
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Recoil-corrected continuum shell model calculations for
^{11}B(p,n)^{11}C, ^{11}B(p,p^{′})^{11}B^{*},

^{12}C(e,e^{′}x)
Dean Halderson

Phys. Rev. C 88, 014610 — Published 19 July 2013
DOI: 10.1103/PhysRevC.88.014610

http://dx.doi.org/10.1103/PhysRevC.88.014610


 1

 Recoil corrected continuum shell model calculations for  
11B (p,n)11C, 11B (p,p')11B*, 12C (e,e'x)  

   
 

Dean Halderson 

Department of Physics, Western Michigan University, Kalamazoo, MI 49008 

 

Background:  The recoil corrected continuum shell model provides coupled-channels 

solutions for bound and unbound wave functions from realistic effective interactions.  

The wave functions are antisymmetric and contain no spurious components since the 

calculations are performed in the center of mass system.  Purpose:  This model has now 

been extended to include 1ћω excitations in the structure of p-shell target (residual) 

nuclei, and hence, allowing 0s-shell knockout processes. Several reactions involving the 

12C compound system are investigated to demonstrate the utility of the model.  Methods:  

The states of 11B and 11C are constructed in the non-spurious 0ћω plus 1ћω model space.  

An interaction, fitted to Cohen and Kurath (8-16) plus Reid Soft Core g-matrix elements, 

is employed.  One nucleon is coupled to these states to create a basis for the bound and 

scattering states for 12C.  Results:  Calculated elastic and inelastic cross sections agree 

well with available data. The calculated transverse response at high momentum transfer is 

lower that that extracted from data.  Although significant, meson exchange currents are 

not sufficient to give agreement with data.  Likewise inclusion of 0s-shell knockout is not 

sufficient to provide agreement.  The high energy octupole resonance appears at low 

momentum transfer and an energy of 106/A1/3.  Conclusions:  The model should provide 

meaningful predictions for states near the proton drip-line via the (p,n) reaction. Coupled 
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channels solutions are necessary for describing 12C(e,e'x) at low momentum transfer. 

Lack of strength at low energy and momentum transfer in optical model calculations of 

12C(e,e'x) is at least partly due to the omission of giant resonances. Data for  

(π+,π+'p)/ (π-–,π–'p)  could verify this conclusion.  Lack of strength in the transverse 

response may be due to recoil terms which are omitted in most calculations. 

25.30.Fj, 25.40.Cm, 25.40.Ep, 25.40.Kv 

   

I.  INTRODUCTION 

 

Reactions involving one nucleon in the continuum, such as elastic and inelastic nucleon 

scattering, charge exchange, and knockout reactions, are conveniently investigated in 

continuum shell model calculations.  The processes can be analyzed and described in 

conventional shell model terms.  The recoil corrected continuum shell model (RCCSM) 

[1, 2] has the advantage of producing wave functions that are antisymmetric and contain 

no spurious components since the calculations are performed in the center of mass system 

Any realistic effective interaction may be employed as long as it is translationally 

invariant.  Solutions are obtained by the R matrix method3 which has proven to be the 

most physical and convenient reaction theory for solving many-coupled channel systems 

in light and medium mass nuclei.  It is not uncommon to couple thirty or more residual 

states of the target.  In addition to providing scattering states, the formalism yields bound 

states and resonances.  Coupled-channels techniques which involve integrating coupled 

differential equations can become unstable for large numbers of channels, and they can 

miss narrow resonances because the equations must be solved for each energy over the 
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resonance.   Additional advantages of the R matrix procedure may be found in a review 

article by Descouvemont and Baye4. 

 

 The RCCSM has been applied to several nuclei with the core (target or residual) states 

restricted to the p-shell.[5,6]  The structure of the core states has now been extended to 

include the p-shell plus one-particle excitations from the 0s to 0p shell and one-particle 

excitations from the 0p to the sd shell. 

