
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Relation between Wigner energy and proton-neutron
pairing

I. Bentley and S. Frauendorf
Phys. Rev. C 88, 014322 — Published 23 July 2013

DOI: 10.1103/PhysRevC.88.014322

http://dx.doi.org/10.1103/PhysRevC.88.014322


Relation Between Wigner Energy and Proton-Neutron Pairing

I. Bentley1,2 and S. Frauendorf1
1Dept. of Physics, University of Notre Dame, Notre Dame, IN 46556 and

2Dept. of Chemistry and Physics, Saint Mary’s College, Notre Dame, IN 46556
(Dated: June 26, 2013)

The linear term proportional to |N − Z| in the nuclear symmetry energy (Wigner energy) is
obtained in a model that uses isovector pairing on single particle levels from a deformed potential
combined with a ~T 2 interaction. The pairing correlations are calculated by numerical diagonalization
of the pairing Hamiltonian acting on the six or seven levels nearest the N = Z Fermi surface. The
experimental binding energies of nuclei with N ≈ Z are well reproduced. The Wigner energy
emerges as a consequence of restoring isospin symmetry. We have found the Wigner energy to be
insensitive to the presence of moderate isoscalar pair correlations.
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I. INTRODUCTION

The nuclear ground state energy, E(N,Z), as a func-
tion of the proton number (Z) and neutron number (N)
or atomic mass number (A = N + Z) is very well de-
scribed by the celebrated empirical mass formula (see
e.g. [1]):

E(N,Z) = EV +ES+EC+EA+EW+EP+ESHELL. (1)

The various terms have a clear physical meaning. The
volume term, EV = −aVA, describes the constant bind-
ing energy of a nucleon in saturated nuclear matter. The
surface energy, ES = aSA

2/3, accounts for the lack of
neighbors in the surface. The term, EC = aCZ

2/A1/3, is
the electrostatic Coulomb energy. The (a-)symmetry en-
ergy, EA = aA(N−Z)2/A, consists of two approximately
equal contributions. The “kinetic”part accounts for the
Pauli principle, which requires the nucleons to occupy
higher single particle levels with increasing asymmetry
|N − Z|. The “interaction”part originates from the dif-
ference between the proton-proton, neutron-neutron and
proton-neutron interactions. The pairing energy (EP )
describes the energy gain by forming pairs of protons or
neutrons. The shell energy (ESHELL) is a manifestation
of the level bunching around the Fermi level. The term,
EW = aW |N−Z|/A, is called the Wigner energy, because
Wigner [2] gave a first interpretation in terms of his super
multiplet theory. However, its physical origin has been
the subject of a long debate, which has been recently re-
viewed by [3]. Modern mean field approaches reproduce
the ground state energies very well, except the Wigner
energy, which has to be added as an ad-hoc phenomeno-
logical term (see e.g. [4]). This means that the physics
behind the Wigner energy is not taken into account by
present mean field theories.

In this letter we demonstrate that the Wigner energy
is obtained, without introducing any new parameters, by
including the isovector proton-neutron pair correlations
determined by numerical diagonalization of an isorota-
tional invariant pairing Hamiltonian.

Experimentally, the coefficients aA and aW are not
very different. As the ground state isospin (T ) of most

nuclei is equal to their isospin projection (Tz = N−Z
2 ).

The sum of the symmetry and Wigner energies is ap-
proximately proportional to T (T + 1). The T - depen-
dence is suggestive, because the isospin operators obey
the same SU2 algebra as the angular momentum opera-
tors. Spontaneous breaking of the rotational symmetry
by the deformed mean field leads to the appearance of ro-
tational bands. The energies of the rotational levels are
proportional to I(I+1), with I being the angular momen-
tum. The analogy between nuclear spin and isospin led
Frauendorf and Sheikh [5, 6] to suggest that the T (T +1)
dependence of the ground state energy is a manifestation
of an isorotational band.

The band appears because the isovector pair field,
which is a vector, spontaneously breaks rotational sym-
metry in isospace. Glowacz, Satula and Wyss discussed
the analogy of the cranking model in isospace [7, 8]. In
the limit of strong symmetry breaking, simply the isoro-
tational energy T (T + 1)/2Θ is added to the intrinsic
energy of the symmetry breaking mean field, the orienta-
tion of which can be taken such that the proton-neutron
pair field is zero [5, 6]. Afanasjev et al. [9–11] successfully
used this simple limit to interpret the excitation spectra
of nuclei with N ≈ Z.

In a series of papers, Jänecke and coworkers [12] and
earlier work cited therein, [13] and [14], demonstrated
that the global N−Z dependence of the binding energies,
including the Wigner term and the inversion of the T = 0
and T = 1 states in odd-odd N = Z nuclei with A >
40, can be well understood in terms of the competition
between the familiar pair gap ∆ and a symmetry energy
term of the form T (T + 1).

