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We report quantum Monte Carlo calculations of electromagnetic transitions in 8Be. The realistic
Argonne v18 two-nucleon and Illinois-7 three-nucleon potentials are used to generate the ground state
and nine excited states, with energies that are in excellent agreement with experiment. A dozen M1
and eight E2 transition matrix elements between these states are then evaluated. The E2 matrix
elements are computed only in impulse approximation, with those transitions from broad resonant
states requiring special treatment. The M1 matrix elements include two-body meson-exchange
currents derived from chiral effective field theory, which typically contribute 20–30% of the total
expectation value. Many of the transitions are between isospin-mixed states; the calculations are
performed for isospin-pure states and then combined with empirical mixing coefficients to compare
to experiment. Alternate mixings are also explored. In general, we find that transitions between
states that have the same dominant spatial symmetry are in reasonable agreement with experiment,
but those transitions between different spatial symmetries are often underpredicted.

PACS numbers: 21.10.Ky, 02.70.Ss, 23.20.Js, 27.20.+n

I. INTRODUCTION

We recently reported ab initio quantum Monte Carlo
(QMC) calculations of magnetic moments and electro-
magnetic (EM) transitions in A ≤ 9 nuclei [1]. In that
work, the calculated magnetic moments and M1 tran-
sitions included corrections arising from EM two-body
meson-exchange currents (MEC) derived in two differ-
ent approaches: 1) a standard nuclear physics approxi-
mation (SNPA) [2, 3], and 2) the chiral effective theory
(χEFT) formulation of Refs. [4–6]. Nuclear wave func-
tions (w.f.’s) were obtained from a Hamiltonian consist-
ing of the non-relativistic nucleon kinetic energy plus the
Argonne v18 (AV18) two-nucleon [7] and Illinois-7 (IL7)
three-nucleon [8] potentials. The SNPA MEC were con-
structed to obey current conservation with this Hamil-
tonian, while the use of χEFT MEC constitutes a hy-
brid calculation. The two methods are in substantial
agreement, producing a theoretical microscopic descrip-
tion of nuclear dynamics that successfully reproduces the
available experimental data, although the χEFT MEC
give somewhat better results. Two-body components in
the current operators provide significant corrections to
single-nucleon impulse-approximation (IA) calculations.
For example, they contribute up to ∼ 40% of the total
predicted value for the 9C magnetic moment [1].

In this work, we implement the framework described
above for twenty EM transitions in the 8Be nucleus us-
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ing only the χEFT MEC. The experimental spectrum
and EM transitions we consider are illustrated in Fig. 1.
This even-even nucleus exhibits a strong two-α cluster
structure in its ground state, characterized by angular
momentum, parity, and isospin (Jπ;T ) = (0+; 0), and a
Young diagram spatial symmetry that is predominantly
[44]. The ground state lies ∼ 0.1 MeV above the thresh-
old for breakup into two α’s, while the (2+; 0) state at
∼ 3 MeV excitation and (4+; 0) state at ∼ 11 MeV, are
[44] rotational states with large (∼ 1.5–3.5 MeV) decay
widths. The next six higher states at 16–19 MeV excita-
tion are three isospin-mixed doublets, with the first pair
of (2+; 0+1) states lying below the threshold for breakup
into 7Li+p and having α+α decay widths of ∼ 100 keV.
The isospin mixing is due to the interplay between T = 0
states and T = 1 states that are the isobaric analogs of
the lowest three states in 8Li and 8B, all with the same
dominant [431] spatial symmetry. There are many ad-
ditional broad excited states above these isospin-mixed
doublets that are not shown before the final state we
consider, the (0+; 2) isobaric analog of the 8He ground
state at 27 MeV excitation, with dominant [422] spatial
symmetry and a very narrow 5 keV decay width.

A comprehensive set of QMC calculations of A = 8
nuclei was carried out in Ref. [9] for a Hamiltonian with
AV18 and the older Urbana IX three-nucleon poten-
tial [13]. More recently, energies, radii, and quadrupole
moments of this nucleus have been recalculated for the
[44] symmetry states [10], and for the isospin-mixed
states [11], using the newer Illinois-7 potential. The
present work complements these studies by calculating
many EM transitions between the low-lying states, which
are also illustrated in Fig. 1. TheM1 matrix elements in-
clude contributions from two-body χEFT currents, which
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FIG. 1: (Color online) Experimental spectrum of 8Be: hor-
izontal lines denote energy levels, with blue for T=0 states,
magenta for mixed T=0+1 states, and violet for T=2; black
dash-dot lines indicate thresholds for breakup as indicated
and shaded areas denote the large widths of the 8Be rotational
states. Vertical lines with arrows indicate the electromagnetic
transitions studied: blue short-dash for E2, red long-dash for
M1, and magenta dash-dot for combined E2 and M1 transi-
tions.

provide important corrections of order 20–30%. The two-
body current corrections to the E2 matrix elements are
expected to be negligible because they appear at higher
order in the χEFT expansion [6] and are not computed
here.

QMC techniques and χEFT EM currents were pre-
sented in Ref. [1] and references therein. We refer to that
work for more details on the calculational scheme which
is here briefly summarized in Sec. II. From there on, we
focus on providing and discussing the results. In par-
ticular, the calculated 8Be energy spectrum is presented
in Sec. III, while results for E2 and M1 transitions are
given in Sec. IV. We discuss the results in Sec. V.

II. QMC METHOD, NUCLEAR HAMILTONIAN

AND χEFT EM CURRENTS

EM transition matrix elements are evaluated between
w.f.’s which are solutions of the Schrödinger equation:

HΨ(Jπ;T, Tz) = EΨ(Jπ;T, Tz) , (1)

where Ψ(Jπ;T, Tz) is a nuclear w.f. with specific spin-
parity Jπ, isospin T , and charge state Tz. The nuclear
Hamiltonian used in the calculations consists of a kinetic
term plus two- and three-body interaction terms, namely
the AV18 [7] and the IL7 [8], respectively:

H =
∑

i

Ki +
∑

i<j

vij +
∑

i<j<k

Vijk . (2)

Nuclear w.f.’s are constructed in two steps. First, a varia-
tional Monte Carlo (VMC) calculation is implemented to
construct a trial w.f. ΨV (J

π ;T, Tz) from products of two-
and three-body correlation operators acting on an anti-
symmetric single-particle state of the appropriate quan-
tum numbers. The correlation operators are designed to
reflect the influence of the interactions at short distances,
while appropriate boundary conditions are imposed at
long range [12, 13]. The ΨV (J

π;T, Tz) has embedded
variational parameters that are adjusted to minimize the
expectation value