 

The purpose of this article is to pick a system near the middle of the p-shell for which 

numerous data exists and to see how the model results compare to these data.  Certainly 

no nucleus has been investigated more than 12C.  Success in describing reactions for this 

compound system will be a test of the model’s ability to predict other reactions in other 

systems.  The model does very well for elastic and inelastic proton scattering and (p,n) 

reactions.  It should, therefore, make reasonable predictions for systems near the proton 

dripline. The (e,e'p) and (e,e'x) results give reasonable agreement at low momentum 

transfer.  It is shown that, in this momentum transfer region, coupled channels solutions 

are required for agreement with data, and that a true structure model that produces 

resonances is required.  Appearing at an energy of 106/A1/3  MeV is the high energy 

octupole resonance.  The inclusion of 0s shell knockout is less significant, but 

appreciable throughout the 300-500 MeV/c range of momentum transfer.  At high 

momentum transfer the effect of coupled channels and structure become less important.  

However, meson exchange currents (MEC) persist at higher momentum and energy 

transfer, but their inclusion is not sufficient to provide agreement with the extracted 
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transverse response function.  This is in contrast to 4He(e,e'x) where inclusion of the 

MEC contribution provided agreement with data.  A possible explanation for the deficit 

in the transverse response is the omission of recoil terms. 

 

II.  THE MODEL 

 

The input to the RCCSM is an oscillator size parameter, υ0= mω/ħ, (0.32 fm–2 in this 

work) the desired states of the A – 1 core nuclei, and a realistic, translationally invariant 

interaction.  Wave functions and scattering observables are calculated with R matrix 

techniques.  For p-shell nuclei7 the channel wave functions within the channel radius, ac, 

may be written as an expansion in a harmonic oscillator basis, 

                           [ ] ∑∑ 〉+〉⊗=Ψ +

β
β
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α βα B

J

njlJ
AjlnJJjlnJ JdJaf B
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where β runs over all 0ħω, p-shell states with spin JB, and +
jlna  creates a particle in the 

core-nucleon, center of mass coordinate.  The sum over n and l  goes to =+ ln  22 in 

this calculation, where n starts at zero.  The created particles are coupled to chosen non-

spurious 0ћω plus 1ћω states of the A – 1 core.  These states are labeled by 〉AJα|  and 

designate the channels to be coupled. 

 

The wave function with outgoing flux vi with initial conditions i = {αJAMAms} takes the 

form8 
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The index c stands for jJ Aα  with JA and j coupled to JB, and pi is the nucleon 

momentum in the nucleon-nucleus center of mass frame. 

 

The required energies, overlaps, and one-body densities of the p-shell states were 

calculated with the code Nushell9.  The interaction was derived from a fit to Cohen and 

Kurath (8-16)10 (CK) and the Reid Soft Core11 g-matrix elements for 16O.  The matrix 

elements are fit to a sum of Yukawas.  The interaction is shown in the appendix.  It 

contains central, spin-orbit, and tensor components, but no antisymmetric spin-orbit.  A 

comparison with the CK matrix elements is shown in Table I.  The matrix elements show 

a similar trend, but the form of the parameterization, the requirement that the high ћω 

Reid matrix elements be fit, plus the lack of an anti-symmetric spin-orbit component 

means the fit cannot account for the more extreme values of the CK matrix elements.   

 

Table 1.  Comparison of the CK(8-16) matrix elements with those obtained from the 

interaction in this work.  The i, j, m, and n orbits may be 1=p1/2(p), 2=p3/2(p), 

3=p1/2(n), or 4=p3/2(n).  The matrix elements are in MeV. 

