
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Adaptive multi-resolution 3D Hartree-Fock-Bogoliubov
solver for nuclear structure

J. C. Pei (裴俊琛), G. I. Fann, R. J. Harrison, W. Nazarewicz, Yue Shi (石跃), and S. Thornton
Phys. Rev. C 90, 024317 — Published 21 August 2014

DOI: 10.1103/PhysRevC.90.024317

http://dx.doi.org/10.1103/PhysRevC.90.024317


Adaptive Multi-resolution 3D Hartree-Fock-Bogoliubov Solver for Nuclear Structure

J.C. Pei (裴俊琛),1, 2, 3 G.I. Fann,4 R. J. Harrison,5, 6 W. Nazarewicz,2, 7, 8 Yue Shi (石跃),2, 3 and S. Thornton5

1State Key Laboratory of Nuclear Physics and Technology,
School of Physics, Peking University, Beijing 100871, China

2Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
3Joint Institute for Nuclear Physics and Applications,

Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
4Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

5Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, USA
6Computational Science Center, Brookhaven National Laboratory, Upton, New York 11973, USA

7Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
8Institute of Theoretical Physics, Faculty of Physics,

University of Warsaw, ul. Hoża 69, PL-00681 Warsaw, Poland

Background: Complex many-body systems, such as triaxial and reflection-asymmetric nuclei, weakly-bound
halo states, cluster configurations, nuclear fragments produced in heavy-ion fusion reactions, cold Fermi gases,
and pasta phases in neutron star crust, they are all characterized by large sizes and complex topologies, in which
many geometrical symmetries characteristic of ground-state configurations are broken. A tool of choice to study
such complex forms of matter is an adaptive multi-resolution wavelet analysis. This method has generated much
excitement since it provides a common framework linking many diversified methodologies across different fields,
including signal processing, data compression, harmonic analysis and operator theory, fractals, and quantum field
theory.

Purpose: To describe complex superfluid many-fermion systems, we introduce an adaptive pseudo-spectral
method for solving self-consistent equations of nuclear density functional theory in three dimensions, without
symmetry restrictions.

Methods: The numerical method is based on the multi-resolution and computational harmonic analysis tech-
niques with multiwavelet basis. The application of state-of-the-art in parallel programming techniques include
sophisticated object oriented templates which parses the high-level code into distributed parallel tasks with a
multithread task queue scheduler for each multicore node. The inter-node communications are asynchronous.
The algorithm is variational and is capable of solving coupled complex-geometric systems of equations adaptively,
with functional and boundary constraints, in a finite spatial domain of very large sizes, limited by existing parallel
computer memory. For smooth functions, user defined finite precision is guaranteed.

Results: The new adaptive multi-resolution Hartree-Fock-Bogoliubov (HFB) solver madness-hfb is bench-
marked against a two-dimensional coordinate-space solver hfb-ax based on B-spline technique and three-
dimensional solver hfodd based on the harmonic oscillator basis expansion. Several examples are considered,
including self-consistent HFB problem for spin-polarized trapped cold fermions and Skyrme-Hartree-Fock (+BCS)
problem for triaxial deformed nuclei.

Conclusions: The new madness-hfb framework has many attractive features when applied to nuclear and
atomic problems involving many-particle superfluid systems. Of particular interest are weakly-bound nuclear
configurations close to particle drip lines, strongly elongated and dinuclear configurations such as those present
in fission and heavy ion fusion, and exotic pasta phases that appear in the neutron star crust.

PACS numbers: 21.60.Jz,31.15.E-,03.65.Ge,07.05.Tp,67.85.-d,03.75.Hh

I. INTRODUCTION

The roadmap for nuclear structure theory includes
QCD-derived (or inspired) nuclear interactions, ab-initio
calculations for light and medium nuclei, configuration
interaction approaches for near-magic systems, and den-
sity functional theory and its extensions for heavy, com-
plex nuclei [1]. On the road to the quantitative un-
derstanding of nuclear structure and reactions, high-
performance computing plays an increasingly important
role. As stated in the recent decadal survey of nuclear
physics [2] “High performance computing provides an-
swers to questions that neither experiment nor analytic
theory can address; hence, it becomes a third leg support-

ing the field of nuclear physics.” Largest collaborations
in computational nuclear structure and reactions involve
nuclear theorists, computer scientists, and applied math-
ematicians to break analytic, algorithmic, and computa-
tional barriers [1, 3]. This paper offers an example of such
a joint collaborative effort in the area of nuclear Density
Functional Theory (DFT).