Applying the Mean Field and Random Phase Approx-
imation to an isorotational invariant isovector pairing in-
teraction, Neerg̊ard has reproduced the experimental ob-
servation aA ≈ aW [3, 15, 16]. The virtue of such an
approach is that the Wigner energy appears without in-
troducing any new parameter, because the strength of
the proton-neutron pair correlation is fixed by the isoro-
tational invariance of the isovector pairing Hamiltonian.

However, this approach only works well when suffi-
ciently far from the critical coupling strength for the
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appearance of the isovector pair field. This cannot be
expected to be always the case in the medium mass nu-
clides, where the Wigner energy plays an important role.
In order to avoid these problems, in this paper we treat
the pair correlation into account by numerically diagonal-
izing the isovector pair Hamiltonian within a configura-
tion space spanned by seven single particle levels nearest
the Fermi surface. We demonstrate that the detailed val-
ues of the Wigner energy depend on the level spacing at
the Fermi surface, and that its variations with particle
number can be reproduced using single particle energies
of the Nilsson potential. In addition, we test the robust-
ness of the results with respect to presence of isoscalar
pair correlations.

Section II presents the separation of the Coulomb en-
ergy from experimental total binding energies and de-
scribes how the experimental values of the Wigner en-
ergy, symmetry energy, and even-even odd-odd pair gaps
are derived. The model is presented in section III and its
parameters are fixed in section IV. Section V contains
the results for a pure isovector pair interaction. The
consequences of an additional isoscalar pair interaction
are discussed in section VI. The consequences of using a
small number of single particle states when calculating
pair correlations are discussed in section VII.

II. EXTRACTION OF THE RELEVANT
EXPERIMENTAL DATA

A. Coulomb energy

As a starting point we assume that the isospin mixing
caused by the Coulomb interaction can be neglected. Ref.
[17] estimated the admixture of components with T > Tz
to the ground state to be of the order of 0.9 % for A ∼ 70.
With this assumption, the Coulomb energy can be sepa-
rated from the energy caused by the strong interaction.
Following [12] we subtract the Coulomb energy from the
experimental energies and compare the resulting energies
with our model. Since the mass tables have been revised
meanwhile, a we repeated the extraction of the strong
interaction part of the binding energies.

The expression for the Coulomb energy given in Ref.
[18] is adopted:

EC =
3

5

q2

4πε0r0

Z2

A1/3

1 −
5

6

(
dπ

r0A1/3

)2

− 5

(
3

16πZ

)2/3
, (2)

where the two unknowns are the equivalent radius (r0)
and diffuseness (d).

This expression for Coulomb energy begins with the
approximation that the nucleus is a homogeneously
charged sphere. The first correction takes into account
diffuseness of the nuclear surface. The second is the
exchange correction which is necessary because protons
obey the Pauli principle and wave-functions cannot com-
pletely overlap (e.g. [19]).

FIG. 1. (Color on-line) Linear fit to experimental binding
energy differences of mirror nuclei plotted as a function of
Z̄A−1/3. The color indicates the isospin of the pair of mirror
nuclei used.

Using the finite difference approximation evaluated at
an average value of proton number (Z̄), a more useful
expression involving energy differences results:
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For mirror nuclei, Z̄/A = 1/2 the two corrections,
which depend on powers of Z̄/A become constants. Ex-
perimental binding energies for 69 pairs of mirror nu-
clei in the region 20 ≤ A ≤ 100 are found in the 2012
Atomic Mass Evaluation (AME) [20]. The fit shown in
Figure 1 determines the two unknowns r0 = 1.224fm
and d = 0.281fm. The diffuseness is not consistent with
other estimates because other higher order contributions
to the Coulomb energy have been combined [18].

The atomic binding energies used in these calculations
also contain a small contribution accounting for the bind-
ing of the electrons, which has been found to be [21]:

Bel(Z) = 14.4381Z2.39 + 1.555× 10−6Z5.35eV. (4)

Each of the comparisons discussed here involve differ-
ences between neighboring nuclei. For these differences
term contributes at most about 15 keV. Nonetheless these
contributions are taken into account.

Applying the finite difference approximation to the
pairs of mirror nuclei reduces Eqn. (2) to two terms
because Z̄ = A/2. It can be fit with a root mean squared
deviation of 104 keV as shown in Figure 1, with

∆EC
∆Z

= 0.706(±0.007)A2/3−0.876(±0.068)[MeV ], (5)
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which is comparable to previous fits (cf. e.g. [22], [23],
[24]). The A -independent correction is determined by
the radius, which was taken from fit of the slope. The
remaining term depends on the diffuseness, which was
adjusted. The resulting expression for the differences of
the Coulomb energy, in steps of ∆Z = 2, within an isobar
chain was used to calculate the differences between the
strong interaction energies:

ES(Z+1, A)−ES(Z−1, A) = EExp(Z+1, A)−EExp(Z−1, A)

−2

[
0.706(±0.007)

Z

A1/3
− 0.306(±0.024)

Z

A

− 0.539(±0.005)
Z1/3

A1/3

]
[MeV ], (6)

which are needed in the expressions given in the next
section.