i j m n J CK Present
1 1 1 1 0 0.24 0.92
2 1 2 1 1 0.73 0.59
2 1 2 1 2 -1.14 -1.5
2 2 1 1 0 -5.05 -4.4
2 2 2 1 2 -1.74 -1.6
2 2 2 2 0 -3.33 -2.19
2 2 2 2 2 0.09 -0.37
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3 3 3 3 0 0.24 0.43
4 3 4 3 1 0.73 0.16
4 3 4 3 2 -1.14 -1.97
4 4 3 3 0 -5.05 -4.48
4 4 4 3 2 -1.74 -1.63
4 4 4 4 0 -3.33 -2.73
4 4 4 4 2 0.09 -0.82
1 3 1 3 0 0.24 0.43
1 3 1 3 1 -4.29 -1.99
2 3 1 3 1 1.2 1.39
1 4 1 3 1 -1.2 -1.39
2 3 2 3 1 -6.56 -4.44
2 3 2 3 1 0.73 0.16
2 3 2 3 2 -4.06 -3.42
2 3 2 3 2 -1.14 -1.97
2 4 1 3 0 -5.05 -4.48
2 4 1 3 1 1.77 0.6
2 4 2 3 1 3.21 2.15
2 4 1 4 1 -3.21 -2.15
2 4 2 3 2 -1.74 -1.63
2 4 1 4 2 1.74 1.63
2 4 2 4 0 -3.33 -2.73
2 4 2 4 1 -3.44 -1.39
2 4 2 4 2 0.09 -0.82
2 4 2 4 3 -7.27 -3.93

 

Hence, the calculated low-lying spectrum for 11B, shown in Fig. 1, has the 7/2– state out 

of order.  In addition, the 1/2+ state comes too high.  In a conventional bound state shell 

model, this would be corrected by changing the sd single particle energies.  However, in 

the RCCSM the single particle energies are calculated from the interaction.  Therefore, 

the threshold for 0s shell knockout will be about 3 MeV too high. 
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FIG. 1.  The low-lying states of 11B 

 

In Eq. (1) the only positive parity A=11 states that are included are the 1/2+ states since 

this work is mainly interested in the contribution of 0s shell knockout.  The nonspurious 

1/2+ states contain 9/11 of the 0s hole state and this 0s hole state strength is distributed as 
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in Fig. 2. in 11B.  We take the first four states of 11B and 11C, and hence 90% of the 

 

FIG. 2.  Distribution of 0s hole strength in 11B. 

 

available 0s hole strength.  This violates the empirical RCCSM rule that one should 

choose only core states that correspond to states that are experimentally nucleon-bound or 

nearly bound. Following this rule, one should take only two of each.  However, the 

inclusion of four each would represent the maximum contribution of the 0s hole states in 

the energy region of interest.  Inclusion of four instead of two produces some unphysical 

resonances at high excitation energy as will be seen in the following section.  In addition 

to the four 1/2+ states, the negative parity states, −
12/1 , −

22/1 , −
32/1 , −

12/3 , −
22/3 , −

32/3 , 

−
12/5 , −

22/5 , −
32/5 , −

12/7 , and −
22/7  of 11B and 11C were included as 〉AJα|  states. 
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III.  INELASTIC SCATTERING 

 

Data are available for the 11B(p,n)11C and 11B(p,p')11B in a proton energy region suitable 

for investigating rare isotopes by inverse kinematics.  The 11B(p,n)11C cross sections to 

the ground state and first 1/2– state for 30 and 50 MeV proton energies are shown in Fig. 

3. with the data of Ref. [12]  The agreement with the data is good, demonstrating that the 

structure of these states and the interaction are modeling the process well.   

 

 

FIG. 3.  Charge exchange cross sections for 11B to the ground state and first excited 

state of 11C.  The solid lines are from calculations.  The data are from Ref. [10] 

 

In Fig. 4 are shown the 11B(p,p')11B cross sections to the first 1/2–, 5/2–, and 7/2– states 

and the second 3/2– state along with the data of Ref. [13].  Again the agreement with data 
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is good for the 1/2–, 5/2–, and 7/2– states showing the structure of these states is well 

modeled, and that the contributing components of the interaction are appropriate.  The 

agreement for the second 3/2– state is less satisfactory, indicating that the state may have 

higher order structure components.  The four calculated curves agree as well or better 

with the data than those of the intermediate coupling model in Ref. [11].    

