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The cranked relativistic Hartree-Bogoliubov (CRHB) theory has been applied for a systematic
study of pairing and rotational properties of actinides and light superheavy nuclei. Pairing corre-
lations are taken into account by the Brink-Booker part of finite range Gogny D1S force. For the
first time in the covariant density functional theory (CDFT) framework the pairing properties are

studied via the quantities (such as three-point ∆(3) indicators) related to odd-even mass staggerings.

The investigation of the moments of inertia at low spin and the ∆(3) indicators shows the need for
an attenuation of the strength of the Brink-Booker part of the Gogny D1S force in pairing channel.
The investigation of rotational properties of even-even and odd-mass nuclei at normal deformation,
performed in the density functional theory framework in such a systematic way for the first time,
reveals that in the majority of the cases the experimental data are well described. These include
the evolution of the moments of inertia with spin, band crossings in the A ≥ 242 nuclei, the impact
of the particle in specific orbital on the moments of inertia in odd-mass nuclei. The analysis of
the discrepancies between theory and experiment in the band crossing region of A ≤ 240 nuclei
suggests the stabilization of octupole deformation at high spin, not included in the present calcu-
lations. The evolution of pairing with deformation, which is important for the fission barriers, has
been investigated via the analysis of the moments of inertia in the superdeformed minimum. The
dependence of the results on the CDFT parametrization has been studied by comparing the results
of the calculations obtained with the NL1 and NL3* parametrizations.

PACS numbers: 21.10.-k, 21.10.Pc,21.60.Jz,27.90.+b

I. INTRODUCTION

Starting from the dawn of the 21st century, there is
an increased interest to a detailed spectroscopic study of
the heaviest actinides and light superheavy nuclei. Rota-
tional, single-particle and other properties of these nuclei
were and are studied both in experiment and in theory
(see Refs. [1, 2] and references quoted therein). There is
a hope that detailed spectroscopic information on such
nuclei will allow to better test and constrain theoreti-
cal models so that the location of the island of enhanced
stability of spherical superheavy nuclei can be predicted
with higher level of confidence.

A continuing experimental effort to study rotational
properties of such nuclei is driven in part by the fact
that in odd-mass nuclei they provide an important ad-
ditional fingerprint for the Nilsson configuration assign-
ment for the bandheads on which the rotational struc-
tures are built [3]. The investigation of high spin struc-
tures also provides important information on stability of
nuclei against fission [4]. Among recent surprises is the
observation of rotational band in the Z = 104 256Rf nu-
cleus up to very high spin of I = 20+ [5]; this is the
highest-Z nucleus is which such structures were observed.
In addition, there is a revival of theoretical interest to the
description of such structures. This is illustrated by re-
cent systematic investigations of rotational properties in
heavy actinides and light superheavy nuclei performed
within total routhian surface (TRS) approach [6] and
particle-number conserving method based on a cranked
shell model (PNC+CSM) [7, 8]. These approaches are

based on phenomenological Woods-Saxon and Nilsson
potentials, respectively.
Alternative and more microscopic approaches are

based on non-relativistic and relativistic density func-
tional theories (DFT) [9, 10]. Unfortunately, these ap-
proaches1 were only occasionally used for the descrip-
tion of rotational structures in the pairing regime and
no systematic assesment of their errors and the sources
of these errors are available. It turns out that within
these approaches more efforts were dedicated to the in-
vestigation of superdeformed (SD) rotational bands in
different mass regions (see Refs. [9, 10] and references
quoted therein) than to the study of rotational bands at
normal deformation. However, in contrast with normal-
deformed (ND) bands, neither spin nor parity are known
for absolute majority of the SD bands. The studies
of the ND bands over observable frequency range have
been performed only in a few nuclei within the cranked
Hartree(+Fock)+Bogoliubov [HB or HFB] frameworks
based on DFT. These are 72,74,76Kr [14], 74Rb[15], 76Sr
[16], 80Zr [14] studied in covariant DFT [further CDFT])
as well as 48,50Cr [19], a few even-even Er and Yb nuclei
[17–19], and 240Pu [18] studied in Gogny DFT [further
GDFT]. Somewhat more attention has been paid to ro-
tational structures of actinides within Skyrme DFT [fur-
ther SDFT] [20, 21], but even these investigations are

1 We consider here only the calculations which include approxi-
mate particle number projection since it is needed for a proper
description of rotational properties [11–13].
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away from being systematic.