EV =
〈ΨV |H |ΨV 〉

〈ΨV |ΨV 〉
≥ E0 , (3)

which is evaluated by Metropolis Monte Carlo integra-
tion [14]. Here, E0 is the exact lowest eigenvalue of H
for the specified quantum numbers. A good variational
trial function has the form

|ΨV 〉 = S

A∏

i<j



1 + Uij +

A∑

k 6=i,j

ŨTNI
ijk



 |ΨJ〉 , (4)

where the S is a symmetrization operator. The Jastrow
w.f. ΨJ is fully antisymmetric and includes all possible
spatial symmetry states within the p-shell that can con-
tribute to the (Jπ;T, Tz) quantum numbers of the state

of interest, while Uij and ŨTNI
ijk are the noncommuting

two- and three-body correlation operators.
The second step improves on ΨV by eliminating

excited-state contamination. This is accomplished by the
Green’s function Monte Carlo (GFMC) algorithm [15]
which propagates the Schrödinger equation in imaginary
time (τ). The propagated w.f. Ψ(τ) = e−(H−E0)τΨV ,
for large values of τ , converges to the exact w.f. with
eigenvalue E0. In practice, a simplified version H ′ of
the Hamiltonian H is used in the operator, which in-
cludes the isoscalar part of the kinetic energy, a charge-
independent eight-operator projection of AV18 called
AV8′, a strength-adjusted version of the three-nucleon
potential IL7′ (adjusted so that 〈H ′〉 ∼ 〈H〉), and
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an isoscalar Coulomb term that integrates to the total
charge of the given nucleus [16]. The difference between
H and H ′ is calculated using perturbation theory. More
detail can be found in Refs. [9, 13].
Matrix elements of the operators of interest are eval-

uated in terms of a “mixed” expectation value between
ΨV and Ψ(τ):

〈O(τ)〉M =
〈Ψ(τ)|O|ΨV 〉

〈Ψ(τ)|ΨV 〉
, (5)

where the operator O acts on the trial function ΨV . The
desired expectation values, of course, have Ψ(τ) on both
sides; by writing Ψ(τ) = ΨV + δΨ(τ) and neglecting
terms of order [δΨ(τ)]2, we obtain the approximate ex-
pression

〈O(τ)〉 =
〈Ψ(τ)|O|Ψ(τ)〉

〈Ψ(τ)|Ψ(τ)〉

≈ 〈O(τ)〉M + [〈O(τ)〉M − 〈O〉V ] , (6)

where 〈O〉V is the variational expectation value.
For off-diagonal matrix elements relevant to this work

the generalized mixed estimate is given by the expression

〈Ψf (τ)|O|Ψi(τ)〉√
〈Ψf (τ)|Ψf (τ)〉

√
〈Ψi(τ)|Ψi(τ)〉

≈ 〈O(τ)〉Mi
+ 〈O(τ)〉Mf

− 〈O〉V , (7)

where

〈O(τ)〉Mf
=

〈Ψf (τ)|O|Ψi
V 〉

〈Ψf (τ)|Ψf
V 〉

√
〈Ψf

V |Ψ
f
V 〉

〈Ψi
V |Ψ

i
V 〉

, (8)

and 〈O(τ)〉Mi
is defined similarly. For more details

see Eqs. (19–24) and the accompanying discussions in
Ref. [17]. Sources of systematic error in the GFMC eval-
uation of operator expectation values (other than H ′) in-
clude the use of mixed estimates and the constrained path
algorithm for controlling the Fermion sign problem in the
propagation of Ψ(τ). These are discussed in Ref. [9]; the
convergence of the current calculations is addressed at
the beginning of Sec. III.
Nuclear EM currents are expressed as an expansion in

many-body operators. The current we use contains up
to two-body effects, and is written as:

j(q) =
∑

i

ji(q) +
∑

i<j

jij(q) , (9)

where q is the momentum associated with the external
EM field. In what follows, we use the notation

ki = p′
i − pi , Ki = (p′

i + pi) /2 ,

k = (k1 − k2) /2 , K = K1 +K2 , (10)

where pi (p
′
i) is the initial (final) momentum of nucleon

i, and q = k1 + k2 by momentum conservation.

There are two one-body operators resulting from re-
taining the first two terms in the (pi/mN)2 expansion of
the covariant single-nucleon EM current. Of course, the
leading-order term in this expansion corresponds to the
non-relativistic IA operator consisting of the convection
and spin-magnetization single-nucleon currents:

jIA =
e

2mN

[ 2 eN,1K1 + i µN,1σ1 × q ] , (11)

where

eN = (1+τz)/2 , κN = (κS+κV τz)/2 , µN = eN+κN .
(12)

Here κS = −0.12 n.m. and κV = 3.706 n.m. are the
isoscalar (IS) and isovector (IV) combinations of the
anomalous magnetic moments of the proton and neutron,
and e is the electric charge.
Two-body EM currents are constructed from a χEFT

which retains as explicit degrees of freedom both pions
and nucleons. The resulting operators are expressed as
an expansion in nucleon and pion momenta, generically
designated as Q. The leading-order (LO) contribution in
Eq. (11) is of order eQ−2 and contributions up to N3LO
or eQ1 are retained in the expansion. These contribu-
tions were first calculated by Park et al. in Ref. [18] us-
ing covariant perturbation theory. More recently, Kölling
and collaborators [19], as well as some of the present au-
thors [4–6, 20], derived them using two different imple-
mentations of time-ordered perturbation theory. In this
work, we use the operators developed in Refs. [4–6, 20],
where details on the derivation and a complete listing of
the formal expressions may be found.
The two-body χEFT EM currents consist of long-

and intermediate-range components described in terms of
one-pion exchange (OPE) and two-pion exchange (TPE)
contributions, respectively, as well as contact currents en-
coding short-range dynamics. In particular, OPE seagull
and pion-in-flight currents appear at next-to-leading or-
der (NLO) (eQ−1) in the Q expansion, while TPE cur-
rents occur at N3LO. The LO and N2LO (eQ0) contribu-
tions are given by the single-nucleon operators described
above, i.e., the IA operator and its relativistic correction,
respectively.
At N3LO, the current operators involve a number of

unknown low energy constants (LECs) which are fixed to
experimental data. The LECs multiplying four-nucleon
contact operators are of two kinds, namely minimal and
non-minimal. The former also enter the χEFT nucleon-
nucleon potential at order Q2 and are therefore fixed by
reproducing the np and pp elastic scattering data, along
with the deuteron binding energy. For these, we take the
values resulting from the fitting procedure implemented
in Refs. [21, 22]. Non-minimal LECs (there are two of
them, one multiplying an isoscalar operator and the other
an isovector operator) need to be fixed to EM observ-
ables.
At N3LO, there is also an additional current of one-

pion range which involves three LECs. One of these
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multiplies an isoscalar structure, while the remaining
two multiply isovector structures. As first observed in
Ref. [18], the isovector component of this current has
the same operator structure as that associated with a
∆-resonance transition current involving a one-pion ex-
change. In this type of two-body contribution, the ex-
ternal photon couples with a nucleon to excite a ∆-
resonance state. The latter decays emitting a pion which
is then reabsorbed by a second nucleon. Given this theo-
retical insight, one can impose the condition that the two
isovector LECs are in fact given by the couplings of the
∆-resonance current. This mechanism is referred to as
∆-resonance saturation and has been utilized in various
studies of EM observables of light nuclei (see for exam-
ple [1, 6, 23–26]). Once the ∆-saturation mechanism is
invoked to fix two of the unknown LECs, the resulting
three LECs are fit to the deuteron and the trinucleon
magnetic moments.
The values of the LECs are not unique, in that they de-

pend on the particular momentum cutoff used to regular-
ize the configuration-space singularities of the EM oper-
ators. In momentum space, these operators have a power
law behavior for large momenta, k, which is regularized
by a momentum cutoff of the form C(k) = exp(−k4/Λ4).
For a list of the numerical values of the LECs for Λ = 600
MeV, which is the cutoff utilized in these calculations, we
refer to Ref. [1].
The N2LO relativistic correction to the one-body IA

operator involves two derivatives acting on the nucleon
field. In the GFMC calculation we do not explicitly eval-
uate this p2i term, but instead approximate it with its
average value, that is p2i ∼