A key element of any DFT framework is a HFB
solver that computes self-consistent solutions of HFB
(or Bogoliubov-de Gennes) equations. Traditionally, the
HFB solvers in nuclear physics are based on the ba-
sis expansion method, usually employing harmonic os-
cillator wave functions [4–7]. These methods are very
efficient but they require huge bases for cases involv-
ing weakly-bound systems and large deformations [8,
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9]. On the other hand, solving HFB equations di-
rectly in coordinate-space can offer very precise re-
sults [10–12]. Unfortunately, current HFB calculations
for non-spherical geometries are computationally chal-
lenging. There exist 2D coordinate-space HFB solvers,
based on B-splines, which have provided precise de-
scriptions of describing weakly bound nuclei and large
deformations[12, 13]. However, the extension from 2D
to fully 3D HFB calculations adds at least three orders
of computational complexities (for some recent develop-
ments, see Refs. [14–16]).

Similar to Fourier analysis, wavelet analysis deals with
expansion of functions in terms of basis functions. Un-
like Fourier analysis, wavelet analysis expands functions
not in terms of trigonometric functions but in terms of
wavelets, which are generated by translations and di-
lations of a fixed function, called the mother wavelet.
The wavelets obtained in this way have special scaling
properties. They are localized in time and frequencies,
permitting more precise local connection between their
coefficients and the function being represented. These
estimates allow greater numerical stability in reconstruc-
tion and manipulation with controlled precision and spar-
sity. For example, the JPEG2000 compression algorithms
were built using wavelets. The decoding could be accom-
plished in multiple ways and enabled scalable compres-
sion with different resolution representations. By trun-
cating the data stream early, a lower resolution image
representation is obtained.

Multiwavelets consist of a set of wavelets. The Alpert
multiwavelets [17] that we use are constructed from Leg-
endre polynomials. They are discontinuous and singu-
lar orthonormal functions which permit better approxi-
mations of singular and discontinuous functions with re-
duced Gibbs effects. Another feature is the availability of
high vanishing moments, which permit the sparse repre-
sentation and application of smooth functions and many
singular operators, in finite precision. Families of multi-
wavelets permit high orders of approximations with fewer
levels of refinement, which is essential for efficient scien-
tific computing.

To this end, we have developed a 3D madness-hfb
solver for HFB equations and Hartree-Fock (HF) equa-
tions, which is a multi-resolution, adaptive spectral ap-
proximations based solver, using a multiwavelet basis,
with a scalable parallel implementation [18]. The new
framework is applied to polarized ultracold Fermi gases
in elongated optical traps as well as triaxial nuclei. In
both cases, we will demonstrate the capability of very
large box calculations which is essential for descriptions
of complex geometries and topologies.

This paper is organized as follows. Section II briefly in-
troduce the multiresolution mathematics, low-separation
rank approximation, and parallel runtime environment.
The iterative algorithm applied in madness-hfb is pre-
sented in Sec. III. In Sec. IV, we benchmark madness-
hfb solutions for cold fermions and nuclei. Finally, con-
clusions are given in Sec. V.

II. MADNESS-HFB FRAMEWORK

Our implementation of madness-hfb uses the Mul-
tiresolution Adaptive Numerical Environment for Scien-
tific Simulations (MADNESS) framework [18]. MAD-
NESS is based on computational harmonic analysis and
nonlinear approximations using Alpert’s multiwavelet
basis [17, 19, 20] to represent functions. Fast parallel
code development and scalable performance have been
possible due to the ease of programming based on object-
oriented abstractions for interprocessor communications,
multithreading and mathematical operations.

A. Mathematics of MADNESS

The mathematics implemented in the MADNESS soft-
ware are based on multiresolution analysis (MRA) [19,
20], nonlinear approximations, and pseudo-spectral tech-
niques. There are two types of techniques used in MAD-
NESS to approximate functions and operators. The first
is the use of multiresolution analysis based on Alpert’s
multiwavelets [17]. The second technique is the use of the
low-separation rank approximations of Green’s functions
based on Gaussian functions [21, 22]. In the following,
we follow the notation and derivations of Ref. [20].

1. Multiresolution analysis with wavelets

The application of MRA separates the behavior of
functions and operators at different length scales in a
systematic expansion. A consequence of the separation
of scales is that each operator and wave function has
a naturally independent adaptive refinement structure,
reflected in terms of significant expansion coefficients of
desired precision. The thresholding and truncation of ex-
pansion coefficients below a user-defined error provides
adaptive blocks of non-trivial coefficients for a pseudo-
spectral expansion. The union of the domains of the
multiwavelets with non-zero coefficients provide an adap-
tive dyadic spatial localization of the relevent contribu-
tions for the corresponding refinement levels. In 1D, the
non-zero sets define an adaptive dyadic refinement and
correspondingly in 3D a pruned octtree type refinement.