The situation is even worse in odd-mass nuclei where
only few rotational bands across the nuclear chart have
been studied in the DFT framework so far (see Sect. V
for a detailed overview). However, rotational properties
of one-quasiparticle configurations give an important in-
formation on their underlying structure, thus providing
an extra tool for a configuration assignment. This is es-
pecially important for light superheavy nuclei at the edge
of the region where spectroscopic studies are still feasi-
ble (the nuclei with masses A ∼ 255 and proton number
Z ≥ 102) [3] since alternative methods of configuration
assignment are either unreliable/questionable or cannot
be employed because of the limitations of the experimen-
tal measurements.

Covariant density functional theory [10] is well suited
for the description of rotational structures. It exploits
basic properties of QCD at low energies, in particular
symmetries and the separation of scales [22]. Built on
the Dirac equation, it provides a consistent treatment of
the spin degrees of freedom [22, 23] and spin-orbit split-
tings [24, 25]; the latter has an essential influence on
the underlying shell structure. It also includes the com-
plicated interplay between the large Lorentz scalar and
vector self-energies induced on the QCD level by the in-
medium changes of the scalar and vector quark conden-
sates [23]. Lorentz covariance of CDFT leads to the fact
that time-odd mean fields of this theory are determined
as spatial components of Lorentz vectors and therefore
coupled with the same constants as the time-like compo-
nents [26] which are fitted to ground-state properties of
finite nuclei. This is important for the description of odd-
mass nuclei [26], the excitations with unsaturated spins,
magnetic moments [25], and nuclear rotations [10, 27, 28].
The successes of the CDFT in the description of rotat-
ing nuclei both in paired and unpaired regimes and at
different extremes (superdeformation [see Ref. [10] and
references therein], ultrahigh spins [29] and the limits of
angular momentum in nuclear configurations [10, 30]) are
well documented.

One should note that our understanding of the pairing
properties in the CDFT framework is far from being sat-
isfactory. Although it has been shown in Ref. [31] that
a relativistic bare potential (Bonn potential) reproduces
pairing correlations at the Fermi surface in the CDFT
application to infinite nuclear matter, its mathematical
properties make a numerical solution of the relativistic
Hartree+Bogoliubov (RHB) equations with this poten-
tial in pairing channel extremely difficult task. This
task has not been solved so far. On the other side,
the relativity does not affect pairing significantly [32].
As a consequence, simpler versions of phenomenologi-
cal non-relativistic pairing such as constant gap pairing,
monopole pairing, zero-range δ-pairing (see Ref. [33] and
references quoted therein), separable pairing [34] and the
pairing based on the Brink-Booker part of finite range
Gogny force[13, 35] are used in the CDFT calculations.

In all CDFT applications of the first three types of

pairing the selection of the pairing strength has been
guided either by non-relativistic results (see, for exam-
ple, Refs. [33, 36]) or by the local fits to experimen-
tal/empirical pairing gaps (see, for example, Ref. [37]).
The strengths of separable pairing have been fitted to
the properties of the Brink-Booker parts of finite range
Gogny D1S and D1 forces in nuclear matter [34]. How-
ever, to our knowledge the results of the calculations with
these types of pairing have not been directly confronted
with experimental observables sensitive to pairing such
as the moments of inertia and/or the indicators related
to odd-even mass staggerings (such as three-point ∆(3)

indicators, see Sect. III D below for details). Thus, at
present it is not clear how accurately these types of pair-
ing perform. The global investigations of the pairing in
the CDFT framework similar to those performed in non-
relativistic SDFT framework (see Refs. [38, 39]) are not
available yet.

Somewhat more is known in the CDFT about the prop-
erties of the pairing force based on the Brink-Booker part
of finite range Gogny D1S force via the studies of ro-
tational structures. Available investigations within the
cranked RHB theory with approximate particle number
projection by means of Lipkin-Nogami method (further
CRHB+LN) show that it performs rather well in nuclei
with masses A ≤ 200 [10, 13, 14, 40], but its strength
has to be decreased by approximately 10% in actinides
[1]. On the contrary, available applications of the RHB
theory with pairing force based on the Brink-Booker part
of finite range Gogny D1S force in pairing channel to the
ground state properties across the nuclear chart follow
the prescription of Ref. [35] in which the strength of the
Brink-Booker part is increased by a factor 1.15. This dif-
ference in the selection of the pairing strength definitely
requires the clarification.