〈
p2i
〉
, as determined from the

expectation value of the kinetic energy operator in 8Be,
from which we obtain

〈
p2i
〉
= 1.375 fm−2. This term is

a small fraction of the total MEC (see, e.g., Table IV
below) so the approximation has little practical effect.
To be consistent with the nomenclature utilized in

Ref. [1], we denote with ‘MEC’ components in the EM
currents beyond the IA one-body operator at LO. How-
ever, we stress that the N2LO contribution is a one-body
operator, which does not involve meson-exchange mech-
anisms.

III. 8BE ENERGY SPECTRUM

The experimental [27] and calculated GFMC energies
for the 8Be spectrum are presented in Table I, along with
the GFMC point proton radii. The calculations were
done by propagating up to some τmax with an evaluation
of observables after every 40 propagation steps, i.e., at
intervals of τ = 0.02 MeV−1, and averaging in the in-
terval τ=[(0.1 MeV−1)–τmax]; τmax is typically 0.3 to 0.4
MeV−1.
The calculation of the spectrum is rather involved [9],

with two main challenges to face. The first originates
from the resonant nature of the first two excited states
(gray shaded states in Fig. 1), and the ensuing difficulty

TABLE I: GFMC ground state energy and excitations in MeV
for the AV18+IL7 Hamiltonian compared to experiment [27]
for the 8Be spectrum. Empirical energies are obtained by un-
folding the isospin-mixed experimental energies using inferred
mixing coefficients (see text for explanation). Also given are
the GFMC point proton (= neutron) radii in fm. Theoreti-
cal or experimental errors ≥ 1 in the last digit are shown in
parentheses.

Jπ; T GFMC Empirical Experiment rp

0+ –56.3(1) –56.50 2.40

2+ + 3.2(2) + 3.03(1) 2.45(1)

4+ +11.2(3) +11.35(15) 2.48(2)

2+2 ; 0 +16.8(2) +16.746(3) +16.626(3) 2.28

2+; 1 +16.8(2) +16.802(3) +16.922(3) 2.33

1+; 1 +17.5(2) +17.66(1) +17.640(1) 2.39

1+; 0 +18.0(2) +18.13(1) +18.150(4) 2.36

3+; 1 +19.4(2) +19.10(3) +19.07(3) 2.31

3+; 0 +19.9(2) +19.21(2) +19.235(10) 2.35

0+; 2 +27.7(2) +27.494(2) 2.58

of extracting a stable resonance energy from the calcu-
lated energies which are evolving to the energy of two
separated α’s. This issue was addressed in Ref. [9], and
more recently, however succinctly, in Ref. [10]. The last
reference reported an updated measurement of the E2
transition between the first two excited states of 8Be
measured via the α + α radiative capture with an un-
certainty of ∼ 10% (as opposed to the estimated ∼ 30%
error of previous measurements [28]). To accompany the
experimental result, a GFMC calculation was performed
for the E2 transition matrix element between the two
rotational states, and between the (2+; 0) state and the
ground state. We reprise this calculation in more detail
below.

The second non-trivial issue is encountered when deal-
ing with the spectrum of the isospin-mixed states at 16–
19 MeV (magenta states in Fig. 1). These excited states
have been extensively discussed in Ref. [11]. We compute
unmixed T = 0 or T = 1 states but experimental values
are of course for the mixed states. The isospin-mixing
coefficients can be extracted from experimental decay
widths [29]. For the 2+ multiplet this is unambiguous,
but for the 1+ and 3+ multiplets theoretical decay widths
based on shell-model calculations have been used. This is
discussed further below. In Table I we use the mixing pa-
rameters to unfold the “empirical” pure-isospin energies
for comparison with our calculations, while in subsequent
tables we fold the computed EM matrix elements to gen-
erate mixed matrix elements to compare to the data.
We studied the convergence of the GFMC calculations

with respect to variations in the number of unconstrained
steps (nu=20 and 50) followed after the path constraint is
relaxed, and found that energies, magnetic moments, and
rms radii converge at nu = 20, which is what is used for
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FIG. 2: (Color online) GFMC propagation in imaginary time
τ of the energy expectation values of the first three states in
the 8Be spectrum. Black dots are GFMC propagation points
for the ground state, blue dots refer to the (2+; 0) rotational
state at ∼ 3 MeV excitation and red dots to the (4+; 0) state
at ∼ 11 MeV excitation. Solid lines represent a linear fit to
the GFMC points in the indicated time interval and dashed
lines show a one-standard deviation MC statistical error for
the fit.

the final results reported here. Most of the calculations
we present are obtained by averaging two calculations,
each using 50,000 walkers. For the physically narrow,
nonresonant states, the energy expectation value is seen
to stabilize at τ ∼ 0.1 MeV−1.
For the physically wide, resonant states, the binding

energy, magnitude of the quadrupole moment, and point
proton radius all increase monotonically as τ increases.
We interpret this as an indication that the system is
dissolving into two separated α’s. In Fig. 2, we show
the GFMC propagation points for the energy expecta-
tion values of the first three states of 8Be. In particu-
lar, the ground state energy is obtained with nu = 20
and 20,000 walkers, while the resonant state energies are
obtained using nu = 20 and averaging two calculations
with 50,000 walkers each. From the figure, we see that
the ground state initial VMC energy expectation value at
τ = 0 quickly drops and reaches stability around τ = 0.1
MeV−1 (this point is indicated in the figure with an open
star). The energies of the two resonant states, instead,
keep falling with time: the (2+; 0) state decreases 0.25
MeV over the interval τ = [0.1, 0.3] MeV−1, while the
(4+; 0) states falls by 1 MeV. With this declining energy
there is a corresponding increase of the point proton ra-
dius expectation values, as shown in Fig. 3 and in the
magnitude of the (negative) electric quadrupole moment.
Quantities associated with the resonant states have

been calculated assuming that, also for these states,
τ ∼ 0.1 MeV−1 is the point at which spurious contami-
nation in the nuclear w.f.’s have been eliminated by the
GFMC propagation. Thus, we make a linear fit to the
GFMC values in the interval τ = [0.1, 0.3] MeV−1, and
extrapolate to τ = 0.1 MeV−1 for the reported values.
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FIG. 3: (Color online) GFMC propagation in imaginary time
τ of the point proton radius expectation values of the first
three states in 8Be spectrum; notation is the same as in Fig. 2.