 

FIG. 4.  Inelastic scattering of protons from 11B.  Solid curves are from RCCSM 

calculations.  Data are from Ref. [11]. 

 

IV.  ELASTIC SCATTERING 
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Elastic proton scattering data are available at 30.3 and 155 MeV.  These results are 

shown in Figs. 5 and 6 with the data of Ref. [14] and [15], respectively.  The agreement 

 

FIG. 5.  Elastic proton scattering from 11B at 30.3 MeV.  Solid line is the RCCSM 

calculation.  Data are from Ref. [12]. 

 

with the 30.3 MeV data is good; in fact, the quality of the agreement is similar to the 

optical model fits in Ref. [12].  The 155 MeV calculation show less agreement with the 

data.  This calculated cross section is surprising insensitive to changes in the interaction 

and the allowed 11B configurations as long as the long range component of the effective 

interaction is fixed at one-pion exchange.  This means a mechanism must be missing 

from the model, and that mechanism is two nucleon knockout.  Therefore, without adding 

absorption into the two-body interaction, one expects the elastic cross section to be over-

predicted for energies above 100 MeV.  However, the qualitative agreement at 155 MeV 
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is not of concern since knockout reactions show less sensitivity to the interaction at high 

energy transfer.  Therefore, the RCCSM is one model that will provide satisfactory 

agreement with many nucleon induced reactions at moderate energies and sufficient 

agreement for intermediate energy reactions. 

 

 

FIG. 6.   Elastic proton scattering from 11B at 155 MeV.  Solid line is the RCCSM 

calculation.  Data are from Ref. [13]. 

 

V.  THE 12C(e,e'x)  REACTION 

 

Many experiments and numerous calculations have been performed for this reaction.[16]  

Fermi-gas calculations were among the first.[17]  These calculations could provide 

reasonable agreement with extracted longitudinal responses at moderate momentum 
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transfer, but at the expense of over predicting the longitudinal response at low momentum 

transfer.  In an attempt to explain the overestimate of the longitudinal response in these 

Fermi-gas calculations, a number of continuum random phase approximation (RPA) 

calculations followed.[18,19,20 ]  The calculation of Ref. [18] improved the longitudinal 

responses, but they were still overestimated, while the transverse responses were too low.  

A number of relativistic calculations followed,[21,22]   some of which included vacuum 

polarization.  An improvement in the longitudinal response was obtained, but calculations 

were limited to the higher momentum transfers.     

 

The difficulty with the RPA calculations is that they tend to be sensitive to the 

interaction, and without proton scattering calculations, it is difficult to judge the 

appropriateness of each interaction.  The calculation in Ref.[23]  took a step toward 

addressing this problem by coupling shell model states to optical model solutions for 

outgoing protons and neutrons.  Calculations were performed with and without distortion.  

Those with distortion provided reasonable longitudinal responses, but underpredicted the 

transverse responses.  A recent 4He(e,e'x) self-consistent continuum RPA calculation also 

found that the transverse responses were too low.[24]  Therefore, a general trend is that 

calculations that reproduce the longitudinal response in the quasi-elastic region, under-

predict the transverse response at high momentum transfer. 

 

It will be helpful to have calculations from a coupled channels model that is successful in 

describing nucleon induced reactions.  We follow Ref. [25] where ħ = c =1.  The incident 

and exit electron momenta are kμ = 0(k ,k) and ,( 0kk ′=′μ k′); the final, free nucleon 
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momentum is pμ = 0( p ,p); the final core momentum is pAμ = AE( ,pA); and the 

momentum transferred to the nucleus is qμ = 0(q ,q) = μμ kk −′ .  For inclusive scattering 

one sums over all possible outgoing channels.  This allows one to write the cross section 

as [8] 

                                               
Ω
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 where  Ωdd
BcJ /σ  is a fictitious cross section calculated with the wave functions in Eq. 