The uncertainties of our fit are given in parenthesis.
They are propagated together with the quoted errors of
the experimental binding energies to estimate the total
error of the “experimental”quantities shown in the fol-
lowing figures.

B. Experimental isorotational bands

In accordance with the concept of isorotational bands,
we write the energy of an isobaric chain, with constant
A, in the form:

E(N,Z) = Eint +
T (T +X)

2Θ
, T = |Tz|, (7)

where Eint is the energy of the intrinsic (N = Z) con-
figuration. As discussed in [5, 6], the Bardeen-Cooper-
Schrieffer (BCS) ground state without proton-neutron
pairs is a legitimate intrinsic state. It is a mixture of
only even N and Z, which implies that Tz must be even
if A/2 is even or Tz must be odd if A/2 is odd. Hence,
the ground state isorotational bands of even-even nuclei
are composed of even values of T = Tz if A/2 is even and
odd values of T = Tz if A/2 is odd.

The term 1/2Θ is a combination of the coefficient aS
of the the symmetry energy and a contribution from the
shell energy ESHELL(Z,N), which depends on Tz. Like-
wise, X/Θ is a combination related to the coefficient aW
of the Wigner energy, which also contains a contribution
from ESHELL. We introduce the experimental isorota-
tional frequency

ω(T + 1) =
E(T + 2)− E(T )

2
=
T + 1 +X

Θ
. (8)

The slope and intercept with the ω-axis determine 1/Θ
and X. We take the experimental ground state energies
of the three nuclei with Tz =0, 2, 4 if A/2 is even and
with Tz =1, 3, 5 if A/2 is odd and calculate two points
of ω(T ) be means of Eqn. 8. Note that this is just a
recombination of the experimental ground state energies,

FIG. 2. (Color on-line) The experimental Wigner X, derived
from (9) and (10). The isobaric chains were evaluated using
experimental data from [25] and [20] with the Coulomb con-
tributions removed. The X values from Jänecke et al. have
been included from a comparable Figure in [13]. Open sym-
bols indicate values with at least one binding energy from an
extrapolation. If not visible, the error bars are smaller than
the size of the symbols.

which aims at exposing the Wigner energy. The explicit
expressions for the experimental X are

XE(A) =

6ES(Tz = 0) − 8ES(Tz = 2) + 2ES(Tz = 4)

−ES(Tz = 0) + 2ES(Tz = 2) − ES(Tz = 4)

, (9)

for even values of Tz and

XO(A) =

8ES(Tz = 1) − 12ES(Tz = 3) + 4ES(Tz = 5)

−ES(Tz = 1) + 2ES(Tz = 3) − ES(Tz = 5)

,
(10)

for odd Tz.
Figure 2 shows the experimental values of X, where the

experimental binding energies are taken from the most
recent mass evaluation from [20]. The small error bars
for the lower mass region are primarily caused by the
uncertainty in the spherical Coulomb energy fit. The
large error bars in the A > 80 region are mainly caused
by the error in binding energy of the nucleus nearest to
or at N = Z.

A first determination of X based on the 2003 AME [25]
generally reproduced the features described by Jänecke
et al. including an apparent shift from X ≈ 1 to X ≈ 4
for A > 80. However, one new feature occurred near
A = 92 where X ≈ 2. A new observation is that as
A approaches a doubly magic nucleus, the value of X
appears to decrease then increase.

Jänecke suggested that the A ≈ 80 region, the large
values of X might be caused in part by the substantial
uncertainties in the masses used [13]. This speculation
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appeared to be in agreement with the reevaluation of
X based on the 2012 AME [20], upon which this paper
is based. There are several changes in the A = 80 −
90 region, which come from a combination of new mass
measurements, specifically for (86Mo , and 90Ru) and new
extrapolations (82Zr, 84Mo, 88Ru, and 92Pd) [20]. The
systematic nature of the reduction of the value of X in
the A = 82 − 92 chains is a result of the fact that the
binding energy of the TZ = 0, 1 nuclides has decreased by
approximately 0.5 to 1 MeV [20]. The lowering of these
points leads to smaller values of X.

Further changes of the earlier evaluations result from
new masses at Tz = 5 (22C, 26O, 34Mg, and 38Si) and
N = Z (100Sn) which have changed by a few hundred
keV or more. Elsewhere the difference in X between AME
2003 and 2012, results from the different Coulomb fits for
the two data sets. The results based on the 2012 masses
have an average value of X = 1.64 for 24 ≤ A ≤ 100.