The MRA representation used in MADNESS is anal-
ogous to that used in an adaptive hp-SEM (spectral el-
ement method), which employs elements of variable size
h and piecewise-polynomial approximations of degree p.
By suitably refining the mesh through h-refinements (di-
viding the volume elements into smaller pieces) and p-
refinements (increasing the polynomial degree in the ex-
pansion within the elements) one can reach exponential
convergence [23]. In MADNESS, for each function or
operator, the union of the domains of the multiwavelet
basis functions with non-zero coefficients, after threshold-
ing, defines an adaptive and heirarchical h-structure and
the associated multiwavelets form the set of the piecewise
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polynomials up to order p. Thus, there are multiple h−p
refinement structures that are used simultaneously.

The basis of scaling functions in 1D is constructed in
terms of the normalized Legendre polynomials rescaled
to the unit interval (0, 1) and zero elsewhere. For each
level n (defining the volume refinement), the rescaled and
translated basis function is given by:

φnil(x) = 2n/2φi(2
nx− l), (1)

where φi(x) =
√

2i+ 1Pi(2x − 1), with Pi(x) being the
Legendre polynomial on (−1, 1), and is 0 elsewhere for
l = 0, ..., 2n − 1. The basis functions (1) at level n have
domain of width 2−n.

Let Vn = {φnil(x), i = 0, ..., k − 1} be the span of
the subspace at level n. Let W0 = {ψi(x)} denote an
orthonormal basis which spans the difference subspace
V1 − V0. These functions are called multiwavelets. As
with the scaling functions let ψnil(x) and Wn denote the
rescaled and shifted multiwavelets and the correspond-
ing subspace spanned by these functions at level n. The
definition of scaling functions and multiwavelets defines
an ascending sequence of subspaces

V0 ⊂ V1 ⊂ V2... ⊂ Vn (2)

and

Vn = V0 ⊕W0 ⊕ ...⊕Wn−1, (3)

where the ⊕ denotes orthogonal sum. The dimension
of Vi is greater than dimension of the subspace Vi−1;
thus, the basis functions of Vi−1 and Wi−1 can be writ-
ten exactly in terms of the basis functions of Vi. These
heirarchical linear algebraic relations between the bases
defines the 2-scale refinement structure between the co-
efficients at level i − 1 and i, and fundamentally defines
the adaptive structure with a given threshold truncation.

A smooth function f(x) in the subspace Vn can be
approximated in terms of scaling functions as:

f(x) =

2n−1∑
l=0

k−1∑
j=0

snjlφ
n
jl(x). (4)

Represented in the multiwavelet basis, f(x) is

f(x) =

k−1∑
j=0

sjφj(x) +

k−1∑
j=0

n−1∑
m=1

2m−1∑
l=0

dmjlψ
m
jl (x), (5)

with snjl =
∫ 2−n(l+1)

2−nl
f(x)φnjldx and dmjl =∫ 2−m(l+1)

2−ml
f(x)ψmjl dx.

In the discussion above, we described the representa-
tions based on multiwavelets in 1D. In 3D applications,
we use tensor products of 1D multiwavelets as well as
scaling functions in non-standard form. Figure 1 illus-
trates the multiresolution structure of sample wave func-
tions.

For smooth functions the computational methodolo-
gies are guaranteed to approximate the solutions to the
desired user precision ε, with respect to the relative norm,
with the correct number of digits specified by the error.
The estimate is based on truncating the difference coef-
ficients in the multiwavelet expansion,

||dnl ||2 =

√∑
j

|dnjl|2 ≤ ε min(1, 2−nL), (6)

where L is the minimum of the width of the computa-
tional domain.

FIG. 1. Pedagogical illustration of adaptive representations in
MADNESS-HFB. Top: (a) the modulus squared of the single-
neutron wave function corresponding to the single-particle en-
ergy of −5.214 MeV obtained in madness-hf calculations for
110Mo (see Sec. IV B for details), and (b) the correspond-
ing spectral refinement structure. Bottom: (c) the modulus
squared of the single-proton wave function corresponding to
the energy eigenvalue −12.272 MeV in 110Mo and its adaptive
spectral structure (d). Notice that the refinement structure
for the proton wave function is similar to a truncated octtree
type of refinement but the structure for neutron wave function
is more complicated, especially at the finer level, see insets in
panels (b) and (d).