The choice of τ = 0.1 MeV−1 is somewhat arbitrary.
To account for this uncertainty we increase the GFMC
statistical error by a systematic error that is obtained
by studying the sensitivity of the results with respect to
fitting procedures implemented in two different intervals,
namely τ = [0.08, 0.3] MeV−1 and τ = [0.12, 0.3] MeV−1,
while keeping the same extrapolating point. The total er-
ror is represented in the figures by the dashed lines.
For the six states at 16–19 MeV excitation, the GFMC

calculations are done for pure isospin states of either T =
0 or 1. The w.f.’s of the isospin-mixed states are written
as

Ψa
J = αJΨJ,T=0 + βJΨJ,T=1,

Ψb
J = βJΨJ,T=0 − αJΨJ,T=1, (13)

where the mixing angles satisfy α2
J + β2

J = 1. As one
can see from Fig. 1 and Table I, experimentally there are
two Jπ = 2+ isospin-mixed states at 16.626 and 16.922
MeV excitation energies, two Jπ = 1+ states at 17.64
and 18.15 MeV, and two Jπ = 3+ states at 19.07 and
19.235 MeV. The mixing angles are inferred from the
experimental values of the decay widths. We follow the
analysis carried out by Barker in Ref. [29] and update the
experimental widths with more recent values to obtain
the following mixing coefficients [11]:

α2 = 0.7705(15), β2 = 0.6375(19) ,

α1 = 0.21(3), β1 = 0.98(1) , (14)

α3 = 0.41(10), β3 = 0.91(5) .

Mixing coefficients for the 2+ states are well known be-
cause for these states there is only one decay channel
energetically open, that is the 2α emission channel, for
which the experimental widths are known with ∼ 0.5%
accuracy. For the other isospin-mixed states, multiple
decay channels are available, which makes the extraction
of the mixing coefficients less direct. In addition theo-
retical values of M1 matrix elements must be used; the
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values above were obtained using traditional shell-model
without two-body current contributions to the matrix el-
ements [11, 29]. Revised mixing parameters for the 1+

pair, computed using the M1 matrix elements developed
here, are discussed in Sec. V.
The eigenenergies of the isospin-mixed states, in Ta-

ble I are given by

Ea,b =
H00 +H11

2
±

√(
H00 −H11

2

)2

+ (H01)
2

(15)

where H00 is the diagonal energy expectation in the pure
T=0 state, H11 is the expectation value in the T=1 state,
and H01 is the off-diagonal isospin-mixing (IM) matrix
element that connects T=0 and 1. The inferred H00 and
H11 are the empirical values given in Table I.
Finally, the narrow (0+; 2) state at 27 MeV excita-

tion, which has a dominant [422] spatial symmetry, is a
straightforward GFMC calculation. There could in prin-
ciple be isospin-mixing with the third (0+3 ; 0) state in the
p-shell construction of 8Be, which also has [422] symme-
try, via the EM and charge-dependent parts of AV18.
No such state has been identified experimentally. A first
VMC calculation places this state 0.7(1) MeV higher in
excitation with a 125 keV IM matrix element, which pre-
dicts α0 = 0.19(4) and β0 = 0.98(1). This small amount
of mixing may still have a moderate effect on the width
of the physical state, as discussed below.
The overall agreement between experiment and the cal-

culated GFMC spectrum for AV18+IL7 shown in Table I
is excellent. Only the 3+ isospin-mixed doublet is a little
too high in excitation and a little too spread out com-
pared to the measured values.

IV. ELECTROMAGNETIC TRANSITIONS IN
8BE

We present our results in terms of reduced matrix el-
ements (using Edmonds’ convention) of the E2 and M1
operators, the associated B(E2) and B(M1), and the re-
sulting widths. For a transition of multipolarity λ (X
designates E or M),

B(Xλ) =
〈
ΨJf

||Xλ||ΨJi

〉2
/(2Ji + 1) (16)

is in units of eλ fm2λ for electric transitions and (n.m.)2λ

for magnetic transitions. The widths are given by

ΓXλ =
8π(λ+ 1)

λ[(2λ+ 1)!!]2
αh̄c

(
∆E

h̄c

)2λ+1

B(Xλ) , (17)

where ∆E is the difference in MeV between the exper-
imental initial and final state energies, Ei and Ef ; α is
the fine-structure constant; and h̄c is in units of MeV fm.
The calculations of electromagnetic matrix elements

have been described in detail in Refs. [2, 17]. Our present
results for E2 transitions in 8Be are given in Table II

0 0.1 0.2 0.3
8

10

12

14

16

18

τ (MeV-1)

〈E
2〉

 (
e 

fm
2 )

(2+ → 0+)

(4+ → 2+)

FIG. 4: (Color online) GFMC propagation in imaginary time
τ of the reduced E2 matrix elements among the first three
states in 8Be spectrum; upper red dots are for the (4+; 0) →
(2+; 0) transition, lower blue dots are for the (2+; 0) → (0+; 0)
transition and open stars denote the extrapolated values.

where the initial and final (Jπ ;T ) states and the domi-
nant associated spatial symmetries are shown in the first
column and the reduced matrix elements between states
of pure isospin are given in the second column. The ex-
perimental energies for the physical states are given in
the third column, and the corresponding theoretical and
experimental widths are shown in the fourth and fifth
columns. We use the IA operator

E2 = e
∑

k

1

2

[
r2kY2(r̂k)

]
(1 + τkz) (18)

without any MEC corrections.
In previous calculations [1, 17, 30] of nuclei in the

A = 6–10 range, we have found that E2 matrix elements
of narrow states are generally quite stable under GFMC
propagation, and seldom vary much from the initial VMC
estimate. However, matrix elements from wide states,
e.g., for the 6Li (2+; 0) → (0+; 0) decay, show a signifi-
cant evolution as a function of τ . This is also true for the
first two transitions in 8Be from the broad rotational 2+

and 4+ states. The matrix element grows monotonically
as the GFMC solution evolves in τ toward a separated
α+α configuration, as illustrated in Fig. 4. This growth
is slow for the lower (2+; 0) → (0+; 0) transition, but
much more pronounced for the upper (4+; 0) → (2+; 0)
transition. Consequently, we make an extrapolation back
to τ = 0.1± 0.02 MeV−1 to obtain our best estimate for
the matrix element, just as we did for the energy and
point proton radius discussed above in conjunction with
Figs. 2 and 3. Our error estimate combines both the
Monte Carlo statistical error and the uncertainty in the
extrapolation point. The numerical results for these two
matrix elements and corresponding decay widths ΓE2 are
reported at the top of Table II. The transitions, which
are between states of the same dominant [44] spatial sym-
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TABLE II: Calculated reduced E2 matrix elements and the corresponding decay widths compared to experiment [10, 27]. The
various columns show 1) the initial and final (Jπ ;T ) states and the dominant associated spatial symmetries, 2) the GFMC
matrix elements between states of pure isospin, 3) the experimental energies, and 4) the isospin-mixed theoretical and 5)
experimental widths. In the width values we use the notation [−x] = 10−x.