III. THE MODEL

A monopole isovector pairing Hamiltonian is used to
describe the pair correlated ground state,

HV =
∑
k

εkN̂k −GV
∑
kk′,τ

P̂+
k,τ P̂k′,τ + C ~T · ~T , (11)

N̂k = p̂+
k p̂k + p̂+

k̄
p̂k̄ + n̂+

k n̂k + n̂+
k̄
n̂k̄, (12)

P̂+
k,0 =

1√
2

(
n̂+
k p̂

+
k̄

+ p̂+
k n̂

+
k̄

)
, (13)

P̂+
k,−1 = p̂+

k p̂
+
k̄
, and P̂+

k,1 = n̂+
k n̂

+
k̄
, (14)

where p̂+
k and n̂+

k create a proton and a neutron, respec-
tively, on the level k, and k̄ denotes the time reversed
state of k. Identical single particle energies ε are used for
protons and neutrons, which are derived from the Nilsson
potential as described in section IV. This Hamiltonian is
invariant under rotations in isospace, i.e. it conserves
isospin.

The many body problem is solved via matrix diagonal-
ization. The space comprises the single particle configu-
rations that are generated from the lowest configuration
with T = Tz by multiple application of the interaction.
The subsequent applications are carried out by a com-
puter code, which stops when no new configurations are
generated. As the dimension of the configuration space
grows quickly with number of active single particle levels,
it is assumed that the pair correlations are restricted to
the configurations within the set of seven levels centered
about Fermi level εk=N of the N = Z nuclide within the
considered isobaric chain. All levels εk<N−3 are assumed
to be occupied and all levels εk>N+3 to be free. Since
the matrix is constructed by successive application of the
isospin conserving pairing interaction onto the uncorre-
lated ground state, the configuration space contains only
states with T = Tz. The isobaric chains Tz=0, 2, 4 are

studied if A/2 is even or Tz=1, 3, 5 if A/2 is odd. The re-
spective dimensions are 3647, 1890, 210 or 3647, 1001, 70.
In the case of odd-odd N = Z nuclei, the lowest T = 1
energy is equal to the energy of the T = Tz = 1 isobar.
As a test of the code, we also generated the configura-
tion matrix for the odd-odd nucleus by starting from the
configuration with the odd proton-neutron pair on the
Fermi level in the T = 1 state and diagonalized it. As
it has to be, the two energies agreed. The lowest T = 0
state in odd-odd N = Z nuclei was obtained by gener-
ating the configuration matrix starting from the config-
uration with the odd proton-neutron pair on the Fermi
level in the T = 0 state and diagonalizing it. This is
equivalent with blocking the Fermi level from the corre-
lations because the isovector interaction cannot scatter
the isoscalar pair onto other levels nor scatter isovector
pairs onto the Fermi level.

The diagonalization was carried out disregarding the
levels εk<N−3 and εk>N+3 . To the energies resulting
from the diagonalization the sum of the single particle
energies for all occupied proton and neutron levels below
the seven-level window was added. As discussed in the
next section, this ensures that the shell correction to the
binding energies is properly taken into account.

As suggested by Neerg̊ard [3], the term C ~T · ~T is a sim-
ple way to take into account the isospin dependence of the
single particle levels. The relation between the isospin
dependence of the nuclear potential and the “interac-
tion”part of the symmetry energy has been discussed by
Bohr and Mottelson [19]. It needs to be added, because
we carry out the diagonalization of the pairing Hamil-
tonian for a fixed set of single particle levels along an
isobaric chain. This means that only the “kinetic”part
of the symmetry energy is taken into account. The differ-
ence between the proton and neutron nuclear potentials
generates an orientation in isospace. Hence it must be
included in the isorotational energy. It appears in a nat-
ural way if one carries out “isocranking”about the z-axis,
which is just the standard procedure of fixing 〈N〉 and
〈Z〉 in self-consistent Hartree-Fock-Bogoliubov calcula-
tions.

IV. DETERMINATION OF THE MODEL
PARAMETERS

The single particle energies are calculated by means of
the Micro-Macro method using a Nilsson Hamiltonian as
described in Ref. [26]. For each nucleus the equilibrium
deformation has been calculated. In these calculations
BCS pairing was used with ∆Z = 13.4[MeV ]/A1/2 and
∆N = 12.8[MeV ]/A1/2 as suggested in [27]. Ref. [28]
discusses this procedure of determining the equilibrium
deformation called AutoTAC in more detail. The result-
ing deformations are comparable with those from Ref.
[29]. The single particle energies used in the diagonaliza-
tion of the pairing Hamiltonian are taken as the average
of the proton and neutron energies calculated by the Nils-
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son model at equilibrium deformation.
The use of the averaged energies is justified as follows.

The premise of our model is that isospin is conserved, i.e.
the relative energies of the proton levels and the relative
energies of the neutron levels must be the same. That
is, the proton levels can only be shifted by a constant
energy relative to the neutron levels. The experimental
studies of nuclei belonging to an isospin multiplet shows
that the relative energies of exited states agree with each
other within about 100keV . These Coulomb shifts are
not properly accounted for by the differences between
the proton and neutron single particle energies of the
Nilsson model (or other potentials). For this reason, we
chose to take the average. An overall shift of the proton
levels by a constant energy results in a constant shift of
the average single particle energy, which does not matter,
because we only consider energy differences.

