvious advantages when aiming at calculations %QSRG respectively. These overlaps are given by

homogeneous nuclear and neutron matter [66]. However, for
configuration-space nuclear structure calculations larildn - = vog

. ) ; E12137,T12|E12137,T12)a =
underlying HO basis, where one eventually has to provide HOa< 1293212l Ea2l 1, Ti2)a Z Z Z
matrix elements, the Jacobi-HO basis has decisive advasitag
one can exploit all the benefits of a discrete orthonormasbas O 2N Lis 2N+ L,CN N fdm 72 Ry, (1) R, (1)
the antisymmetrization of three-body matrix elements isimu e TR - -
easier and morefigcient, and the typical matrix dimensions o ) 9 2 =~
to be handled for the numerical solution of the flow-equation O, 2111+ 2K0+ L, Oy | A72772 Rl (72) R, (72) -
are smaller. (25)

Ni,N2 Ny N, @



whereRy(7) and Ry, (7) are the radial HO wave functions
associated with frequenadiQ) and 7Qsgg, respectively, and
Cl,n,o are the CFPs.

Obviously, this basis transformation also needs to be trun-

40

0 3 i
cated to a finite model space. However, as the frequency con- ) 0
version is performed after the SRG evolution the Hamiltania %
already has a band-diagonal structure and the low- and high- = 0

momentum basis states are decoupled. The frequency trans-
formation, described by the matrix of overlaps (25), which
itself has a band-diagonal structure, will only mix matrix e
ements from a limited region. The low-energy sector of the 10
Jacobi-HO matrix-elements that enters the many-body ealcu

lation later on is thus notfeected by the truncation of the
model space during the frequency conversion.

L
5 7 9 11 13 15 17 19 21

=
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I

We will i tigate the @ect of the f . FIG. 3: (color online) Schematic presentation of the SRG aehod
€ will investigate the kect ol (ne frequency conversion pace truncation parametggrs depending on the angular momen-

and the impact of the SRG model-space truncation in actugfm Jio. Plotted are ramp A (blue solid line), ramp B (red dashed

IV. PROPERTIESOF SRG-EVOLVED HAMILTONIANS following Hamiltonians [32, 33]: the NN-only Hamiltonian
only uses the initial chiral NN interaction and keeps only
We now assess the properties of the SRG-evolved HamiltdWo-body contributions throughout the SRG evolution. The
nians relevant for the app"cation in many_body calculagio NN+3N-induced Hamiltonian starts from the initial NN inter-
We use a variant of the No-Core Shell Model (NCSM) [6, 7] &ction and keeps the SRG-evolved two- and three-body terms.
for solving the many-nucleon problem in a basis of HO Slater’he NN+3N-full Hamiltonian starts from an initial NN3N
determinants truncated with respect to the HO excitatien enHamiltonian and again keeps SRG-evolved two- and three-
ergy NmaQ. In order to access fiiciently largeNma to  Pody terms. In all Hamiltonians induced four-body and multi
reach convergence with respect to the many-body model spa#icleon contributions are omitted and we use the variation o
throughout and beyond the p-shell, we employ the importancte SRG flow-parameter to assess tifee of these terms.
truncation (IT) introduced in Refs. [12, 13]. Using an im-
portance measure derived from perturbation theoryNhg-
truncated model space of the full NCSM is reduced to a sub- A. Roleof the SRG model space
space spanned by important basis states characterized by an
importance thresholdmi,. We solve the large-scale eigen-  As a first technical aspect we discuss the details and inves-
value problem for a sequence of importance-truncated modeigate the impact of the truncation of the SRG model space
spaces with varying thresholds and extrapolate all obbégsa mentioned in Sec. lIlIC. In Eq. (24) we have introduced the
a posteriorito vanishing importance threshold, i.e., to the truncation parametéisggfor the three-body Jacobi-HO basis
full Nmax-space of the NCSM. The accuracy of this schemeused for solving the SRG evolution equations. For fikggs
was demonstrated recently by explicit comparisons with ful the basis dimension of a7, T12) channel grows rapidly with
NCSM calculations for various observablest#@ [67]. Fur-  increasingli,. At the same time, channels with larde are
ther details on the IT-NCSM can be found in Ref. [12]. of lesser importance for the description of low-energy jrep
We start from the chiral NN interaction at®NO by En- ties of light nuclei. Therefore, we introducelg-dependent
tem and Machleidt [37] and the chiral 3N interaction &t 1@ truncation parametdfsrs(Ji2) which decreases with increas-
in the local formulation by Navratil [44]. If not stated @h  ing Ji».
wise, the 3N interaction uses a cfitazy = 500 MeV/c and Figure 3 illustrates three specific choices Bra(J12), the
low-energy constantsp andceg are fitted to the ground-state so-called ramps, that we adopt in the following. Ramp A de-
energy ofA = 3 systems and the-decay half-life offH [68].  fines our default choice for the SRG model space: all three-
The initial 3N matrix elements in the antisymmetrized Jacob body channels up td;, = 5/2 useEsgc = 40, beyond that
HO basis are obtained directly from Petr Navratil'atErr we reduceEgsgg in steps of 4 untilJ;, = 13/2 and beyond
code [43]. we useEsgg = 24. Ramps B and C are used to study the
We perform the SRG evolution of the NN interaction in effect of theEsgg truncation on many-body observables—the
two-body space using momentum-space partial-wave matriformer starts reducinBsgc already forJ;, = 5/2 and the lat-
elements on a sficiently fine and large momentum grid. ter usesEsgre = 36 for Ji2 < 7/2. In a series of previous
The three-body part of the evolved Hamiltonian is deter-publications [21, 22, 33, 35, 36] we have always used ramp
mined from an evolution in the three-body Jacobi-HO basisA, whereas other groups typically choose other schemes to
with a consistent subtraction of the two-body part evolvedreduceEsgg with increasingl;, [30-32].
in a HO basis of compatible size. Depending on which of We first analyze the dependence of IT-NCSM ground-state
the three-body contributions are considered, we define thenergies ofHe and'®0O on the SRG model space. In Fig. 4
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FIG. 5: (color online) Excitation spectrum &C with the NN+3N-
2850 1 -146t ] full Hamiltonian fore: = 0.08 fm* and HO frequenciek) = 16 MeV
4 3 S 0 12 -148 i 3 S 10 (a) and 20 MeV (b). Three sets of calculations are shown (simo
Nmax Nmax always on top of each other) using SRG model-space trumsatie-