(2) with outgoing flux vc in open channel c.  The equation for Ωdd
BcJ /σ  in the 

laboratory frame can be taken as Eq. (3.46) in Ref. [26].  For exclusive scattering to a 

definite residual nuclear state the cross section is given by  
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where α is the fine structure constant and R = (1 – p0p·pA/p2EA).   

 

Since all nucleon and nucleus angular momentum projections will be summed over, the 

spherical components of the nuclear currents may be written as 
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The continuity equation, qμJμ = 0, is employed to eliminate Jz in favor of (q0/q)ρ.  In a 

nonrelativistic reduction of the current operators we keep only terms of order 1/MN 

yielding 
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Transverse and longitudinal responses for a spin zero initial state are given by 
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The nucleon form factors are taken from the three-pole approximation of Ref. [27]. 

The meson exchange currents (MEC) of Ref. [28] are also calculated, but in the 

approximation that no 0s40p8 components appear in the scattering states wave functions.  

This should be a very good approximation for the energy range considered. 

 

In Fig. 7 are shown the inclusive data of Ref. [29] at Ee = 1500 MeV and θ = 11.95º and in 

Fig. 8 of Ref. [30] at Ee = 480 MeV and θ =36º compared to the calculated results for 

neutron plus proton knockout, both with (dashed line) and without MEC (solid line).  
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Both of these data sets correspond to an average momentum transfer of ~300 MeV/c.  

Due to the large bin size, the data will not show the low-lying resonances.   

 

FIG. 7.  Cross section for 12C(e,e'x).  Solid curve is from calculation with single-

particle operators, Eqs. (10)-(12).  Dashed curve includes meson exchange 

contribution.  Data are from Ref. [29]. 

 

The spike at ω = 100 MeV and apparent weak resonances at higher energy appearing in 

the calculation are due to collective spin excitations built on the four nonphysical 1/2+ 

core states as mentioned above.  Eliminating them from the basis removes the effect.  

However, the resonance at ω = 47 MeV is real, and remains even when all eight 1/2+ core 

states are removed from the basis.  This is the high energy octupole resonance.  Its 

appearance at 106/A1/3 is consistent with the 110/A1/3 extracted from proton scattering on 

40Ca, 116Sn, and 208Pb [31].   It exhausts about one-half of the sum rule.  Of course, an 
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octuple resonance in 12C would have a very large alpha decay width, so such a narrow 

resonance would not show in the data.  However, if its strength is 

 

FIG. 8.  Cross section for 12C(e,e'x).  Solid curve is from calculation with single-

particle operators,Eqs. (10)-(12).  Dashed curve includes meson exchange 

contribution.  Dotted line results from using the 300 MeV/c responses in Fig. 9 that 

were extracted from data.  Data are from Ref. [30]. 

 

spread over a width of 20 to 25 MeV, it would fill in what appears to be missing strength 

in this region.  Such strength would be missing in any quasi-free or optical model 

calculation of this process.   It would be very beneficial to have (π+,π+'p)/ (π-–,π–'p) data 

in this region.  It was shown in Ref. [32] that this reaction can identify regions of giant 

resonances. 
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The transverse and longitudinal responses were extracted from the data in Ref. [30].  

These are shown in Fig. 9 along with the calculations with single-particle operators 

 

FIG. 9.  Longitudinal and transverse responses extracted from the data of Ref. [30].  

Solid lines are responses calculated with single-particle operators of Eq. (10-(12). 

Dashes lines omit contributions from coupled channels.  Dotted lines omit 

contributions from 0s hole components. 

 

shown as solid lines.  The apparent weakness in the low energy shoulder of the calculated 

transverse response at q = 300 MeV/c may not be real.  In the analysis of the data, the 

energy resolution will mix the effect of the resonances and even bound states into 

neighboring energy regions, making the low energy continuum response appear large. 

This result can be seen when the responses extracted from the data are entered into Eq. 
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(5).  The resulting cross section shown as a dotted line in Fig. 8 appears, and it does not 

track the apparent resonance at low energy. 