2. Multiresolution

For the one-body Schrödinger equation,

(−∆ + V )ψ = Eψ, (7)

the usual diagonalization approach is also derived and
used. In this case, given a basis ψi, a Hamiltonian matrix
is formed

Hi,j = 〈ψi| −∆ + V |ψj〉; Si,j = 〈ψi|ψj〉, (8)

to form a generalized eigenproblem Hψ = Sψ.
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A generalized eigensolver computes the eigenvalues
and the eigenvectors. The eigenvectors are coefficients
with respect to the multiwavelets basis, and they are
converted back to the spectral representation for further
computation. The Laplacian ∆, the potential V , and
the wave-functions ψi are all in MRA form. The deriva-
tives of multiwavelets are expanded in terms of multi-
wavelets, and the coefficients are tabulated. By linearity,
the derivatives of a function can be computed by matrix-
vector products, or tensor-tensor products in higher di-
mensions, using only the multiwavelet coefficients.

This procedure permits computation of “self-
consistent” solutions of DFT equations.

3. Low-separation rank approximation of Green’s functions

Recall that the (one-body) Schrödinger equation (7)
can be rewritten as a Lippmann-Schwinger equation as

(∆ + E)ψ = V ψ. (9)

There are several advantages of using the integral form
(9) over the differential form (7). Namely, the integral
form provides higher accuracy as high-frequency noise
is attenuated not amplified, builds correct asymptotics,
good condition number, and is potentially more compu-
tationally efficient. In most bases Green’s function rep-
resentation is often dense, and the use of multiresolution
analysis and multiwavelets provides fast algorithms with
sparse structure in finite floating arithmetic with guar-
anteed precision. If no controlled truncations of the mul-
tiwavelet coefficients are performed the representation of
the Green’s function and its application will be dense.

The formal solution of (9) can be written as:

ψ(r) =

∫ ∞
−∞

G(r − r′)V ψ(r′)dr′ = (G ? V ψ), (10)

where the Green’s function G(r) is the Helmholtz kernel
and the symbol ? represents convolution. If the eigen-
value is bound (E < 0), the Green’s function is the
Yukawa potential exp(−kr)/r where k =

√
−E. In gen-

eral, one works with G = (∆ + E + iε)−1 with ε → +0
and specifies how to integrate around the poles.

For bound-states, a low-separation rank (LSR) expan-
sion [21, 22] of the Yukawa potential is used,

e−kr

r
=
∑
l

σle
−τlr2 +O(ε). (11)

The LSR approximation represents Green’s function in
terms of a Gaussian expansion. Such a form reduces
the application of 3D convolutions to an set of uncou-
pled 1D convolutions with the number of terms scaling
logarithmically with respect to the relative precision ε.
Since the convolution operator is linear, tables of precom-
puted transformation matrices with respect to the mul-
tiwavelets enable fast applications of convolutions [24].

The technique described above to solve the Schrödinger
equation can be directly applied to a HF problem, and –
after a minor generalization – to HFB equations.

B. MADNESS parallel runtime environment

A novel parallel execution runtime environment has
been implemented in the MADNESS software library.
MADNESS uses one Message Passing Interface process
to communicate between nodes, and POSIX Threads
within a node to exploit shared memory parallelism with
a global addressable view of memory space in software.
The MADNESS runtime is based on a parallel task-based
computing model with a graph-based scheduler and a
task queue on each node, to enable distributed multi-
threaded computation. A microparser is used to decouple
tasks as much as possible but also to detect data depen-
dencies so as many independent and out-of-order tasks
can execute simultaneously, ensuring correct and mini-
mal number of synchronization and thread termination.

Although the dedicated use of a core for inter-node
communication and a core for handling thread schedul-
ing may be a big sacrifice of computational resources, for
supercomputers with large numbers of cores per node,
we are able to obtain more than 50% of peak core per-
formance for the remaining cores. Most scientific and
engineering codes obtain only about 10% of the peak pro-
cessor performance.

The flexibility of madness-hfb in its design and pro-
gramming style permits the solution of multiphysics
problems with complex geometric structures and bound-
ary conditions in large volumes in the coordinate-space
formulation – limited only by the size of aggregate com-
puter memory. Nuclear fission, exotic topologies in
super- and hyperheavy nuclei, neutron star crusts, and
cold atoms in elongated traps are some examples which
can take advantage of these features.