(Jπ
i ;Ti) → (Jπ

f ;Tf ) E2[e fm2] Ei[MeV]→ Ef [MeV] ΓE2[eV]

[s.s.]i →[s.s.]f IA Expt.

(2+; 0) → (0+; 0) 10.0(2) 3.03 → 0. 4.12(16)[-3] –

(4+; 0) → (2+; 0) 15.6(4) 11.35 → 3.03 0.87(5) 0.67(7)

[44] → [44]

(2+2 ; 0) → (0+; 0) 0.55(11) 16.626 → 0. 1.6(1.0)[–2] 7.0(2.5)[–2]

(2+; 1) → (0+; 0) –0.23(2) 16.922 → 0. 6.2(2.0)[–2] 8.4(1.4)[–2]

[431] → [44]

(2+2 ; 0) → (2+; 0) 0.26(7) 16.626 → 3.03 3.6(2.2)[–3] –

(2+; 1) → (2+; 0) 0.03(2) 16.922 → 3.03 1.7(1.4)[–3] –

[431] → [44]

(1+; 1) → (2+; 0) 1.93(6) 17.64 → 3.03 0.63(5) 0.12(5)

(1+; 0) → (2+; 0) –0.03(5) 18.15 → 3.03 4.0(1.1)[–2] –

[431] → [44]

metry, are very large and consistent with a rotor picture
for 8Be.
We have also calculated an additional six E2 transi-

tions from the isospin-mixed 2+ and 1+ doublets with
dominant [431] spatial symmetry, to the T = 0 ground
state or first 2+ state. We denote the isospin-pure matrix
elements by E2TfTi

=
〈
ΨJf ,Tf

||E2||ΨJi,Ti

〉
and then use

the definitions given in Eq. (13) to combine them via

< ΨJf ,0||E2||Ψa
Ji

> = αJi
E200 + βJi

E201 ,

< ΨJf ,0||E2||Ψb
Ji

> = βJi
E200 − αJi

E201 , (19)

to evaluate the widths of the physical transitions for com-
parison to experiment. Because the E2 operator largely
preserves spatial symmetry, these transitions are much
weaker than the ones within the α-α rotational band.
This makes accurate calculations of these transitions sig-
nificantly more difficult.
As an example, we can compare the two E2 transitions

from the first and second 2+ states to the 0+ ground
state. As discussed in Refs. [31, 32], the 0+ state has five
contributing LS-coupled symmetry components: 1S[44],
3P [431], 5D[422], 1S[422], and 3P [4211], with the first
component having an amplitude in the present VMC
starting w.f. of 0.996. The 2+ states are linear com-
binations of eight components: 1D[44], 3P [431], 3D[431],
3F [431], 5S[422], 5D[422], 1D[422], and 3P [4211]. The
first 2+ state also has an amplitude of 0.996 from the
1D[44] component, while the second 2+ state is dom-
inated by the 3P [431] component with an amplitude of
0.902. Consequently, 99% of the large E2 transition from
the first excited state to the ground state is due to the
matrix element between the 1D[44] and 1S[44] compo-
nents. However, for the much smaller E2 transition from
the second 2+ state, this pair of components contributes

1.65 times the final result, canceled by the matrix element
between the two 3P [431] components, which gives −1.44
times the final result. The remaining 38 smaller terms,
among which there is much additional cancellation, give
80% of the total.

Changes in these small components, which may have
little effect on the energy of a given state and hence are
not highly constrained by the GFMC propagation, can
have a significant effect on the E2 matrix element. These
small components may also be rather sensitive to the
three-body potential in the Hamiltonian, as noted in an
earlier study of E2 transitions in A = 10 nuclei [30]. This
is also true for many of the M1 transitions discussed
below, when the initial and final states have different
dominant spatial symmetries.

An additional complication arises for transitions from
the second 2+ state because the GFMC propagation is
not guaranteed to preserve the orthogonality of the w.f.
relative to the first 2+ state. In practice, GFMC propa-
gation starting from orthogonal VMC w.f.’s preserves the
orthogonality to a high degree [31]; in this case the am-

plitude 〈Ψ2+
2 (τ)|Ψ2+

V 〉 increases from 0.0010(7) for τ=0
to 0.040(6) averaged over 0.1 ≤ τ ≤ 0.3. This small ad-
mixture leaves the energy and point proton radius of the
second 2+ state as stable functions of τ , as expected for a
narrow state. However, for the E2 matrix element from
the 2+2 state to states of dominant [44] symmetry, there
are the large cancellations discussed above and a small
admixture of the the 2+ state with its large E2 matrix
element to states of dominant [44] symmetry can substan-
tially affect the overlap. For this reason we have applied

a correction by orthogonalizing the Ψ2+
2 (τ) to Ψ2+

V ,

Ψ2+′

2 (τ) = Ψ2+
2 (τ) − 〈Ψ2+

2 (τ)|Ψ2+
V 〉Ψ2+(τ) . (20)
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TABLE III: Calculated reduced M1 matrix elements and corresponding decay widths compared to experiment [27]. The various
columns show 1) the initial and final (Jπ;T ) states and the dominant associated spatial symmetries, 2) the GFMC matrix
elements between states of pure isospin in IA and, 3) in total after adding MEC, 4) the % z of the total given by the MEC, 5)
the experimental energies, 6) the isospin-mixed theoretical decay widths in IA and, 7) in total, and 8) experimental values. In
the width values we use the notation [−x] = 10−x. The results marked with a * or † are extra VMC calculations discussed in
the text.

(Ji;Ti) → (Jf ;Tf ) M1[n.m.] Ei[MeV]→ Ef [MeV] ΓM1[eV]

[s.s.]i →[s.s.]f IA Total z IA Total Expt.

(2+2 ; 0) → (2+; 0) 0.014(6) 0.013(6) 16.626 → 3.03 0.23(3) 0.51(6)

(2+; 1) → (2+; 0) 0.297(12) 0.447(18) 33% 16.922 → 3.03 0.30(4) 0.70(7)

[431] → [44] 16.626 + 16.922 → 3.03 0.53(5) 1.21(9) 2.80(18)

(1+; 1) → (0+; 0) 0.551(7) 0.767(9) 28% 17.64 → 0.00 6.2(2) 12.0(3) 15.0(1.8)

(1+; 1) → (2+; 0) 0.398(6) 0.567(11) 30% 17.64 → 3.03 1.9(1) 3.8(2) 6.7(1.3)

(1+; 0) → (0+; 0) 0.012(1) 0.014(1) 18.15 → 0.00 0.25(1) 0.50(2) 1.9(0.4)

(1+; 0) → (2+; 0) 0.018(3) 0.021(3) 18.15 → 3.03 0.06(1) 0.13(2) 4.3(1.2)

[431] → [44]

(1+; 1) → (2+2 ; 0) 2.287(10) 2.910(13) 21% 17.64 → 16.626 1.92(2)[–2] 2.97(3)[–2] 3.2(3)[–2]

(1+; 1) → (2+; 1) 0.139(2) 0.176(3) 21% 17.64 → 16.922 1.22(3)[–3] 2.20(5)[–3] 1.3(3)[–3]