fined by ramp A (solid bars), ramp B (dashed bars), and ramp C

FIG. 4: (color online) Ground-state energy“fe and'®0O with the  (dotted bars).
NN-+3N-full interaction foraQ = 16, 20 MeV anda = 0.08 fm’

as function ofNmax. The three curves correspond to the used SRG
model space truncations defined by ramped,(ramp B (d), and -80}
ramp C (a). 90

1k hQsrg = 24 MeV |
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we show theNmax-dependence of the ground-state energiesg-“o
obtained with the NN-3N-full Hamiltonian fore = 0.08fnf =120
for two different HO frequencies. Faf = 20 MeV, depicted -130F
in Fig. 4 (b) and (d), we find that the energies of both nuclei -140t
are independent of the choice of the SRG model space, ee., th _159[
results obtained with all three ramps are on top of each othe 8k

However, when going to the lower frequenie® = 16 MeV, s o It <
as shown in Fig. 4 (a) and (c), we observe a sizable deperi= 4f 1 ]
dence of the ground-state energies on the SRG model—spac%. 2r i )
For“He the ramps A and B provide the same results but ramp 0'12 1618 20 2 24"W’—’Tm‘

C gives 04% less binding. Fot®O the results for ramps B and 7Q [MeV] hQ [MeV]

C both difer from ramp A on a scale of up to5P6. Together,

this indicates that fohQ = 16 MeV theEsgg truncation of  FIG. 6: (color online) Ground-state energy*6® obtained aNmay =
low-J;» channels becomes visible and that for heavier nucle8 for the NN+3N-full Hamiltonian witha = 0.08 fm* as function
also the ramping-down d&sgg with increasingl;, affects the qf osqillator frequencyiQQ. We compare the standard .SRG gvolu-
absolute energies. We have confirmed this trend already ifon With 7Qsre = 7€ (left column) with an SRG evolution at fixed

coupled-cluster calculations extending into the mass 50 ~ sre = 24 MeV and subsequent conversion of the matrix elements
region [35, 36]. to the respective basis frequencie@ (right column). The three

o . curves correspond to the used SRG model space truncatifinedie
The dfect of the SRG model space on excitation energies, ramp A (0 ), ramp B (1), and ramp C & ). In the upper panels the
is much weaker, as illustrated in Fig. 5 for the excitatioeGp  absolute ground-state energies are plotted, while in therlpanels
trum of 12C. Even for frequencyiQ = 16 MeV the excitation  the deviations to energies obtained with ramp A are shown.
spectra obtained with the thredigrent ramps are essentially
the same. Thus, the parts of the Hamiltonian that are not cap-
tured in the SRG-model space only cause a shift of the wholghows theiQ-dependence of th®0 ground-state energy at
spectrum without influencing details of its structure. fixed Nmay = 8 anda = 0.08 fmf* for the three dierent SRG
In order to eliminate truncation artifacts at small basés fr model spaces. For the left-hand panels the three-body SRG-
guenciesiQ we use the frequency conversion introduced inevolution is performed in an oscillator basis with the same
Sec. llID. By using a larger frequen@f2sgc for the SRG  7iQsrs = 1L, for the right-hand panels we perform the SRG-
evolution and converting the evolved matrix elements afterevolution at fixediQsrs = 24 MeV and convert to the basis
wards to the nominal basis frequencig?, we can remedy frequency:iQ of the many-body space subsequently. Note that
this problem completely. This is illustrated in Fig. 6, wiic the frequency conversion is performed using the same model-
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space truncation as for the solution of the SRG flow equa-
tions. The diference is obvious: Whereas a sizable depen-
dence of the ground-state energy on the SRG ramp appears for
the simple SRG evolution, the frequency-converted matrix e
ements do not show any dependence on the three-body model
space, even when going to very low basis frequencies such as
hQ = 12 MeV. The direct comparison of the ground-state en-
ergies obtained without and with frequency conversionat th
lowest frequencyiQ = 12 MeV is particularly striking—the
binding energy is dramatically underestimated by the SRG-
transformed Hamiltonian without frequency conversionudh
components of the initial Hamiltonians that are not cagpture
by the three-body model space/@® = nQsrc = 12 MeV