 

FIG. 10.  Cross section for 12C(e,e'x).  Solid curve is from calculation with single-

particle operators, Eqs. (10)-(12).  Dashed curve includes meson exchange 

contribution.  Dotted line results from using the 400 MeV/c responses in Fig. 9 that 

were extracted from data.  Data are from Ref. [30]. 

 

In Fig. 10 are shown the data of Ref. [30] at Ee = 680 MeV and θ = 36º compared to the 

calculated results both with (dashed line) and without MEC (solid line).  This data set 

corresponds to an average q of ~400 MeV/c.  The position and width of the calculated 

quasi-elastic peak are in agreement with the data, but the peak cross section is now too 

small.   The transverse-longitudinal response analysis shown in Fig. 9 indicates that the 

weakness is in the transverse response; however, the weakness at low energy may again 
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be exaggerated since employing the responses from the data in Eq. (5) leads to a cross 

section that is too large at low energy as shown by the dotted line in Fig. 10.   The 

contribution of MEC, shown as the dashed line in Fig. 10, is too small to provide 

agreement with the data.  A small contribution of the MEC was also found in Ref. [21]. 

This is in contrast to 4He where MEC in the RCCSM gives agreement with the data. 

 

FIG. 11 Cross section for 12C(e,e'x).  Solid curve is from calculation with single-

particle operators, Eqs. (10)-(12).  Dashed curve includes meson exchange 

contribution.   Data are from Ref. [30]. 

 

The cross section in Fig 11 has a mean q of  ~550 Me/c, and here the data of Ref. [30] is 

poorly fit.  The response function analysis for q = 550 MeV/c in Fig 9 again points to the 

transverse response as being the main deficit.  This effect, of the models that fit the 

transverse response at low q under-predicting the transverse response with increasing q, 
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is the prevalent result.  Also, the contribution of the resonances disappears at high 

momentum transfer, leaving the longitudinal response also too small in the low energy 

region.   

 

The contributions to the responses have been dissected in Fig. 9.  The solid lines are the 

single-particle operator contributions.  The dashed lines eliminate the contribution of 

channels that are not in the exit channel.  This means that in Eq. (3) all c′ contributions 

are set to zero unless c = c′.  One can see that a large amount of the longitudinal response 

at q = 300 MeV/c is eliminated.  This demonstrates a significant difficulty with optical 

model calculations of knockout reactions.  In the optical model, elastic cross sections are 

fit by including absorption, which reduces the flux and, hence, the wave function in 

channel c.  In the RCCSM elastic cross sections are fit by removing the flux in channel c 

by sending it to other channels.  But these channels contribute to the knockout process 

and are missing in optical model calculations. The contribution of the coupled channels 

diminishes with increasing q.  Interestingly, the contribution of the high energy quadruple 

resonance almost disappears without the coupled channels, showing that this resonance 

is, indeed, a collective excitation.   

 

The dotted line in Fig. 9 results from eliminating the contribution of the 0s hole state 

component of the wave function.  (They are still in the Hamiltonian; their amplitudes are 

just set to zero in the wave function.)  They contribute over the range of q and have more 

effect than the MEC shown as dashed lines in Fig. 12. 
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FIG. 12.  The transverse responses extracted from the data of Ref. [29].  Solid lines 

are responses calculated with single-particle operators of Eq. (10-(12). Dashes lines 

include meson exchange currents.  Dotted curves result from eliminating 1ћω states 

from the core states. 

 

Also included in Fig. 12 as dotted lines are the transverse responses calculated with only 

p-shell states included in the A = 11 basis.  This allows one to address the effect of 

including higher ћω states in 12C.  In Ref. [33] a marked improvement in the transverse 

response for the 2+(4.44) was obtained by including a 0ћω plus 1ћω basis.  The 

deficiency of the 0ћω space is demonstrated in Fig. 13 where the dashed line is the result 

with the Cohen and Kurath (8-16) interaction [8] as employed in Ref. [33].  Neither the 

nucleon form factor or center-of-mass correction is applied to this calculation.  Shown as 

a dotted line is the equivalent calculation with the interaction in this present work.  This 

demonstrates considerable dependence on the interaction.  However, the peak of the 

response remains shifted to high q as compared to the data of Refs. [34] and [35].  The 

reason for this shift is that no contribution to the convection current can come from a pure 

p-shell calculation.  Only the magnetization current contributes.  Higher ћω excitations 
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are required to produce a convection current contribution, and, as observed in Ref. [33], 

inclusion of the 1 ћω space increased the strength and shifted the peak in better 