The bunching of the single particle levels generates the
shell effects in the binding energies. In the framework of
the Micro-Macro method the shell correction is the sum
of the single particle energies of all occupied levels minus
the Strutinsky average of this sum. The latter term is a
smooth function of N and Z. For the energy differences
investigated in this paper, it either (nearly) cancels out or
can be considered being incorporated in the CT (T + 1)
term of the model (cf. section V A). Thus adding the
sum of the single particle energies below the seven-level
window will correctly reproduce the shell correction to
the energy differences.

The model contains two parameters, strength of the
isovector pair interaction GV , and the parameter C of
the “symmetry”interaction, which have been determined
by simultaneously by fitting the even-even odd-odd mass
differences and the energy difference between the T = 0
and T = 1 states in the odd-odd nuclei.

As well known from BCS theory, the value of GV has
to be adjusted to the number of levels taken into account.
We adopt the standard procedure to reproduce the ex-
perimental values of the even-odd mass differences, which
scatter around the smooth dependence on the atomic
mass number of:

∆ ≈ 12

A1/2
[MeV ], (15)

for both protons and neutrons (e.g.[27],[18]). Since our
computer code can only handle even-A nuclei, we use the
the mass differences between the even-even and odd-odd
N = Z nuclides derived means of the 3-point formula:

2∆(N,Z) =
BE(N-1,Z-1)-2BE(N,Z)-BE(N+1,Z+1)

2
, (16)

to determine GV (A). Coulomb, surface, volume, and
symmetry terms in the binding energy approximately
cancel out using this difference. The mass differences
have a global dependence on A roughly twice that given
by Eqn. (15) [30]. Eqn. (16) was evaluated using the
binding energies of the even N = Z nuclides and the
binding energies of the T = 0 states of the odd N = Z

FIG. 3. (Color on-line) The even-even odd-odd mass dif-
ference 2∆ obtained from (16) using modified energies from
[20] with the Coulomb energy removed. The solid line shows
the calculations. The purple dashed line is the global fit of
2∆ = 24A−1/2[MeV ]. If not visible, the error bars are smaller
than the size of the symbols.

nuclides. The following fit was adopted:

GV =
13.9

A3/4
[MeV ]. (17)

The values based on experimental binding energies were
compared with the ones obtained from calculated ener-
gies using GV (A) as given by Eqn. (17) and Nilsson levels
corresponding to AutoTAC equilibrium deformation. In
calculating the odd-odd nuclei, the fourth (middle) level
was blocked, because the T = 0 states have two quasi-
particle character with respect to isovector pair corre-
lations. The blocking procedure is described in detail in
[31]. In essence, the blocked level was disregarded in con-
structing the matrix and twice its energy was added after
the diagonalization. Figure 3 compares the experimental
with the calculated values. Overall, there is good agree-
ment. The deviations are likely a result of inaccuracies of
the Nilsson levels. The deformations resulting from the
AutoTAC calculation are often substantially smaller than
those determined experimentally using B(E2) values.

The competition of the first T = 0 and first T = 1
states of odd-odd N = Z was then used to fix the pa-
rameter C. The theoretical energy difference E(T =
1) − E(T = 0) was obtained by a seven-level calcula-
tion for the T = 1 state and for the T = 0 state by
the “blocked”calculation described in the preceding para-
graph. Without the symmetry interaction term, the fully
correlated T = 1 state lies at least 2∆ below the blocked
T = 0 state. However, the inclusion of the symmetry
interaction term (2C is added to the T = 1 state) re-
sults in comparable energies for the two states. With
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FIG. 4. (Color on-line) Energy difference of the first T = 1
from the first T = 0 states in odd-odd N=Z nuclei. The solid
line shows the calculations. Experimental data from NNDC
[32]. The green dashed line indicates where inversion occurs.

increasing A and the levels switch order, which is seen
experimentally [32] (as discussed in [14]).

Requiring the smooth 1/A-dependence of the symme-
try energy, the fit of the calculated differences E(T =
1)− E(T = 0) to the experimental ones gave:

C =
58.9

A
[MeV ]. (18)

As already discussed, odd-odd N = Z nuclei with
A > 40 have a ground state that has T = 1 > Tz = 0.
The inversion of the isospin order has been explained by
Refs. [23] and [30]. The T = 0 state in the odd-odd
nucleus is lifted relative to the T = 0 ground state of the
even-even neighbors, by the two quasi-particle excitation
energy 2∆. The T = 1 state is lifted by the isorotational
energy 1/Θ, which is somewhat smaller than 2∆.

Figure 4 shows that calculations well reproduce energy
difference between the lowest T = 1 and T = 0 states,
which measures to relative strength of the isovector pair
correlation and the isorotational energies. There are
large fluctuations in the theoretical calculations caused
by the uneven level spacings, which are roughly repro-
duced. The deviations are of the same order as the ones
of 2∆ and have the same origin.

The coefficient of the symmetry energy in the liquid
drop model 4aA = 1/2θLD = 100MeV/A. The value of
C = 58.9MeV/A is consistent with the general estimates
[19] that the interaction part of the symmetry energy
amounts to about 50% of its total value.