yield a large contribution to the binding energy. Without
frequency conversion, calculations in this frequency doma
which is relevant, e.g., when trying to optimize the conver-
gence of long-range operators, are not feasible.

With increasing mass number, the frequency range that is
accessible without frequency conversion is reduced. Again
we refer to our previous work in medium-mass nuclei, where
this efect was already identified [22, 35].

45[e ' NN+3N-induced | NN+3N-full |
500an (@ 1 () |

E/A [MeV]

E/A [MeV]

E/A [MeV]

B. Emergence of induced 4N interactions

After validating several technical aspects of the SRG evo-
lution and the resulting Hamiltonians, we can now focus on
one of the important sideffiects of the SRG transformation—
the emergence of induced many-body forces. The strong
impact of SRG-induced 3N interactions when using an ini-
tial NN interactions was clearly demonstrated in Refs. [31—
33, 36] and many of the following calculations through the
flow-parameter dependence of the NN-only results and the di-
rect comparison with NM3N-induced calculations.

We have pointed out in Ref. [33] and reconfirmed this ob-
servation in Refs. [35, 36] that beyond mid p-shell the cal-
culations using the NN3N-full Hamiltonian show a flow-
parameter dependence of the ground-state energy, which is
absent in corresponding calculations with NBN-induced
Hamiltonians.  The systematic emergence of the flow-
parameter dependence of the ground-state energy obtained
with the NN+3N-full Hamiltonian is demonstrated in Fig. 7
for isotopes in the mass range frofn= 8 to 16. The left-
hand column shows results for the MBN-induced Hamil-  F|G. 7: (color online) Ground-state energies*BE, 1°Be, 12C, 4C,
tonian, the right-hand-column for the NISN-full Hamilto-  and %O (top to bottom) obtained with the Nd8N-induced (left
nian for three dierent flow parameterg = 0.04, 08, and  column) and NN-3N-full Hamiltonian (right column) withe =
0.16 f* as function of the model-space truncation parametef.04 fui* (o), 0.08 fm* (0), and 016 fi* () as function ofNmax
Nmax. For all nuclei we are able to perform IT-NCSM calcu- for hQ = 20 MeV. '_Fhe dashed horizontal lines show experimental
lations up toNmax = 12, which is s@ficient to converge the 9round-state energies.
ground-state energy for the softer Hamiltonians. We perfor
a simple exponential extrapolation of the energy usingdke |
four data points to simplify the interpretation, the expoiied ~ mally exist, influence the ground-state energies—indudé¢d 4

E/A [MeV]

E/A [MeV]

2 4 6 810121416182 4 6 8 1012 1416 18

max max

fits are shown in Fig. 7 as solid lines. contributions are negligible when starting from an inigai-
Though the rate of convergence isfdient, the ground- ral NN interaction.
state energies obtained with the NBN-induced Hamiltoni- The picture changes when including the initial chiral 3N in-

ans for diferent flow parameters all approach the same valugeraction. FoBe and lighter isotopes, the calculations with
in the limit Npmax — oo to very good approximation. Thus, NN+3N-full Hamiltonians still do not exhibit a sizeable flow-
there is no indication that SRG-induced 4N terms, which forparameter dependence of the converged ground-stateesergi
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However, starting from mass ~ 10 a flow-parameter depen- with
dence emerges, which increases systematically jithoth 2
in absolute terms and in terms of the energy per nucleonz2# _ so8 [_401'\/'” + @qi .q»} 4 Zﬂeaﬁy.ﬂgk -[6 % di]

For 180, the variation of the ground-state energy when go- " F2 F2 : —F2 K :

ing frome = 0.04 fnf* to 0.16 frf* reaches G MeV per nu- (27)
cleon. It is driven by the initial 3N interaction, because th for the two-pion exchange term depending on the low-energy
flow-parameter dependence is absent at the-BINHinduced  constantg;, c3, andc, (or ¢; for short),

level.