(1+; 0) → (2+2 ; 0) 0.167(3) 0.189(3) 12% 18.15 → 16.626 2.52(3)[–2] 2.87(3)[–2] 7.7(1.9)[–2]

(1+; 0) → (2+; 1) 2.596(11) 2.887(13) 10% 18.15 → 16.922 3.26(3)[–2] 4.18(3)[–2] 6.2(7)[–2]

[431] → [431]

(3+; 1) → (2+; 0) 0.386(13) 0.622(22) 38% 19.070 → 3.03 0.87(6) 2.3(2) 10.5

(3+; 0) → (2+; 0) 0.015(1)* 0.030(1)* 19.235 → 3.03 0.15(2) 0.37(4) –

[431] → [44]

(0+; 2) → (1+; 1) 0.793(7) 1.095(8) 28% 27.49 → 17.64 6.7(1) 12.7(2) 21.9(3.9)

(0+3 ; 0) → (1+; 1) 0.553(3)† 0.689(3)† 21% 8.3(3)† 15.5(5)†

(0+3 ; 0) → (1+; 0) 0.073(1)† 0.082(1)† 11% 27.49 → 18.15 0.28(1)† 0.54(1)† –

[422] → [431]

This reduces the mixed estimates 〈Ψ2+
2 (τ)|E2|Ψ2+

V 〉 by

50% and 〈Ψ2+
2 (τ)|E2|Ψ0+

V 〉 by 20%. This correction is
also made for correspondingM1 transitions discussed be-
low, but is relatively much less important.
For the M1 transitions the IA matrix element is eval-

uated using the M1 operator induced by the one-body
current given in Eq. (11), namely

µ
IA =

A∑

i=1

(eN,iLi + µN,i σi) , (21)

while the one-body current at N2LO generates the fol-
lowing additional M1 operator terms [4]

µ
N2LO = −

e

8m3
N

A∑

i=1

[
{
p2i , eN,iLi + µN,i σi

}

+eN,i pi × (σi × pi)

]
, (22)

where pi = −i∇i and Li are the linear momentum and
angular momentum operators of particle i, and {. . . , . . .}
denotes the anticommutator.

The matrix element associated with the contribution
of two-body currents is

〈Jπ
f ,Mf |µMEC

z | Jπ
i ,Mi〉 =

−i lim
q→0

2mN

q
〈Jπ

f ,Mf |jMEC
y (q x̂) | Jπ

i ,Mi〉 , (23)

where the spin-quantization axis and momentum transfer
q are, respectively, along the ẑ and x̂ axes, andMf = Mi.
The various contributions are evaluated for two small val-
ues of q < 0.02 fm−1 and then extrapolated linearly to
the limit q=0. The error due to extrapolation is much
smaller than the statistical error in the Monte Carlo sam-
pling.
In Table III, we report the results for the M1 tran-

sition matrix elements as well as the decay widths ΓM1

between the low-lying excited states. The first column
specifies the initial and final states of pure isospin. The
second column, labeled ‘IA’, shows the IA results ob-
tained with the transition operator of Eq. (21), while the
third column labeled with ‘Total’ shows results obtained
with the complete EM current operator, Eqs. (21–23).
The percentage of the total matrix element given by the
MEC contributions is shown in the fourth column. The
fifth column shows the energies of the physical states,



9

0 1 2 3 4 5
-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

8Be(1+;1→0+;0)

(c)

0 1 2 3 4 5
-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

8Be(1+;0→2+;1)

(b)

0 1 2 3 4 5
-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

ρ M
1(

r)
 (

µ N
 f

m
-3

)

8Be(1+;1→22
+;0)

(a)

0 1 2 3 4 5
-0.03

-0.02

-0.01

0.00

0.01

0.02

    

r (fm)

8Be(1+;0→2+;0)

(f)pL
pS
nS
M1(IA)

0 1 2 3 4  
-0.03

-0.02

-0.01

0.00

0.01

0.02

    

r (fm)

8Be(1+;0→22
+;0)

(e)

0 1 2 3 4  
-0.03

-0.02

-0.01

0.00

0.01

0.02

    

r (fm)

ρ M
1(

r)
 (

µ N
 f

m
-3

)

8Be(1+;1→2+;1)

(d)

FIG. 5: (Color online) One-body (IA) M1 transition density in nuclear magnetons per fm3 for selected M1 transitions (see text
for explanation).

while the last three columns compare the corresponding
widths with the experimental data from Ref. [27].

As observed in Ref. [1], IA matrix elements are found to
have larger statistical fluctuations than the MEC matrix
elements. We separately compute IA and MEC matrix
elements, and then sum the resulting values to obtain the
total numbers.

It is worthwhile noting that M1 transitions involving
the resonant states do not monotonically change as τ in-
creases, a behavior unlike the quadrupole moments, point
proton radii, and energies of these states. This stability
is understood by observing that the (2+;0) and (4+;0) ro-
tational states in 8Be are ∼99% pure 1D2[44] and

1G4[44]
states, so they are quantized with L=2 and L=4, respec-
tively. The orbital contribution to the magnetic moment
is just L/2 nuclear magnetons because only protons con-
tribute, i.e., it is equal to 1.00 n.m. in the (2+;0) state and
2.00 n.m. in the (4+;0) state. Because it is quantized, the
magnetic moment should not vary as the nucleus starts
to break up in the GFMC propagation, unlike the point
proton radius where r is growing as τ increases. Due
to this stability, we can safely propagate M1 matrix ele-
ments involving resonant states to larger values of τ and
average the GFMC result in larger τ intervals.

As for the E2 transitions above, the M1 matrix el-
ements are evaluated between states with well defined
isospin, T = 0 or 1. We denote these matrix elements as
M1TfTi

=
〈
ΨJf ,Tf

||µ||ΨJi,Ti

〉
, with Tf and Ti equal to 0

or 1. For transitions involving isospin-mixing in the ini-
tial or final state, we use expressions similar to Eq.(19) to
generate the physical transition rates. For transitions in
which both the initial and final states are isospin-mixed,
using the definitions given in Eq. (13), we obtain the fol-
lowing expressions for the isospin-mixed M1 transition
matrix elements:

< Ψa
Jf
||M1||Ψa

Ji
> = αJf

αJi
M100 + αJf

βJi
M101

+ βJf
αJi

M110 + βJf
βJi

M111 ,

< Ψb
Jf
||M1||Ψa

Ji
> = βJf

αJi
M100 + βJf

βJi
M101

− αJf
αJi

M110 − αJf
βJi

M111 ,

< Ψa
Jf
||M1||Ψb

Ji
> = αJf

βJi
M100 − αJf

αJi
M101(24)

+ βJf
βJi

M110 − βJf
αJi

M111 ,

< Ψb
Jf
||M1||Ψb

Ji
> = βJf

βJi
M100 − βJf

αJi
M101

− αJf
βJi

M110 + αJf
αJi

M111 .