FIG. 5. (Color on-line) Slope of the isobar energies obtained
from (19) using modified energies from [20] with the Coulomb
energy removed. If not visible, the error bars are smaller than
the size of the symbols. The solid line shows the calculations.

V. RESULTS - PURE ISOVECTOR PAIRING

A. The isorotational moment of inertia

Combining the energy differences as:

1

θ
=
ES(Tz = 0, 1) − 2ES(Tz = 2, 3) + ES(Tz = 4, 5)

4
, (19)

the local slope for both the even and odd chains of Tz was
calculated. It has the meaning of the inverse moment of
inertia of the isorotational sequence. Figure 5 displays a
comparison between experiment and the theoretical cal-
culation of the slope.

The calculated values of 1/θ are systematically some-
what larger than the experimental ones. We believe that
this reflects a fringe effect of our small single particle
space. The number of configurations decreases from 3647
to 1001 and finally to 70 for T = 0, 2, 4 respectively. This
results in a decrease of the pair correlation energy, which
is reflected by an increase of 1/θ. The consequences of
the small number of single particle levels will be discussed
in more detail in Section VII.

B. The Wigner X

Figure 6 demonstrates that the calculations reproduce
well the observed values of X, both the average, which
is somewhat larger than 1, and the pronounced fluctu-
ations. As seen in Figure 2, the X values derived from
the most recent mass tables agree much better with the
calculation than the ones derived by Jänecke at al. [12]
from the 2002 mass tabulations. In the region A ≈ 58,
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FIG. 6. (Color on-line) The Wigner X obtained from (9)
and (10 using modified energies from [20] with the Coulomb
energy removed. If not visible, the error bars are smaller than
the size of the symbols. solid line shows the calculations. The
orange dashed line indicates X = 1.

the X values based on the AutoTAC deformations overes-
timate the amplitude of the oscillation. As shown in the
schematic calculations discussed below, the amplitude of
the fluctuations is largest for strong bunching of levels
that occurs near a doubly magic nucleus. The static Au-
toTAC deformations in this region are mostly zero. The
degeneracy of the spherical levels will be partially lifted
by shape vibrations, which will damp the fluctuations.

There is a tendency that the calculations underesti-
mate X for 74 ≤ A ≤ 92. There are two possible jus-
tifications for the discrepancies seen in this region. The
experimental uncertainties are large in this mass region
and several binding energies are extrapolated. Addition-
ally, the AutoTAC deformations are moderate and fairly
constant, which results in X values close to one. Exper-
imental yrast energies of these nuclei indicate a change
from more vibrational to more rotational behavior as Tz
increases, which should be caused by an increasing defor-
mation.

The fluctuations of the calculated quantities reflect the
irregular level spacings. Figure 7 illustrates the effects on
the observed X caused by changes in level density. The
system with even level spacing is intended to simulate
well deformed nuclei. The gaps in the spectrum simulate
the bunching of levels for nuclei with a nearly spherical
shape. In the strong pairing limit, the isorotational band
structure is restored and X = 1. To approach the limit,
the pair field ∆ must be several times the average level
spacing, such that local fluctuations of the latter are av-
eraged. The interaction strength GV < 1.5MeV is not
strong enough to averaging out fluctuations of X about
1. The same holds for the fluctuations of 2∆ and 1/θ.

FIG. 7. (Color on-line) Wigner X for various level arrange-
ments. For G = 0 and Tz = 0 , the levels 1,2,3 are occupied
and 4,5,6 empty. Configurations with larger Tz are generated
by removing proton pairs and placing neutron pairs accord-
ing to the Pauli Principle. The average spacing of the energy
levels is 1MeV . Note C = 0.

FIG. 8. Linear fits corresponding to energy differences for the
levels shown in Figure 7 without pair correlations. The slope
and intercept are related to 1/θ and X, respectively.

The deviations from the smooth trends can be under-
stood by considering the limit GV = 0, when the energy
is simply the sum of the energies of the occupied levels.
Figure 8 illustrates that the various level distributions
generate different values of X and 1/θ for GV = 0, which
are still apparent in the calculations with realistic GV
values. In particular, the strong up-down of X, which
is seen experimentally around A = 40, 56 and possibly
A = 100, is caused by moving through the respective
shell gaps.
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VI. INFLUENCE OF THE ISOSCALAR
INTERACTION

We have also studied the possible influence of isoscalar
proton-neutron pair correlation on the Wigner X by sup-
plementing the Hamiltonian (11) with the term:

HV+S = HV−GS
∑
kk′

Ŝ+
k Ŝk′ , Ŝ+

k =
1√
2

(
n̂+
k p̂

+
k̄
−p̂+

k n̂
+
k̄

)
,

(20)
where GS is the isoscalar interaction strength. The
isoscalar pair operators create proton-neutron pairs in
states with opposite projection of the angular momen-
tum. The rational for using such an interaction is that
the strong spin-orbit coupling generates this type of de-
generate time reversed states, which are expected to be
correlated. This has been used by Chasman before [33],
and the inclusion of this type of interaction into our
model is straight forward, however it generates many
more configurations. For example, a six level calcula-
tion using the pure isovector Hamiltonian (11) with six
protons and six neutrons has 1001 configurations, while
including the isoscalar contributions results in 1992 con-
figurations. As a result, only six levels could be used for
the isovector plus isoscalar calculations. The dimensions
are 1992, 825, 66 for T=0, 2, 4, respectively.