We stress that conclusiqns abogtthe significance of induced —Cp Z gf Oz—j 'qu(ﬁ -T)(@ - 4;) (28)
many-body forces are valid only if the results are converged iS4 BF Ay O + M7
with respect to the relevant many-body truncations. For the
IT-NCSM discussed here, this is just the model-space siz&r the two-nucleon contact one-pion exchange term propor-
Nmax. For other methods this may be more complicated agional to low-energy constawep, and
we discussed previously in Refs. [21, 22, 35, 36]. However, 1
also these calculations confirm the aforementioned pftbern Ce Z = (7T (29)
heavier nuclei. S 2FaA

Keeping the influence of induced 4N interactions in mind,
we can compare the ground-state energies to experiment, i
dicated by the dashed lines in Fig. 7. For the-N8\-induced
Hamiltonian, i.e., including initial chiral NN interactis only,

for the three-nucleon contact term with strenggh Here we
adopt the notation and constants of Ref. [46]. In order to as-
sess the impact of the various terms on the SRG-induced 4N

we find an underbinding by.Bto 12 MeV per nucleon. This interactions we switchfdthe terms individually by setting the
missing binding is provided by the chiral 3N interactios, ;. respective low-energy constant to zero. For each case five re

at the level of the NN3N-full Hamiltonian. For®Be and CE.tLO reprodu;:g t?él;el groijgg-%a}te,\?cngﬁy 9:28'|3? MeV ith
108e, where induced 4N interactions are negligible, we find"V't"! @1 uncertainty below 19 kevin calculations wi

; ; i ._the bare Hamiltonian. We keep = —0.2 as determined from
excellent agreement with the experimental binding ensrgie ; . e
For 12C, 14C, and 60 the NN+3N-full calculations show € triton-decay halt-life, except for the case witg = 0
erecp is used to fit the'He energy. The dierent sets of

an increasing flow-parameter dependence and an increasi?l%f!jv tants obtained f the fit vedi
overbinding. Although a sizable part of the overbindingsse -energy constants obtained from the fit are summarized in
e‘&ab. I. The resulting Hamiltonians, which are still fixed en-

to be due to the missing SRG-induced 4N contributions, bas )
grely in the three- and four-body system, are evolved con-

on these calculations, we cannot decide whether all of th . )
overbinding is of this origin or whether it is resulting from igfﬂ%’iég;he SRG framework and enter into the IT-NCSM

deficiencies of the initial Hamiltonian. - . . . .
lude th ina f id hell. SRG-induced We apply these modified 3N interactions in a series of
We conclude that starting from mid-p-shell, SRG-induce ground-state calculations f8fO up to Nmax = 12 with the

4N interactions (or even higher-order contributions) tstar three flow parameters = 0.04, Q08 and 016 fn". The re-

have an impact on ground-state energies as soon as we inclu,g&ts for the modified Hamiltonians wit = 0, ¢p = 0, and
the standard chiral 3N interaction in the initial Hamiltani ce = 0 are summarized in Fig. 8. In panel (a) the ground-

Al thiskr)nc(;m?nt we hzve to discard these i?duced higzer'ogdesrtate energies obtained with the standard Hamiltoniarwsho
many-body forces, butfforts to account for SRG-induced i, 6 flow-parameter dependence discussed in the previous

4N interactions are current_ly under way. Excitation eresgi section, are depicted for comparison. When switchifighe
however, do not show a sizable flow-parameter dependence

once convergence with respectNg .« is reached, as shown

in Refs. [29, 33, 67].
TABLE I: Low-energy constants of the chiral 3N interactidiNgLO
for the standard interaction [68] andfféirent variants described in
the text. All variants are refit in NCSM calculations with thare

C. Origin of theinduced 4N interactions interactions to reproduce the experimeritaé ground-state energy.

Aan C1 C3 Cs Co Ce
[MeV/c] [GeV™Y] [GeVY] [GeV Y
standard| 500 -0.81 32 54 0.2 -0.205

Having identified the initial chiral 3N interactions as the

origin of sizable SRG-induced 4N contributions, we further—-—5 200 ) ) ) 07 0444
analyze the role of the individual parts of thélND 3N inter- o =0 500 .0.81 3.2 5.4 0  -0.205
action. The 3N interaction is usually splitinto a two-pioge ¢ - 500 -0.81 3.2 54 1238 0

change, a two-nucleon contact one-pion exchange and athree¢, = 500 0 30 5.4 0.2 -0.207
nucleon contact term. The corresponding operator strestur c; =0 500 -0.81 0 5.4 -0.2 -0.228
are c,=0 500 -0.81 -3.2 0 -0.2 0.141

Agy =450 450 -0.81 -3.2 5.4 -0.2 -0.016

1( 9a )2 (@ -GN )  op Asy = 400 400 -0.81 -3.2 54  -0.2 0.098
(= Fobob (26) Asy =350 350 -0.81 -3.2 54  -0.2 0.205
i;kaz,ﬁ: 2\2F; ) (qf + M72r)(q]2 +M2) I X
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FIG. 8: (color online) Ground-state energy*$® obtained with the  FIG. 9: (color online) Ground-state energy*® obtained with the
NN-+3N-full Hamiltonian withe = 0.04 fm* (e ), 0.08fm* (0), and  NN+3N-full Hamiltonian withe = 0.04 fm’* (e ), 0.08 fm’* (0), and
0.16 fm* (A) as function ofNmay. Results for the standard Hamilto- 0.16 fm* (4) as function 0Ny Results for the standard Hamilto-
nian are shown in panel (a), and thosedos 0,cp = 0, andcg = 0 nian are shown in panel (a), and thosedpe 0, c; = 0, andc, = 0

in panels (b), (c), and (d) respectively. in panels (b), (c), and (d), respectively.