III. MADNESS-HFB STRATEGY

The general HFB equation for a two-component (e.g.,
spin-up ↑ and spin-down ↓) system of fermions can be
written as [25–28]:[

h↑ − λ↑ ∆
∆∗ −h↓ + λ↓

] [
ui
vi

]
= Ei

[
ui
vi

]
, (12)

where h↑ and h↓ are the Hartree-Fock Hamiltonians
for the spin-up and spin-down components, respectively.
The corresponding chemical potentials are denoted as λ↑
and λ↓, and the pairing potential is ∆.

There are two standard approaches to solve the HFB
equation (12). In the basis expansion method, eigenvec-
tors (ui, vi) are expressed in terms of a single-particle
basis and the self-consistent procedure applies the HFB
Hamiltonian matrix diagonalization. The HFB solvers
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hfbtho [4] (using the cylindrical transformed deformed
harmonic-oscillator basis) and hfodd [7] (using the
Cartesian deformed harmonic-oscillator basis), employed
in this work to benchmark madness-hfb belong to this
class. A second way is to solve the HFB equations in
the coordinate-space by finite difference or finite ele-
ment methods [12, 13, 29] or in the momentum space
using fast Fourier transform [30]. The strategy applied
in madness-hfb, described in Sec. II, combines features
from these two approaches. The original method has
been developed in the context of HF and DFT problems
in computational chemistry [22, 31].

To illustrate the self-consistent procedure, let us con-
sider a case of an unpolarized system (h↑=h↓) with con-
stant effective mass 1/α. The mean-field Hamiltonian
is

h(r) = −α∇
2

2
+ U(r), (13)

where U(r) is the HF potential. As discussed in
Sec. II A 3, it is convenient to rewrite the HFB equa-
tion (12) in a Lippmann-Schwinger form. To this end,
in each step of HFB iterations, we introduce the Green’s
functions G+ and G−:

Gn± =
1

±α∇2

2 + (Es ± Eni )
, (14)

where Eni is the i-th HFB eigenvalue in the n-th iteration
step, and Es is the energy displacement that shifts the
positive-energy HFB eigenvalues so that the associated
Green’s function is properly defined.

To solve the self-consistent HFB eigenproblem, the
HFB wave functions can be updated by as follows,

un+1
i = (G+ ? [(U − λ)uni + ∆vni + Esu

n
i ]) (15a)

vn+1
i = (G− ? [(U − λ)vni −∆uni + Esv

n
i ]) (15b)

Following this strategy, in the following section, we use
madness-hfb to solve HFB problems with advanced lo-
cal energy density functionals for cold fermions and nu-
clei.

IV. BENCHMARK PROBLEMS

In this section, the madness-hfb framework is bench-
marked by solving HFB equations for the trapped uni-
tary Fermi gas and HF-BCS equations for a triaxial nu-
cleus. The madness-hfb solutions for atoms and nuclei
are compared with results of 2D hfb-ax and 3D hfodd
calculations, respectively.

A. HFB solver for unitary Fermi gas

The unitary limit of Fermi gas, is characterized by an
infinite s-wave scattering length. Of particular interest

are superfluid phases in spin-imbalanced systems, such as
the Fulde-Ferrell-Larkin-Ovchinnikov [32, 33] phase that
exhibits oscillated pairing gaps. The ultracold Fermions
at the unitary limit can be described by the superfluid
density functional SLDA [34] and its asymmetric exten-
sion ASLDA for spin-polarized systems [25].

The single-particle Hamiltonian of the ASLDA for
asymmetric systems can be written as [25]:

hσ = − ~2

2m
∇ · (∇ασ(r)) + Uσ(r) + Vext(r), (16)

where σ = (↑, ↓) denotes the spin up and spin down com-
ponents. The local polarization is denoted as x(r) =
ρ↓(r)/ρ↑(r) with x(r) 6 1, where ρ↑(r) and ρ↓(r) are
densities of spin-up and spin-down atoms, respectively.
The total polarization of the system is P = (N↑−N↓)/N .
The quantity ασ(x(r)) is the local effective mass. The
SLDA formalism can be obtained from ASLDA by as-
suming x(r) = 1, resulting in identical effective masses
and Hartree potentials for spin-up and spin-down species.

The cold atoms are trapped in an external potential

Vext(x, y, z) = V0

[
1− e−

ω2(x2+y2+z2/η2)
2V0

]
, (17)

where the trap aspect ratio η denotes the elongation of
the optical trap potential. The equations are normalized
so that ~ = m = ω = 1 (trap units). All other details
pertaining to our SLDA and ASLDA calculations closely
follow Ref. [28].