To our knowledge, the detailed analysis of pairing in-
dicators (such as the ∆(3) indicators) has not been per-
formed so far in either relativistic mean field+BCS, RHB
or CRHB(+LN) frameworks because of the complexity of
the definition of the ground states in odd-mass nuclei. In
order to define the ground state in odd-mass nucleus,
the binding energies have to be calculated for a number
of one-quasiparticle configurations based on the orbitals
active in the vicinity of the Fermi level and only then the
lowest in energy state is assigned to the ground state.
This non-trivial problem has only been solved first for
few nuclei in Ref. [1] and then in the systematic studies
of actinides and rare-earth nuclei in Ref. [41].

The current manuscript aims on detailed and system-
atic study of pairing properties of actinides in the RHB
and CRHB(+LN) frameworks via simultaneous investi-
gation of the moments of inertia and the ∆(3) indicators.
Such an investigation covers not only normal-deformed
but also superdeformed structures. The rotational struc-
tures in the SD minimum provide only available infor-
mation on the evolution of pairing with deformation in
actinides. This is important for an understanding of
fission barriers which according to Ref. [33] sensitively
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depend on the pairing properties. In addition, the ro-
tational properties of even-even and odd-mass actinides
are studied in a systematic way up to high spin in order
to see the typical accuracy of the description of rota-
tional and band crossing features, the impact of blocked
orbital on rotational properties and the feasibility of the
use of rotational features in configuration assignment of
light odd-mass superheavy nuclei. The systematic anal-
ysis is restricted to reflection symmetric nuclei. As a
consequence, light octupole deformed actinides [83] are
omitted. Based on the results obtained in actinides, the
deformation and rotational properties of superheavy nu-
clei are also studied.
The manuscript is organized as follows. The

CRHB(+LN) theory and its details are discussed in Sec.
II. Section III is devoted to the pairing properties of
actinides. In this section, the pairing strength is de-
fined and the calculated deformation, low-spin rotational
properties and the ∆(3) indicators are compared with ex-
periment. Rotational properties of even-even and odd-
mass nuclei are considered up to high spin in Secs. IV
and V, respectively. Deformation, pairing and rotational
properties of actinide fission isomers are discussed in Sec.
VI. We report the results for deformation and rotational
properties of even-even superheavy nuclei in Sec. VII.
Finally, Sec. VIII summarizes the results of our work.

II. THEORETICAL FORMALISM

The CRHB+LN equations for the fermions in the ro-
tating frame (in one-dimensional cranking approxima-
tion) are given by [13]

(

ĥ′

D − λ′ − ΩxĴx ∆̂

−∆̂∗ −ĥ′ ∗

D + λ′ +ΩxĴx
∗

)

(

U(r)
V (r)

)

k

= E′

k

(

U(r)
V (r)

)

k

, (1)

where

ĥ′

D = ĥD + 4λ2ρ− 2λ2Tr(ρ) , (2)

λ′ = λ1 + 2λ2 , (3)

E′

k = Ek − λ2 . (4)

Here, ĥD is the Dirac Hamiltonian for the nucleon with
mass m; λ1 is defined from the average particle number
constraints for protons and neutrons; ρτ = V ∗

τ V
T
τ is the

density matrix; Uk(r) and Vk(r) are quasiparticle Dirac

spinors; Ek denotes the quasiparticle energies; and Ĵx is
the angular momentum component. The LN method cor-
responds to a restricted variation of λ2〈(∆N)2〉 (see Ref.
[13] for definitions of λ1 and λ2), where λ2 is calculated
self-consistently in each step of the iteration. The form
of the CRHB+LN equations given above corresponds to
the shift of the LN modification into the particle-hole
channel.
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FIG. 1. (Color online) Scaling factors as a function of neu-
tron number for individual nuclei of different isotope chains.
The dotted line corresponds to the average scaling factor fav
for a given parametrization of the CDFT. The results of the
calculations with the NL1 and NL3* parametrizations are pre-
sented.