 

 

FIG. 13.  Transverse reponse for 12C(2+), 4.44 MeV state.  Dashed line is result for a 

p-shell calculation with Cohen and Kurath (8-16); dotted line is result for p-shell a 

calculation with the interaction in present work; solid line is for full basis with the 

interaction in present work.  Open squares are data of Ref. [33]; cross is datum of 

Ref. [34]. 

 

agreement with the data.  However, the transverse response was still a factor of 2.5 too 

low.  The addition of the 1ћω space was not sufficient to account for the complexity of 

this low-lying collective state.   
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The solid line in Fig. 13 is the result of the basis employed in this present work.  The 

basis includes selected many-ћω excitations from the 0s and 0p-shells due to working in 

the center of mass coordinate.  The results are, however, very similar to those of Ref. 

[33], in that the peak has shifted, but the full strength has not been obtained.  Therefore, 

the higher ћω states improve the transverse response for this bound state, but it is not 

clear that improvement would be found for knockout reactions, since this process seems 

very different.  Knockout at high energy and momentum transfer is primarily a single-

nucleon process, whereas electro-excitation of bound states can involve collective 

motion.  Indeed, if one compares the dotted lines in Fig. 9, where the 0s-hole states were 

included in the A = 11 basis but their contribution set to zero, with the dotted line in Fig 

12, where they were eliminated from the basis entirely, one sees only small differences.  

The primary effect of including the higher ћω excitations in the basis is to allow 0s-shell 

knockout, i.e., providing additional nucleons to hit, and this is not sufficient to account 

for the measured transverse response at high momentum transfer.  A possible explanation 

for the remaining discrepancy follows. 

 

VI.  THE RECOIL TERMS 

 

The above calculations follow the general trend of previous calculations, in that the 

calculated transverse response at the higher momentum transfer is smaller than that 

extracted from data.  This section presents a possible source of the deficit.  This problem 

does not occur in 4He where RCCSM calculations agree well with nearly all electron 

data.[22]  Having the problem occur in the heavier 12C system would lead one to guess 
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that this is a medium modification effect.  However, some crucial recoil terms are 

included in the 4He calculation that are missing in the 12C calculation and missing from 

other calculations in the literature.  The effect of omitting these terms in 4He is similar to 

the effect seen above in 12C, i.e., the calculated transverse response is more suppressed as 

the momentum transfer increases.  The recoil terms are negligible at q ~ 205 MeV/c but 

increase the 180º cross section by a factor of 2.4 at q ~ 380 MeV/c.   

 

To see where the recoil terms arise, one can look at how the matrix elements of the 

single-particle operators are calculated for 12C in this work.  First, CFPs of the 12C p-shell 

states are employed so that all components of the initial and final state wave functions of 

Eq. (1) are written as a sum of oscillators coupled to core states.   

                                       [ ] B

A
BAB

J

njlJ
AjlnJJjlnJ Jg∑ 〉⊗=Ψ

α
α αξφ )(                                       (15) 

The oscillators are a function of the coordinate connecting the center of mass of the core 

and the particle and have oscillator constant ν = ν0(A–1)/A.  Matrix elements of single-

particle operators are taken to be diagonal in the core states and connect the particle 

states.  This would be the same procedure used in optical model calculations.  Next, it is 

instructive to look at the coordinate system for 4He shown in Fig. 14.  The RCCSM 
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creates a particle in coordinate ξ3 as in Eqs. (1) and (15).  