We first consider an SLDA case of ten particles in a
spherical trap with V0 = 10 and the quasiparticle en-
ergy cutoff Ecut = 6. The calculations were performed
in a 3D box (−L,L)3 with L = 60 With this box and
cutoff, the self-consistent HFB solution involves 296 one-
quasiparticle eigenfunctions. In the present SLDA and
ASLDA benchmark calculations, we adopt wavelet order
of p = 8 with a requested truncation precision of ε = 10−5

(see Eq.6).
The madness-hfb results were benchmarked using the

2D HFB solver hfb-ax. In the hfb-ax calculation,
the maximum mesh size is 0.3, the order of B-splines
is k = 12, and the box size is Rmax = Zmax = 14. The
eigenvalues and occupation numbers of some of the low-
est and highest states from the two codes are compared
in Table I. The agreement is excellent, also for the total
energy and chemical potential.

Next we consider the functional ASLDA, which was
developed to describe polarized Fermi systems. Because
of non-zero spin polarization, the corresponding HFB so-
lutions break time-reversal symmetry. In the first test,
we performed madness-hfb and hfb-ax simulations for
10 particles with a total polarization of P = 0.1 in a
spherical trap. As seen in Fig. 2, the density distribu-
tions for the spin-up and spin-down components agree
very well between madness-hfb and hfb-ax. Some of
the eigenvalues are compared in Table II. Note that the
calculation conditions adopted in Table I and Table II
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TABLE I. Benchmark comparison of madness-hfb and hfb-
ax results for 10 particles in the spherical trap without polar-
ization. Displayed are: one-quasiparticle energies Ei, occu-
pations v2i , chemical potential λ, and total energy Et. Each
one-quasiparticle state is labelled by means of orbital quan-
tum number ` and parity π = (−1)`. Note that every solution
is 2`+1-folded degenerate with respect to the magnetic quan-
tum number. The numbers in parentheses denote powers of
10. The energy is expressed in trap units (~=m=ω=1).

madness-hfb hfb-ax
i ` Ei v2i Ei v2i

1 0 0.90394 0.23240 0.90395 0.23240
2 2 1.06340 0.17779 1.06342 0.17779
3 1 1.12686 0.47471 1.12688 0.47469
4 3 1.92205 2.2491(-2) 1.92206 2.2491(-2)
5 1 2.00891 0.28448 2.00894 0.28449
6 0 2.54095 0.30390 2.54096 0.30393
7 2 2.69803 3.3837(-2) 2.69804 3.3838(-2)
8 0 2.82496 0.60883 2.82500 0.60884
9 4 2.91835 3.8699(-3) 2.91836 3.8698(-3)
10 1 3.44774 2.3162(-2) 3.44775 2.3165(-2)
21 7 5.54071 3.1957(-5) 5.54072 3.1954(-5)
22 2 5.58728 3.6548(-3) 5.58728 3.6550(-3)
23 4 5.75254 1.8024(-3) 5.75255 1.8024(-3)

Et = 18.5641 Et = 18.5639
λ = 2.24917 λ = 2.24916

z-axis (trap units)

de
ns

ity
 (t

ra
p 

un
its

)

ASLDA
N=10, P=0.1

FIG. 2. (Color online) Comparison between density distribu-
tions ρ↓(r) and ρ↑(r) obtained in ASLDA with madness-hfb
and hfb-ax for 10 particles in a spherical trap with polariza-
tion P = 0.1.

are the same. It can been seen that the agreement is
good up to the 4th digit since the calculations of local
polarization x(r) = ρ↓(r)/ρ↑(r) may lose accuracy in
both approaches when both the spin-up and spin-down
densities are very small. In this case, required preci-
sion ALSDA should be significantly greater than that
requested in SLDA calculations.

To demonstrate the capability of madness-hfb for ac-
curate simulation of large systems, we carried out SLDA

TABLE II. Similar as in Table I but for a polarized system in
ASLDA.

madness-hfb hfb-ax
i Ei v2i Ei v2i

1 −0.1333 0.2090 −0.1330 0.2091
2 0.0463 0.1493 0.0468 0.1494
3 0.0786 0.4684 0.0787 0.4682
4 0.8837 0.1740(-1) 0.8838 0.1742(-1)
5 1.0157 0.2749 1.0161 0.2750
6 1.5425 0.2931 1.5425 0.2927
7 1.6944 0.3221(-1) 1.6943 0.3225(-1)
8 1.8346 0.6160 1.8348 0.6161
23 4.6417 0.0155(-1) 4.6416 0.0156(-1)
24 4.8158 0.1689(-5) 4.8157 0.1692(-5)