two-nucleon contact one-pion exchange contributipn£ 0)  the SRG evolution—in analogy to the tensor interactionat th
or the three-nucleon contact terme (= 0) there is no siz- NN-level as an important source of induced 3N contributions
able change of the flow-parameter dependence as compargiB]. However, it is not obvious why they contribution is the
to the standard Hamiltonian, as seen in Fig. 8(c) and (d), redominant source and ttea term contributes so little. In con-
spectively. Thus, neither of these two terms of the chiral 3Nirast to theey term, which contributes very little to the ground-
interaction drives the SRG-induced many-body forces. Thetate energies dHe or'®0, the contribution of the, term to
picture changes dramatically, if we switclff the two-pion  the ground-state energy is not small. This can be seen from
exchange terms( = 0). As depicted in Fig. 8(b), the flow- the large change af: that is necessary to reproduce ftiée
parameter dependence of the converged ground-state energfpund-state energy when is set to zero.
vanishes completely in this case. Thus, the long-range two- These findings might prove useful for the design of alterna-
pion terms in the chiral 3N interaction alone are respoesibl tive SRG generators which aim to suppress the induced many-
for the emergence of sizable induced many-body contribubody terms. However, initial attempts along these linesswer
tions throughout the SRG evolution. not successful.

We can carry this analysis even further and investigate the
role of the three dferent two-pion exchange contributions by
switching-dt the ¢;, cs, andc, terms individually. The re- D. Reduced initial three-nucleon cutoff
sulting ground-state energies fSiO are depicted in Fig. 9.
The comparison with the flow-parameter dependence of the Motivated by the observation that small modifications of
standard Hamiltonian shows that tbecontribution does not  the structure of the initial chiral 3N interaction can elirate
affect the induced many-body terms. Also, switchiffjtbe  the SRG-induced many-body interactions, we study the be-
c4 term only causes minor changes in the flow-parameter dehavior of the flow-parameter dependence of #f@ ground-
pendence. However, eliminating tleg of the chiral 3N in-  state energy as function of the three-body €utgy used for
teraction leads to a drastic reduction of the flow-parametethe regularization of the chiral 3N interaction aflND. As
dependence, as shown in Fig. 9(c). We conclude thatghe outlined in the previous section, we refit the parameter for
contribution is the major driver for the induced beyond-3Neach initial 3N cutéf to reproduce théHe ground state en-
terms in the SRG evolution. ergy in NCSM calculations with the bare Hamiltonian. The

Because of their complicated operator structure, inclydin resulting values ofe for cutoffs in the range fromhzy = 350
intermediate-range tensor- and spin-orbit-type intévast  to 500 Me\/c are summarized in Tab. I.
thec; terms are likely candidates for causing many-body cor- The IT-NCSM results for the ground-state energie$°af
relations that give rise to induced many-body interactions are presented in Fig. 10 for thefi@irent initial 3N cutds.
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standard 3N
A3N =500 MEV/C p

Asn =450 MeV/c A3n =400 MeV/c A3n =350 MeV/c

2 4 6 810121416182 4 6 8§ 10121416182 4 6 8 1012141618 2 4 6 8 1012 14 16 18
max Nmax Nmax Nmax
FIG. 10: (color online) Dependence on the diitaf the 3N interactiomsy of the 0 ground-state energy obtained with the NWN-full

Hamiltonian withe: = 0.04 fm* (e ), 0.05 fm* (00), 0.0625 fnf (), and 008 fnt* (m). Results for the standard Hamiltonian are shown in panel
(a), and those foAzy = 450 MeV/c, 400 MeVc, and 350 MeYt in panels (b), (c) and (d), respectively.

The flow-parameter dependence of the converged energiebles that depend sensitively on the 3N interaction. A prime
shows a clear systematics: with decreasing ffutay the  example is the ordering of the lowest states9B: the stan-
flow-parameter dependence is rapidly reduced. &gy = dard chiral 3N interaction withh 3y = 500 MeVj/c predicts the
350 MeV/c the converged ground-state energies exhibit n@round-state to be a*3with an approximately correct exci-
flow-parameter dependence in the range fren= 0.04 to  tation energy to the first*lstate. Reducing the 3N cutdo
0.08 fnf anymore. Already ahzy = 400 MeV/c the ground-  Azy = 400 MeV/c gives almost degeneraté and 1 states
state energies only vary by about 2% over this flow-parameteawith a tendency for the1to become the ground state. How-
range. In combination with the analysis of Sec. IV C, we canever, one should note that also the standard 3N interaction
conclude that the higher-momentum components, i.e., corhas deficiencies regarding p-shell spectroscopy. Theaexcit
tributions that are eliminated by lowering the 3N diito  tion energy of the first 1 state in'°C is underestimated by
Asn = 350MeVc, of the two-pion terms of the 3N inter- about 4 MeV forAzy = 500 MeV/c, but is within 0.5 MeV
action are responsible for the emergence of SRG-induced 4hf the experimental value fakzy = 400 MeVjc. These and
interactions. related &ects of the 3N interaction on the spectroscopy of