The calculations were carried out for fixed ratios of
GS/GV = [0, 1

8 ,
1
4 ,

1
2 , 1, 2, 4, 8], using the six Nilsson lev-

els nearest the Fermi surface, which were determined as
described above. The parameters GV (A) and C(A) were
determined as before by fitting the experimental values
of 2∆ and E(T = 1) − E(T = 0). The results are sum-
marized in Figure 9. Note that the GS = 0 calculation
differs from the previously discussed calculations because
the number of levels has changed. This reduction of the
number of levels from seven to six requires a renormal-
ization of GV , which increased by about 5%. The C(A)
values are also renormalized and decreased by about 4%.
The actual fit values used are included in the figure. As a
whole, the results only insignificantly change within the
displayed range of the ratio between the interactions. For
GS > GV /2 it was not possible to simultaneously fit 2∆
and E(T = 1)− E(T = 0).

Figure 10 shows schematic calculations of the four
quantities of interest for six equidistant levels. The value
of C = 1MeV was chosen with the intention to simulate
nuclei near A = 60. As expected, for GS substantially
larger than GV , the even-even odd-odd mass differences
approach zero and become slightly negative. This is the
signature of an isoscalar pair condensate, where even-
even and odd-odd N = Z nuclides merge into a pair-
rotational band [6, 34]. In order to remain within the
experimental band of 2∆, the isovector correlations must
prevail. That is, the stripe of experimental values of 2∆
lies always below the diagonal. Note that the value of 2∆
does not depend on C, because it involves a comparison
of T = 0 states only.

Comparing the four panels in Fig. 10, one notices

that the quantities E(T = 1) − E(T = 0), X and 1/θ
do not change much along a contour of constant 2∆,
as long as one stays within the band of experimental
values delineated by the dashed lines and the interval
0 < GS/GV < 0.5, which is the range of ratios shown
in Figure 9. This helps to explain why the experimental
data could be equally well reproduced within this range.
Hence, the coexistence of a moderate amount of isoscalar
pair correlations is consistent with the data, which how-
ever does not provide evidence for its existence. Large
scale Shell Model Calculations with realistic effective in-
teractions find moderate isoscalar pair correlations coex-
isting with strong of isovector correlations [35, 36].

Our results do not concur with Refs. [37–40] who relate
the Wigner energy to the presence of isoscalar proton-
neutron pair correlations. However, they are consistent
with the findings of Ref. [35], who pointed out that al-
though the Wigner term is related to the T = 0 part of
the residual interaction in shell model calculations this
does not necessarily imply that it is generated by proton-
neutron pair correlations.

VII. FRINGE EFFECTS

The small number of single particle levels among which
the pair correlations are allowed to act causes artifacts
that will be quantified now. As discussed in section V A,
the number of configurations available for pair correla-
tions strongly decreases with T (by a factor of 50) when
the Fermi level approaches the upper single particle level,
because the combinatorial possibilities are reduced. This
results in an artificial reduction of the pair correlations,
which we called the fringe effect. The reduction of the
pair correlation energy increases 1/θ, which is in our view
the reason why this quantity comes out systematically
somewhat too large.

The fringe effect on 1/θ can be estimated on the basis
of Figure 10, which shows calculations for six equidistant
levels. The slope 1/θ increases from 3.00 MeV to 3.32
MeV when GV changes from 0 to a realistic value of 1
MeV , while holding GS = 0. This puts a scale on the
fringe effects, because 1/θ should not change with the
strength of the pair correlations for a sufficiently large
set of equidistant levels. Instead, it should stay equal to
the value without pair correlations. More specifically, it
should be d + 2C, with d = 1MeV being the average
level spacing and C = 1MeV being the strength of the
symmetry interaction for this case. The difference of 0.32
MeV is consistent with the systematic overestimation of
1/θ in Figs. 5 and 9 around A = 80.

The six-level and seven-level calculations give nearly
the same values of 1/θ. This can be seen by comparing
Figs. 5 with 10. Note, in the latter only even T chains
have been evaluated. More quantitatively, the respective
mean values of 1/θ are 3.49 MeV and 3.47 MeV , and the
respective mean square deviations are 0.90 MeV and 0.93
MeV . The contribution of the symmetry interaction to
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FIG. 9. (Color on-line) 2∆, E(T = 1)−E(T = 0), XE , and 1
θ
, using the fixed interaction strength ratios, and listed of GV (A),

and C(A) (both in units of MeV ), compared to experiment. If not visible, the error bars are smaller than the size of the
symbols.