Et = 19.0436 Et = 19.0443
(λ↑ + λ↓)/2 = 2.1684 (λ↑ + λ↓)/2 = 2.1683
N↑ −N↓ = 1.0034 N↑ −N↓ = 1.00338

z-axis (trap units)

de
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 (t

ra
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un
its

)
SLDA

N=100, P=0.2, η=16

FIG. 3. (Color online) Comparison between density distribu-
tions ρ↑+ρ↓ and ρ↑−ρ↓ obtained in SLDA with madness-hfb
and hfb-ax for 100 particles with P = 0.2 in an elongated
trap with η = 16.

simulations for 100 particles with polarization P = 0.2
in an elongated trap with η = 16. The choice of SLDA
was motivated by the above-mentioned loss accuracy of
ASLDA caused by a numerical error on x(r) at low den-
sities (large distances). The simulation box is (−L,L)3

with L = 120. This computation involves about 2,000
eigenstates and 5,000 cores on Titan supercomputer, and
takes about 4 hours to reach convergence. The total and
polarization densities for the madness-hfb and hfb-ax
simulations are shown in Fig. 3. The 3D pairing poten-
tial is displayed in Fig. 4. The oscillations of the pair-
ing field in a spin-polarized system, characteristic of the
Larkin-Ovchinnikov phase, are clearly seen (see Ref. [28]
for more discussion).
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FIG. 4. (Color online) The pairing potential of 100 particles
with P = 0.2 in an elongated trap with η = 16 computed
with SLDA.

B. Skyrme HF+BCS solver for nuclei

Most of the currently-envisioned applications of
madness-hfb pertain to the nuclear many-body prob-
lem. To this end, the adaptive multiresolution Skyrme-
HFB solver has also been developed. The madness-hfb
approach for nuclei is similar to the SLDA for cold atoms
but much more involved due to the continuum discretiza-
tion, as the atomic nucleus is an open system and associ-
ated boxes are large [35]. Therefore, as an initial step, we
carry out Skyrme HF and Skyrme HF+BCS calculations
and benchmark them with HFODD.

For both HF and HF+BCS calculations, we con-
sider the neutron-rich nucleus 110Mo which is triaxi-
ally deformed in its ground state in some models [36].
We use SkM* [37] Skyrme parametrization, and take
~2/2m=20.73 MeV fm2 for benchmarking purpose.

In pairing calculations for 110Mo, due to the small
neutron separation energy, the positive-energy HF lev-
els are important as they participate in pairing. This
creates a problem when trying to compare BCS or HFB
results based on solvers using coordinate-space frame-
work and harmonic-oscillator expansion as the contin-
uum representation is different in both approaches. In-
deed, coordinate-space solvers madness-hf or madness-
hf+bcs, when applied to large boxes, produce a very
dense unbound single-neutron spectrum [11, 35, 38]. On
the other hand, the single-neutron spectrum of oscillator-
based hfodd is fairly sparse. Therefore, to minimize
the difference between these two codes for a meaning-
ful benchmarking, we switch off neutron pairing and re-
tain only bound 70 single-proton orbits in the BCS phase
space. We adopt mixed density dependent delta interac-
tion [39]. The proton pairing strength is chosen to be
−500 MeV to obtain paired solution. Our madness-hf
and madness-hf+bcs calculations are performed in a
large 3D box (−L,L)3 with L = 50 fm. The wavelet order
is p = 9 with requested truncation precision ε = 10−7.
hfodd calculations are performed with 1140 and 1540
spherical harmonic oscillator states, corresponding to 17
and 19 shells, respectively. The oscillator constant is
0.4975890 fm−1. In MADNESS, the Coulomb potential
can be obtained very effectively by using the separated

form of the Poisson kernel [22].
Since MADNESS calculations are numerically exten-

sive, it is desirable to warm-start the runs with wave
functions (or densities) from the converged hfodd solu-
tion. We have implemented such an interface between
hfodd and madness-hfb.

Table III compares madness-hf and hfodd results for
the triaxial ground-state configuration in 110Mo.