As the flow-parameter dependence decreases, 1tBe p-shell nuclei will be discussed in forthcoming publicatso

ground-state energy systematically approaches the experi

mental binding energy. For bothgy = 350 and 400 MeX¢

the calculated energies agree very well with experimenis Th V. COMPARISON AND EXTRAPOLATION
is remarkable, since no experimental data beydng 4

parameter dependence and thus the contribution of induceg; ground-state energies of p-shell nuclei with a set of-sim
beyond-3N interactions is small, we can conclude that thesgy, calculations by Jurgenson et al. [30]. These authags ar
reduced-cutfi Hamiltonians enable a parameter-free descripusing the same standard chiral N8N Hamiltonian as start-
tion of the*°0 ground-state energy. This finding is confirmeding point and they also use the SRG evolution and the NCSM
in a systematic study of the ground states of even oxygen isqy tackle the many-body problem. However, there are signif-
topes from*?0 to ?°0 using the IT-NCSM, coupled-cluster jcant diferences regarding (i) the model space for the SRG

theory, and the newly developed multi-reference in-mediumeyojution, (ii) the handling of the 3N matrix elements, and
SRG [21]. We have shown that the chiral 3N interactions Wlth(iii) the solution of the many-body problem:

reduced cutfi can well reproduce the experimental ground-
state energies throughout the oxygen isotopic chain and de-
scribe the position of the dripline correctly without anyeph
nomenological adjustments. Furthermore, for medium-mass
nuclei, like calcium and nickel isotopes, the coupled-&us
calculations discussed in Refs. [35, 36] indicate thatehes
interactions still provide a remarkably good descriptidh o
ground-state energies.

(i) We employ a diterent truncation pattern for the three-
body Jacobi-HO model-space of the SRG evolution as
discussed in Sec. IV A, allowing for larger spaces for
theJ = 3/2 and 52 partial waves as compared to Ju-
rgenson et al. More importantly, we use the frequency
conversion discussed in Sec. I D, i.e., the SRG evolu-
tion is performed for fixed frequen@fsrc = 24 MeV

Of course, lowering the cufbtoo far will eliminate phys- and we convert the resulting matrix elements to all other
ically important components of the interaction. First in- basis frequencies of interest. This eliminates the trun-
dications are already seen for the interaction wity = cation artifacts at low frequencies, as demonstrated in

400 MeV/c in the spectroscopy of p-shell nuclei for observ- Sec. IVA.
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FIG. 12: (color online) Same as Fig. 11 for the ground-statrgy

FIG. 11: (color online) Ground-state energy ‘afi as function of of 12C

basis frequencyiQ obtained with NN-3N-full Hamiltonian with

@ = 0.0625 fnf andAsy = 500 MeV/c. We use frequency-converted
3N matrix-elements with an SRG evolution performediQtrs = . . . . .
24 MeV. The diferent symbols correspond .. = 4 (¢ ), 6 (), 8 125 ‘u,\ d

(A), 10 (@), and 12 (U) with error bars extracted from the threshold -
extrapolation. The solid lines show the IR-UV fit using theuks ¢ &, o 1
in the window fromaQ = 20 to 26 MeV, the dashed horizontal line S130F ]
shows theNmax — oo ground-state energy resulting from this fit. The 2
black stars show the results of simple extrapolations atl fix (see
text). -135

(i) We use thelT-coupled scheme for handling the 3N ma-
trix elements instead of the-scheme storage used by
Jurgenson et al. This enables us to precompute and store -145
3N matrix-element sets for much larger spaces, as high-
lighted in Sec. Il F. For alNmax = 8 calculation of°C, ]

. _ _150 1 1 1 1 1 1 1
corresponding tdEs max = 11, them-scheme approach 14 16 18 20 22 24 26
requires about 33 GB for the 3N matrix elements in KQ [MeV]
single precision [29]. In thdT-coupled approach we
need only 0.4 GB with about the same performance foIFIG. 13: (color online) Same as Fig. 11 for the ground-statrgy
retrieving individualm-scheme three-body matrix ele- of 0.
ments, because of our highlyfieient decoupling algo-
rithm. We can routinely generatéT-coupled matrix
element sets up tBsmax = 16, which is stficient for
Nmax = 13 calculations if?C and requires only 10 G
of storage.