1/θ is equal to 2C. The fact that a smaller C in six-level
calculation gives the same values of 1/θ as the seven-
levels calculation means that the fringe effect must be
larger for six than for seven levels, which is compensated
by the reduction of C. For A = 80 the difference of 2C
between the seven and six level cases is 0.06 MeV . This
increase of 2C compensates a decrease of the fringe effect
in the seven-level calculations by the same amount. This
value is 25% of the 0.32 MeV estimate in the preceding
paragraph.

Using approximately 60% the value for C(A) would
reconcile the discrepancy in 1/θ between experiment and
theory. However it would result in a systematic overesti-
mate of E(T = 1)− E(T = 0). This fringe effect, which
is a limitation of our few-level approach, lead us to use
E(T = 1) − E(T = 0) in the odd-odd N = Z to adjust

the C parameter nuclei, where the effect is weakest, in-
stead of determining it from the experimental slope of
the symmetry energy. The main focus of our work is the
study of the Wigner X, which impacts the nuclei near
N = Z strongest. The studies of Refs. [12] and [30]
demonstrated that the experimental values of 1/θ and
2∆ are consistent with E(T = 1)−E(T = 0) = 2∆−1/θ
on average. We expect that including more single particle
levels into the beyond-mean field description of the pair
correlations will resolve the modest inconsistency. Un-
fortunately, direct diagonalization of the pairing Hamil-
tonian will not be feasible because of the combinatorial
explosion of the dimensions. A shift of the single particle
window to have the same number of levels on both sides
of the Fermi level violates isospin conservation, which is
a crucial ingredient. Clearly one has to employ some
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approximation scheme that ensures good isospin. Work
along this line is on the way.

VIII. CONCLUSIONS

We have demonstrated that a model based on single
particle levels in a deformed potential, isospin conserv-
ing isovector monopole pairing, and a schematic “symme-

try”interaction proportional to ~T 2 reproduces the term
linear in |N − Z| in the nuclear binding energy. The
pairing correlations were treated exactly by numerical
diagonalization in a space of seven single particle lev-
els, which ensured that isospin was conserved. Isospin
invariance requires the coupling constants of the proton-
proton, proton-neutron, and neutron-neutron interaction
to be equal.

The Wigner term appears as a result of breaking
isospin invariance on the mean field level. The deforma-
tion in isospace gives rise to an isorotational band with
energies ∝ T (T + 1). The deformation is caused by the
isovector pair field and the differences between the proton
and neutron nuclear potentials to about equal parts.

The model does not introduce new parameters as com-
pared to standard mean field approaches. The two model
parameters are the pairing strength, which is fixed by the
even-even to odd-odd mass difference, and the strength
of the symmetry interaction, which is determined by the
energy difference between the lowest T = 0 and T = 1
states in odd-odd N = Z nuclei. Using this approach it
is possible to get roughly the correct order (T = 0 below
T = 1 for A < 40 and T = 1 below T = 0 for A > 40).

Merging the symmetry term and the Wigner term
of the binding energy into one expression of the form
T (T +X)/2θ, the values of X are found to scatter
around 1. The limitX = 1 corresponds to a regular isoro-
tational band, which emerges if isospin is strongly bro-
ken by the pair field. Because the realistic pair field has
only moderate strength the bunching of the single par-
ticle levels, resulting from shell structure, causes strong
fluctuations of the Wigner energy which are fairly well
described by the model. The remaining deviations can
be attributed to inaccuracies of the calculated single par-
ticle energies.

A combination of an isorotational invariant effective in-
teraction in the particle-hole channel with isovector pair-
ing interaction is capable of reproducing the Wigner en-
ergy, provided the pairing correlations are treated beyond
the mean field approximation and isospin is conserved.
How to accomplish this for the present standard mean
field approaches remains to be studied. In a future study
we will address this question by comparing our results
with approximations as e.g. isospin projected mean field
solutions.

In addition, we investigated how including a monopole
isoscalar pairing interaction would modify the results. As
long as the the ratio between the isoscalar and isovector
coupling constants remained smaller than 0.5, the exper-

imental values of the Wigner energy and of the T = 0-
T = 1 energy difference in odd-odd N = Z nuclei could
be equally well reproduced after a slight readjustment of
the two model parameters. The results turned out to be
insensitive to moderate isoscalar pair correlation of this
scale and, thus, did not provide any clue about their pos-
sible presence. Ratios of the isoscalar-isovector coupling
constants larger than 0.8 contradict the experimental val-
ues of the even-even odd-mass mass differences.

Supported by the DoE Grant DE-FG02-95ER4093.
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FIG. 10. (Color on-line) Isovector plus isoscalar calculation for equidistant levels. The dotted purple lines indicate the smoothed
trends of 2∆ in Figure 3 around A = 20 and A = 100, respectively, the dotted green line E(T = 1) = E(T = 0), and the dotted
orange line X = 1. The level spacing is 1MeV and C = 1MeV .
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