 

FIG.14.  The RCCSM coordinate system for 4He.  

 

The single particle operators in Eqs. (10 )-(12) require coordinates r1, r2, r3, and r4, and 

r1  = 3/4ξ3.  Hence, a first correction is to use r1  = (A–1)/Aξ3 in these equations.  This 

can make up to a 10% effect in 12C for the reactions considered here.  However, the 

single particle operator sums all particles, and coordinates r1, r2, and r3, must also be 

included.  These could be included exactly in the simple 0s3 model of 3H and 3He.  

Comparing of the results of Ref. [36] where the RCCSM wave functions were treated as 

particle-hole wave function, and hence, included only r4, with the results of Ref. [25], 

where all Jacobi coordinates were used, one sees that including the recoil terms causes 

the 180º cross sections (and, hence the transverse response) to increase with increasing 

momentum transfer.  The recoil terms were absolutely necessary for agreement with the 

data.  One could argue that such a recoil effect would be small in the heavier 12C system.  

However, 12C has many more particles to contribute, so the situation is not clear. 
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IV.  CONCLUSION 

 

The RCCSM has been extended to include core states with 1ћω excitations.  This 

extension allows one to include 0s-shell knockout processes.  The model was applied to 

the 11B(p,n)11C and 11B(p,p')11B reactions, and reasonable agreement with available data 

was obtained.  Successful 11B(p,n)11C calculations provide confidence in the model’s 

ability to predict cross sections to proton rich systems.  The calculated elastic proton 

scattering cross section at 30.3 MeV agrees well with the data; however, the calculation 

at 155 MeV gives the appearance that the target size is somewhat too small. 

 

Calculations were performed for 12C(e,e'x) and 12C(e,e'p)11B(g.s.) in the quasi-elastic 

region.  The agreement with measured cross sections was good at low momentum 

transfer.  At high q, the calculated cross sections were smaller than the data, and 

dissection of the cross sections into longitudinal and transverse responses indicated that 

the weakness was in the transverse response.  A possible explanation for this lack of 

strength is the neglect of recoil terms.  Elimination of the contribution of coupled 

channels reduces the longitudinal response by 23% at q = 300 MeV/c, but only 2% at q = 

550 MeV/c. Appearing at an energy of 106/A1/3 MeV is the high energy octupole 

resonance.   It contributes a significant amount of strength to the longitudinal response at 

q = 300 MeV/c.  Such a contribution would be missing from optical model calculations.   
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The inclusion of 0s shell knockout is less significant, but its contribution persists 

throughout the range of momentum transfer.  The contribution of MEC is smaller than 

those calculated for 4He in Ref. [25], and are not sufficient to boost the calculated cross 

section in agreement with the data.  The ability of RCCSM calculations to describe 

12C(e,e'x) and 12C(e,e'p)11B reactions at and below 300 MeV/c indicates that they should 

provide useful predictions for other knockout reactions in this momentum transfer region. 
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APPENDIX 

 

The effective interaction employs the same form and ranges as in Ref.37.  The central 

components are given by ∑
=

=
3

1
)/(

i
ii RrYVV , the spin-orbit components by 

∑
=

=
2

1
)/(

i
ii RrYVV L·S, and the tensor components by ∑

=

=
2

1

2 )/(
i

ii RrYrVV S12, with Y(x) = 

e–x/x.  The coefficients, Vi, are given in Table II. 

 

TABLE II.  Effective interactions strengths, Vi. 

Force Range 

(fm) 

Triplet 

even (MeV)

Triplet 

odd (MeV)

Singlet 

even (MeV)

Singlet 

odd (MeV) 

Central 0.25 21599.80 -1000.00 4954.80 1254.50 
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 0.40 -6342.00 1217.60 -1862.20  452.5 

 1.414 -10.46 0. -10.463 0. 

Spin-orbit 0.25 -1000.00 9999.80   

 0.40 -2998.60 -2592.10   

Tensor 0.40 -1869.20 483.00   

 0.70 59.59 13.62   
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