B sented in Figs. 11 and 12. In Fig. 11 we show the conver-
gence of of the ground-state energy ‘@i with increasing
Nmax = 4,6, ..., 12 as function of the basis frequenef2 ob-

(iii) We use the importance truncation to extend the reach ofained with the NN-3N-full Hamiltonian fora = 0.0625 fnf
the NCSM. The limit of full NCSM calculations with — corresponding to Fig. 15 of Ref. [30]. We emphasize that
NN+3N Hamiltonians fofC today is alNmax = 8 or 9 because of the frequency conversion, also the results at low
(see [67]). With the IT-NCSM we can easily extend the2Q are accurate. It is evident that thénax = 12 results
ground-state calculations up M. = 12 at a fraction —are already very close to convergence and provide an excel-
of the computational cost of full NCSM calculations at lent starting point for robust and accurate extrapolatidtee
Nmax = 8. In combination with SRG-evolved Hamilto- corresponding ground-state energies'fi§¢ are presented in
nians, the gain froMNyax = 8 t0 Nmax = 12 is impor-  Fig. 12 and can be compared to Fig. 16 of Ref. [30]. Even for
tant, since it brings us siciently close to convergence this mid p-shell nucleus we can perform the IT-NCSM cal-
so that diferent possible extrapolation schemes becomeulations up tdNmax = 12 which is already very close to the
more robust and accurate. converged result. For completeness, we show in Fig. 13 the
results for'®0 ground-state energies with the same Hamilto-
Two examples for ground-state calculations that can baian, which have not been discussed in Ref. [30], again reach
compared directly to the work of Jurgenson et al. are preing up toNmax = 12 and thus close to convergence.
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Even the simplest extrapolation scheme, using the three_l;ABLE I Ext lated destat s in [MeV] of "Li
arameter exponential ans&t = E.. + aexpb - EXtrapolated ground-state energies in jvievy or "L,
parame b ) PCDNna 12¢ and0 using the NN-3N-full Hamiltonian ate = 0.0625 fnf
and fitting to three or four larg8hhax results at a single fre- for di e h d sub fth
Q. provides robust results. In Tab. Il we summarize or different extr.apo.atlon schemes and subsets of the IT-NCSM re-
gquencyrg, p . " ’ ) sults presented in Figs. 11, 12, and 13 (see text).
the extrapolated energi€s, for various frequencies. Here

we use the four largestnax results for the fit in order to stabi- Nmax Q2 [MeV] "Li 2 '°0

lize the extrapolation against uncertainties resultimgrfthe ~ simple  6-12 16 -39.77  -97.76  -147.23
threshold extrapolation of the individual IT-NCSM calcula 6-12 18 -39.59  -97.64  -147.22
tions for the dfferentNmax. There is a slight systematic depen- g - ié 52 :gg'gg :g;"llz) jjg'gg
dence of the results on the basis frequency in all cases; tean_UV & — 17 14— 56 =9 .66 57 '04 145 '44
ing to reduce the binding energy with increasing. How- 6 12 16— 26 3961 -9710  -145.78
ever, comparing the results at the optimal frequency, which 612 18- 26 3954  -97.26  -146.26
provides the minimum energy in the largest model space, 6-12 20— 26 3945 -97.33  -146.59
with the neighboring frequencies we observBatences be- Tr-uv  2-38 14— 26 3043 -97.28  -144.23
low 0.5%. Keeping in mind the uncertainties that result from 2-8 16— 26 -40.19  -98.79  -148.61
the importance truncation and threshold extrapolationgivh 2-8 18- 26 -40.72  -99.92  -152.88
are of similar magnitude, we consider this simple extrapola 2-8 20- 26 -40.98  -100.43  -158.13

tion at fixed optimal frequency as ficiently accurate once
the largestNyay is close to convergence. The IT-NCSM is in-

strumental to reach these largiax values and we can limit  pice agreement. One should note, however, that the IR-UV
ourselves to the simple extrapolation scheme. extrapolation for the heavier nuclei does not fully captine
More sophisticated and theoretically better motivated excurvature of the energy as function b at fixed Nmay, as
trapolation schemes were proposed in several recent worksan be seen from the comparison of data and fit function in
[69-71]. They take the high-momentum (UV) and long-rangerigs. 12 and 13. These deviations are getting worse as more
(IR) truncations implied by a finite HO basis into accountdata points at lowehQ are included. Further investigations
for the construction of an extrapolation function in a frame into the these extrapolation methods in the upper p-shell ar
work inspired by ective field theory. Though the quanti- certainly desirable.
tative exploration of these extrapolation schemes is orly b Even for the IR-UV extrapolation, the availability of input
ginning, we employ the IR-UV extrapolation scheme for thedata close to convergence is important. If we ignore thdtssu
energy in the formulation proposed in Ref. [71] for com- for N, = 10 and 12 and repeat the analysis using the range
parison. We USE(Nmax 1Q) = Ex + a1€Xp(-2b1Auv) +  from Npayx = 2 — 8 as input, the sensitivity of the extrapolated
a2 exp2boL,), with Auv = V2(emax+ 3/2)/ano andLz = energies on the choice of the frequency-range increases by a
aHo V2(emax+ 3/2 + 2), whereayo is the oscillator lengthand  order of magnitude as shown in the lower part of Tab. Il. Thus,
emax the maximum single-particle energy quantum numbereyen with improved extrapolation tools the additional stiep
represented in the basis, i.emax = Nmax + 1 for p-shell nu- N, ., that the IT-NCSM d¥ers are vital to obtain robust results
clei. We note that all points of the selected subset enter ougithin our fitting strategy.
fits with equal weight, while alternative extrapolation hneds The IR-UV extrapolation scheme using preferentially large
[72] have employed increased weights for data points closefrequencies entails a significant increase in computaltiona
to the converged results. cost, since the dimension of the importance-truncated imode
The results of the IR-UV extrapolation summarized inspace grows with increasing basis frequency, as many more
Tab. Il. Again we have to select a range Nyax and #Q basis states with small amplitudes need to be superimposed t
for the data entering into the fit. As for the simple exponen-build-up the net size of the nucleus. This makes the calcula-
tial extrapolation we use the four largedtax results and a  tions for individual importance thresholdgi, more demand-
range of frequencies up to the maximum available frequencing and increases the uncertainties of the threshold exttiap
of iQ = 26 MeV. Since the theoretical foundation of the ex- tions. Since the IT-NCSM allows us to reacHffitiently large
trapolation scheme is more solid in the UV regime, i.e., to-Nmax We typically use the simple extrapolation at and around
wards the high-frequency side of the energy minimum, wethe optimal frequency in practical applications.
vary the low-frequency end of the data set included in the fit
around the minimum to probe the stability of the extrapola-
tion. VI. CONCLUSIONS