TABLE III. Comparison between results of madness-hf and
hfodd for the triaxial ground state of 110Mo: total binding
energy Et, kinetic energy, Ekin, Coulomb energy Ec, and spin-
orbit energy ESO (all in MeV), mass r.m.s. radius Rrms (in
fm), and mass quadrupole moments Q20 and Q22 (in fm2).
The “0-th iter” column shows madness-hf warm-start num-
bers at the beginning of the iteration process with wave func-
tions and densities imported from converged hfodd results
using 1140 basis states.

hfodd hfodd madness-hf madness-hf
(1140) (1540) (0-th iter) (converged)

Et −921.803 −921.932 −921.808 −922.119
Ekin 1998.074 1998.316 1998.075 1998.846
Ec 251.116 251.128 251.116 251.138
ESO −69.290 −69.273 −69.290 −69.276
Rrms 4.6696 4.6697 4.6696 4.6697
Q20 914.12 913.58 914.12 913.69
|Q22| 367.93 368.48 367.93 368.88

The madness-hf results labeled “0-th iter” are warm-
start initialization numbers, with densities imported from
hfodd(1140). As expected, “0-th iter” and hfodd(1140)
values are extremely close. A very small difference ≈5 eV
on the total energy can be attributed to the potential
(Skyrme) energy. In particular, the density-dependent
term (∼ ργ+2) produces the largest difference. The ex-
cellent agreement between these two calculations indi-
cates that the interface between the two solvers has been
implemented correctly, and that the individual Skyrme
EDF terms have been coded properly in madness-hf.
By increasing the basis size in hfodd to 1540 states, the
total binding energy decreases by ∼130 keV. However,
it is still ∼190 keV above the madness-hf result. This
difference can be traced back to asymptotic behavior of
nucleonic densities obtained in the two solvers. Figure. 5
displays the neutron density profiles along x-, y-, and z-
axis (moving from the origin) computed in hfodd(1140),
hfodd(1540), and madness-hf. When displayed in lin-
ear scale, one can hardly see a difference between hfodd
and madness-hf predictions. However, when inspecting
the density in a logarithmic scale, one can see a charac-
teristic damping at large distances (10-12 fm) in hfodd
due to the finite size of oscillator basis. We recall that
the madness-hf calculations were carried out in a box
extending to 50 fm. It is worth noting, that in a 2D
(axial) case, similar conclusions have been reached when
comparing coordinate-space and HO-basis HFB solvers
[12, 40].

Finally, Table IV displays HF+BCS results. Again,



8

0 2 4 6 8 10 12 14 16 18
x, y, z (fm)

0.02

0.04

0.06

0.08

0.10

y

x

z

0 5 10 15

−7

−6

−5

−4

−3

−2

−1

lo
g 10

(ρ
n)

x, y, z (fm)

ρ n 
(fm

-3
)

HFODD(1140)
HFODD(1540)
MADNESS

y

x

z
110Mo

FIG. 5. (Color online) Neutron density distribution for 110Mo
in madness-hf (solid line), hfodd(1140) (dotted line), and
hfodd(1540) (dashed line) along x-, y-, and z-axis, moving
from the origin. The inset (in a logarithmic scale) illustrates
the tail behavior of density.

the agreement between madness-hfb and hfodd is ex-
cellent, with the total binding energy in madness-hfb
being ∼150 keV below that of hfodd(1540).

TABLE IV. Similar to table III, except that we include BCS
pairing for protons, see text for details.

hfodd hfodd madness-hf madness-hf
(1140) (1540) (0-th iter) (converged)

Et −922.419 −922.549 −922.425 −922.707
Epair −4.981 −4.988 −4.981 −4.781
λp −12.688 −12.692 −12.688 −12.697
Ekin 1998.055 1998.285 1998.055 1998.607
Ec 251.239 251.252 251.239 251.250
ESO −67.251 −67.228 −67.251 −67.220
Rrms 4.6610 4.6611 4.6610 4.6615
Q20 859.64 858.74 859.64 860.91
|Q22| 355.92 356.58 355.92 357.91

V. SUMMARY

In this paper, we introduce nuclear DFT framework
based on the adaptive multi-resolution 3D HFB solver
madness-hfb. The numerical method employs harmonic
analysis techniques with multiwavelet basis; user-defined
finite precision is guaranteed. The solver applies state-
of-the-art in parallel programming techniques that can
take advantage of high performance supercomputers.

Applications have been presented for polarized ul-
tracold atoms in very elongated traps and for triaxial
neutron-rich nuclei. The solver has been benchmarked
against other advanced HFB solvers: a 2D coordinate-
space solver hfb-ax based on B-spline technique and a
3D solver hfodd employing the harmonic oscillator basis
expansion. The advantage of madness-hfb is its ability
to treat large and complex systems without restriction
on symmetries. Examples of future nuclear structure ap-
plications include: weakly bound nuclei with large spa-
tial extensions, heavy-ion fusion, nuclear fission, complex
topologies in super- and hyperheavy nuclei [41–43], and
pasta phases in the inner crust of neutron stars [44–47].
Future atomic applications of madness-hfb include de-
scription of large number of fermions (∼ 105) in highly
elongated optical traps (η ∼ 50) [48].
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