The isospin-mixed M1 matrix elements are used to eval-
uate the widths as given in Eq. (17) for comparison to
experiment. The IA and total values are reported in the
sixth and seventh columns of Table III, and the exper-
imental widths (where available) are given in the last
column of the table.
Three extra transitions that were calculated only in

VMC are marked by a * or † in Table III; they may af-
fect the physical decay widths through isospin mixing.
The (3+; 0) → (2+; 0) transition marked by a * is tiny
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FIG. 6: (Color online) Two-body (IA) M1 transition density in nuclear magnetons per fm3 for selected M1 transitions (see
text for explanation).

and its isospin mixing has little effect on the transition
from the physical 19.07 MeV state. The corresponding
transition from the 19.235 MeV state is predicted to be
much smaller and has not been reported experimentally.
Perhaps more interesting and important, although specu-
lative, is the isospin mixing of the proposed (0+3 ; 0) state,
discussed at the end of Sec. III, into the physical 27.49
MeV state, as shown in the last two lines in Table III
marked by a †. The line above these gives the result as-
suming the physical state is pure T = 2, and even with
MEC contributions, the theoretical width is noticeably
underpredicted. The first line marked with a † shows
that mixing in the (0+3 ; 0) state, using α0 = 0.19(4), in-
creases the decay width 20%, bringing it closer to exper-
iment. The final line shows the corresponding decay to
the 18.15 MeV state as much smaller and thus unlikely to
be observed. A fourth possible transition in this group,
(0+; 2) → (1+; 0), has ∆T = 2 and vanishes in IA and
also for the MEC considered in this paper.

The M1 transitions shown in Table III can be sorted
into four categories, characterized by having large,
medium, small, and tiny matrix elements. The two
largest matrix elements are between states of the same
spatial symmetry that change isospin: (1+; 1) → (2+2 ; 0)
and (1+; 0) → (2+; 1). All four states involved have pre-
dominant [431] spatial symmetry, so there is maximum
overlap between the w.f.’s. Further, because ∆T = 1,

the spin-magnetization terms of the protons and neutrons
add constructively. This feature is illustrated in the top
left (a) and center (b) panels of Fig. 5, where we plot the
IA contributions to the magnetic transition density from
Eq.(21), evaluated with the starting VMC w.f.’s. In the
figure, the red upward-pointing triangles show the proton
spin contribution, the blue downward-pointing triangles
show the neutron spin contribution, the green diamonds
are the proton orbital term, and the black circles give
the total transition density. In both these transitions,
the spin contributions are large and the proton orbital
piece is very small, resulting in a total matrix element of
∼ 3.0 n.m.

There are also two transitions between states of the
same spatial symmetry where isospin is conserved, i.e.,
∆T = 0, which results in small matrix elements:
(1+; 1) → (2+; 1) and (1+; 0) → (2+2 ; 0). These are il-
lustrated in the bottom left (d) and center (e) panels
of Fig. 5. The magnitudes of the proton spin and neu-
tron spin contributions are very similar to the ∆T = 1
case, but they have opposite signs and cancel against
each other, and there is a more substantial proton orbital
term which further reduces the total, leading to matrix
elements of ∼ 0.2 n.m. The values of the VMC densities
integrated over d3r are given in Table IV for the transi-
tions shown in the upper (a) and lower (d) left panels of
Fig.5.
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TABLE IV: Individual IA and MEC contributions to one
isovector and one isoscalar M1 transition matrix elements in
units of n.m. calculated in VMC, corresponding to the two
left-hand (a,d) panels of Figs. 5 and 6.

(Ji, Ti) → (Jf , Tf ) (1+; 1) → (2+2 ; 0) (1+; 1) → (2+; 1)

IA-pL 0.031(1) −0.224(1)

IA-pS 1.442(7) 1.267(7)

IA-nS 0.988(5) −0.867(5)

IA Total 2.461(13) 0.176(3)

NLO-OPE 0.457(1)

N2LO-RC −0.059(1) −0.001

N3LO-TPE 0.090(1)

N3LO-CT −0.038(1) 0.040(1)

N3LO-∆ 0.160(1)

N3LO-ρπγ −0.008

MEC Total 0.610(2) 0.031(1)

Next, there are five matrix elements which are between
states of different spatial symmetry, and are ∆T = 1
transitions, such as the (1+; 1) → (0+; 0) transition il-
lustrated in the top right (c) panel of Fig. 5. These
transitions have proton and neutron spin contributions
that add coherently, but are small because of the small
overlap of the initial and final w.f.’s. However, they have
larger proton orbital pieces, which also add coherently
and dominate the total, leading to medium-size matrix
elements in the range 0.5–1.0 n.m.

Finally, there are three matrix elements between states
of different spatial symmetry that have ∆T = 0, and
these are tiny. An example is the (1+; 0) → (2+; 0) tran-
sition in the lower right (f) panel of Fig. 5. In these cases
the proton and neutron spin terms are small in magni-
tude and of opposite sign, and the proton orbital piece is
also very small, resulting in matrix elements < 0.03 n.m.

The net contribution of MEC EM currents (where
MEC = Total - IA) is best appreciated by looking at
matrix elements between states with well-defined isospin,
as given in the second to fourth columns of Table III.
The quantity z in the fourth column is the percentage
contribution of the MEC to the total; it is not given if
the MEC is less than the statistical error of the total.
MEC contributions to ∆T = 0 transitions are generally
smaller than ∆T = 1 transitions. This is due to the fact
that the major MEC correction, given by the OPE seag-
ull and pion-in-flight terms at NLO, is purely isovector,
and cannot contribute to ∆T = 0 transitions. There-
fore, only higher order terms, i.e., terms at N2LO and
N3LO, contribute to these matrix elements, for which we
find z ∼ 10%. Transitions induced by the isovector com-
ponent of the M1 operator, that is transitions in which
Ti 6= Tf , are instead characterized by a z factor spanning
the interval ∼ 20 − 40%. In general, the NLO currents
of one-pion range provide ∼ 60− 70% of the total MEC
correction. From Table III, we see that the contribution
given by the MEC currents (with only one exception)

TABLE V: Effect of alternate isospin mixing coefficient α1 on
ΓM1; the notation [−x] = 10−x.

Ei → Ef [MeV] ΓM1[eV]

α1 = 0.21 α1 = 0.31 Expt.