Based on the samBna-range as input data, the IR-UV
extrapolation also exhibits as systematic dependencee®n th We have discussed a chain of developments enabling ab
frequency-range included in the fit. As expected, the deperninitio nuclear structure calculations for light and medium
dence is somewhat smaller than for the simple extrapolationmass nuclei using SRG-evolved chiral NBN Hamiltonians
at a single frequency. The comparison of the simple extrapan large many-body model spaces. By introducing a 3@w
lation at the optimal frequency, i.éi2 = 18 MeV for’Liand  coupled storage scheme for the 3N matrix elements together
1Q = 20 MeV for1?C and*®0, with the IR-UV extrapolation with a fast on-the-fly decoupling in the many-body calcula-
based on the high-frequency d&@ = 20— 26 MeV, reveals tion, we are able to reach model spaces of unprecedented size
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with explicit 3N interactions. It turns out that controlfjthe  tions cause additional uncertainties, as we have discussed
truncation uncertainties of the SRG-evolved Hamiltonisns Refs. [22, 35, 36].
one of the most critical elements for ab initio calculatibes In conclusion, a systematic quantification of the uncertain
yond the lightest isotopes. ties inherent to the Hamiltonian remains one of the prime
A first truncation uncertainty results from the finite Jacobi challenges of ab initio nuclear structure theory. Here we
HO model space used to perform the SRG-evolution of théhave started to address uncertainties related to the SRG-
3N interaction. The fect of this truncation is amplified with  transformation and the various technical truncations ef th
increasing mass number anfilegts low basis frequencies in Hamiltonian. Now that these uncertainties are understood,
particular. We introduced a simple frequency conversion obne can start to address the uncertainties related to thal chi
the 3N matrix elements to fix this issue for nuclei in the p-EFT inputitself. A systematic propagation of the uncetias
and sd-shell. However, one has to revisit the role of this-tru of the low-energy constants and uncertainties due to oamissi
cation when going to medium-mass and heavy nuclei. A secof higher-order contributions in the chiral power countinig
ond truncation uncertainty results from the omission of SRG pe the subject of future studies. It is evident already, pinat
induced four- and multi-nucleon interactions, which beeom viding rigorous theoretical uncertainties for nucleausture

significant beyond mid p-shell. Apart from the explicitinel  observables is at least as challenging as performing thai-ab i
sion of SRG-induced 4N interactions, which is under invest+io calculation in the first place.

tigation at the moment, one can remedy this issue by using
chiral interactions with lower initial cutgs. It would be very
beneficial for applications of next generation chiral Haail
nians, if a sequence of cufe extending as low as 400 M¢y/
would be available. Various attempts to design alternative
SRG-generators that suppress induced 4N terms but re&in th We thank Petr Navratil for many helpful discussions and
favorable convergence behavior of the standard generater h for providing us with the MnyErr code. Supported by the
not been successful so far. Deutsche Forschungsgemeinschaft through contract SFB 634
When going beyond NCSM-type calculations, additionalby the Helmholtz International Center for FAIR (HIC for
truncations of the Hamiltonian have to be introduced. Rrese FAIR) within the LOEWE program of the State of Hesse, and
medium-mass approaches, e.g., coupled-cluster theqry, tythe BMBF through contract 06DA70471. Numerical calcula-
ically work in model spaces obtained from a finite set oftions have been performed at the computing center of the TU
Hartree-Fock single-particle states, which are not coibfgat Darmstadt (lichtenberg), at the Julich Supercomputingttee
with the Ezmax truncation of the 3N matrix elements. Fur- (juropa), at the LOEWE-CSC Frankfurt, and at the National
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