17.64 → 0.00 12.0(3) 11.4(3) 15.0(1.8)

17.64 → 3.03 3.8(2) 3.6(2) 6.7(1.3)

18.15 → 0.00 0.50(2) 1.16(4) 1.9(0.4)

18.15 → 3.03 0.13(2) 0.32(3) 4.3(1.2)

[431] → [44]

17.64 → 16.626 2.97(3)[–2] 3.28(3)[–2] 3.2(3)[–2]

17.64 → 16.922 2.20(5)[–3] 1.39(4)[–2] 1.3(3)[–3]

18.15 → 16.626 2.87(3)[–2] 1.84(2)[–2] 7.7(1.9)[–2]

18.15 → 16.922 4.18(3)[–2] 4.59(3)[–2] 6.2(7)[–2]

[431] → [431]

improves the IA values, bringing the theory into better
agreement with the experimental data.
It is also interesting to examine the transition mag-

netic densities due to MEC. As examples, we discuss
the same six transitions whose IA densities are given in
Fig. 5. The associated two-body magnetic densities ob-
tained from MEC terms are shown in Fig. 6, again as
calculated with the starting VMC w.f.’s. For the upper
(a,b,c) panels, which are isovector transitions, the red
circles labeled ‘NLO-OPE’ show the density due to the
long-ranged OPE currents, while corrections associated
with TPE currents at N3LO are given by the cyan squares
labeled ‘N3LO-TPE’. Contact current contributions, of
both minimal and non-minimal nature, are represented
by the green fort symbols labeled ‘N3LO-CT’, while the
contribution due to the current of one-pion-range, which
has been saturated by the ∆-resonance, is represented
by the magenta triangles labeled ‘N3LO-∆’. In the fig-
ure, we also show with blue stars labeled ‘N2LO-RC’ the
one-body relativistic correction given in Eq. (22). The
black diamonds give the sum of the various contributions.
The tail of the magnetic distribution is dominated by the
long-range OPE contribution, followed by the N3LO-∆
one; at intermediate- to short-range TPE contributions
become important. The integrated values of the individ-
ual MEC contributions to the (1+; 1) → (2+2 ; 0) isovector
transition (upper left (a) panel of Fig. 6) are listed in
Table IV.

Two-body magnetic densities for the isoscalar transi-
tions are shown in the lower (d,e,f) panels of Fig. 6. The
isoscalar component of the M1 operator has a rather dif-
ferent structure in comparison with that of its isovector
component; it has no contributions at NLO, therefore
isoscalar transitions are suppressed with respect to the
isovector ones. The first correction beyond the IA picture
enters at N2LO and is given by the one-body relativis-
tic correction of Eq. (22), shown by the blue stars labeled
with ‘N2LO-RC’. There are two isoscalar contributions at
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N3LO. The first is associated with the tree-level current
of one-pion range represented by the cyan squares labeled
‘N3LO-ρπγ’. This isoscalar tree-level current can, in
principle, be saturated by the ρπγ transition current [20],
however, we fix its associated LEC so as to reproduce
the magnetic moments of the deuteron and the isoscalar
combination of the trinucleon magnetic moments, as ex-
plained in Sec. II. The second is the contact current at
N3LO, shown by the green fort symbols labeled ‘N3LO-
CT’, and these, in fact, dominate the total isoscalar two-
body MEC contribution shown by the black diamonds.
The integrated values for the (1+; 1) → (2+; 1) transition
(lower left (d) panel of Fig. 6) are also given in Table IV.

V. DISCUSSION

The spatial symmetry-conserving M1 transitions are
between the isospin-mixed 2+ and 1+ doublets, so the
comparison with experimental widths requires both the
matrix elements between isospin-pure states and the αJ

and βJ parameters of Eqs. (13,14) as input. We con-
sider the α2 and β2 to be well-determined by the Γα

measurements for the 2+ doublet. However, the α1 and
β1 were first estimated by Barker [29] by looking at the
ratio of the ΓM1’s for the 1+ doublet and comparing to
shell-model calculations. Instead, we could use our more
sophisticated calculations to determine the best isospin-
mixing parameters.
If we minimize the χ2 with respect to experiment for

the four spatial symmetry-conserving transitions, i.e.,
those given in the third block of Table III, we find α1 =
0.31(4), compared to the “experimental” value of 0.21(3)
used above in Table III and discussed in Ref. [11]. The
predicted widths for these two isospin-mixing parame-
ters are compared in Table V, along with the four other
symmetry-changing transitions from the 1+ doublet to
the ground or first excited state; the χ2 comparison with
experiment for these cases is also improved. However,
this alternate value for α1 implies a significantly larger
IM matrix element H01 = −150(18) keV, compared to
the theoretical value for this Hamiltonian of −94(1) keV
calculated in Ref. [11], which was in good agreement with
the earlier empirical value of −103(14) keV.
The results of our QMC calculations are in fair agree-

ment with experiment when the transitions are between
states of the same spatial symmetry. However, when
the spatial symmetry of the initial and final states is
different, we generally underpredict the reported exper-
imental widths. The E2 calculations of Table II give
large matrix elements for the [44] → [44] transitions and
show reasonable agreement with the recently remeasured
(4+; 0) → (2+; 0) width. The calculations underpredict
the [44] → [431] transitions from the isospin-mixed 2+

doublet to the ground state, although here both the-
ory and experiment have large error bars. The predicted
transitions to the first 2+ are smaller, and perhaps not
surprisingly unobserved to date. For the E2 transition

from the first 1+ at 17.64 MeV, we significantly overpre-
dict the width, due to a surprisingly large ∆T = 1 matrix
element between 1D[44] and 1P [431] symmetry compo-
nents. The unobserved transition from the 1+ state at
18.15 MeV is tiny, due to a vanishing ∆T = 0 matrix
element. The larger value of α1 discussed above would
reduce the discrepancy with experiment slightly.

The QMC results for M1 matrix elements are simi-
lar, in that the four symmetry-conserving [431] → [431]
transitions are in fair agreement with experiment, once
MEC contributions are included. The agreement can be
improved further by searching for better isospin-mixing
parameters, αJ and βJ , as discussed above. Seven of
the eight symmetry-changing M1 transitions are under-
predicted by amounts ranging from only 25% to fac-
tors of 2–5. The worst matrix element is the same
(1+; 0) → (2+; 0) transition that also vanishes in E2,
leading to a decay width for the 18.15 MeV state which
is 15–30 times too small.

Even though many of the experimental widths consid-
ered in this work have large errors, the serious discrep-
ancies between some of the experimental and calculated
values highlight the challenge for theory to accurately
predict transition amplitudes between states with domi-
nant admixtures of different spatial symmetry or between
states consisting of linear combinations of components
of different spatial symmetry and occurring with similar
probabilities.

Another possible source of difficulty is that we treat all
the states in 8Be as particle-stable, without a continuum
component. We believe this is a good approximation for
the physically narrow states, but it is more questionable
for the wide states like the first (2+; 0) and (4+; 0). As
noted in Ref. [10], it would be better to treat these lat-
ter states as true α-α scattering states, analagous to the
neutron-α scattering description of 5He [33]. (This could
also be important for the eventual evaluation of weak
decays of 8Li and 8B which both go to the 8Be (2+; 0)
state.) This will have to be addressed in future work.

To our knowledge, Refs. [1, 2] and the present work
are the only ab initio calculations of EM transitions in
A > 4 nuclei that include MEC contributions. We find
that the calculated M1 matrix elements have significant
contributions, typically at the 20-30% level, from two-
body EM current operators, especially from those of one-
pion range. The sizable MEC corrections are found to
almost always improve the IA results for M1 transitions.
This corroborates the importance of many-body effects
in nuclear systems, and indicates that an understanding
of low-energy EM transitions requires contributions from
MEC in combination with a complete treatment of nu-
clear dynamics based on Hamiltonians that include two-
and three-nucleon forces.
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