The Dirac Hamiltonian ĥD contains an attractive
scalar potential S(r)

S(r) = gσσ(r), (5)

a repulsive vector potential V0(r)

V0(r) = gωω0(r) + gρτ3ρ0(r) + e
1− τ3

2
A0(r), (6)

and a magnetic potential V (r)

V (r) = gωω(r) + gρτ3ρ(r) + e
1− τ3

2
A(r). (7)

The last term breaks time-reversal symmetry and induces
currents. In rotating nuclei, the time-reversal symmetry
is broken by the Coriolis field. Without rotation, it is
broken when the time-reversal orbitals are not occupied
pairwise. In the Dirac equation, the space-like compo-
nents of the vector mesons ω(r) and ρ(r) have the same
structure as the space-like component A(r) generated
by the photons. Since A(r) is the vector potential of the
magnetic field, by analogy the effect due to presence of
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the vector field V (r) is called nuclear magnetism [42].
It has considerable influence on the magnetic moments
[43], the moments of inertia [27, 28] and affects the prop-
erties of odd- and odd-odd nuclei [26]. In the present
calculations the spatial components of the vector mesons
are properly taken into account in a fully self-consistent
way. The detailed description of the mesonic degrees of
freedom in the CRHB+LN theory is presented in Ref.
[13].
The CRHB(+LN) equations are solved in the basis of

an anisotropic three-dimensional harmonic oscillator in
Cartesian coordinates. The same basis deformation β0 =
0.3, γ = 0◦ and oscillator frequency ~ω0 = 41A−1/3 MeV
have been used in the calculations. All fermionic and
bosonic states belonging to the shells up to NF = 14 and
NB = 20 are taken into account in the normal-deformed
minimum in the diagonalization of the Dirac equation
and the matrix inversion of the Klein-Gordon equations,
respectively. As follows from detailed analysis of Refs. [1,
41], this truncation of basis provides sufficient accuracy
of the calculations. In order to have similar accuracy in
the superdeformed minimum, NF has been increased to
16 in the calculations.
The calculations are performed as a function of rota-

tional frequency in the frequency range Ωx = 0.01− 0.45
MeV in steps of 0.02 MeV outside the band crossing re-
gions and 0.01 MeV in the band crossing regions and
their vicinities. Note that not always full convergence
is obtained at all frequencies; for these frequencies, no
calculated curve is shown in the figures below. This typ-
ically happens in the regime of extremely week pairing
at high rotational frequencies in the Z = 90− 102 nuclei
(see Figs. 12 and 11 below). Alternatively, no conver-
gence takes place in the band crossing region or above of
some Rf and Sg nuclei (see Figs. 12 and 11 below) most
likely because the solution jumps between two closely ly-
ing in energy minima.
The calculations have been performed with the NL1

[44] and NL3* [45] parametrizations of the RMF La-
grangian. The selection of the parametrizations has been
dictated by the following considerations:

• The accuracy of the description of single-particle

properties. The description of rotating nuclei is
more complicated as compared with the one of
the ground states properties (such as binding
energies, radii etc) of even-even nuclei. This is
because it depends not only on the calculated
deformations of nuclei, but also on the energies
and alignment properties of the single-particle
orbitals. For example, the alignments of proton
or neutron angular momenta in the upbend-
ing/backbending region and whether it proceeds
smoothly or in a abrupt way strongly depend on
the accuracy of the description of the excitation
energies of high-j aligning orbitals with respect of
quasiparticle vacuum [46]. So far, the accuracy
of the description of deformed one-quasiparticle
states has been systematically studied only with

the NL1 and NL3* parametrization in Ref. [41];
this study covers all one-quasiparticle states in
actinide region. It is interesting that the overall
accuracy of the description of the energies of
deformed one-quasiparticle states in Ref. [41] is
slightly better in the NL1 parametrization, which
was fitted 25 years ago mostly to the nuclei at
the β-stability line, than in the recent NL3*
parametrization. This suggests that the inclusion
of extra information on neutron rich nuclei into the
fit of the NL3* parametrization may lead to some
degradation of the description of single-particle
states along the valley of β-stability.

So far the calculated alignment properties of
single-particle orbitals have only been confronted
with experiment in unpaired regime at normal
deformation in the A ∼ 80 [14] region and at
superdeformation in the A ∼ 60 [48] and 150
[47] mass regions. These investigations have been
mostly performed with the NL1 parametrization
which describes well the alignment properties of
the single-particle orbitals.

• The accuracy of the description of the moments

of inertia in unpaired regime. The pairing has
a significant impact on the moments of inertia
which is much stronger than its impact on other
physical observables. As a consequence, it is
very difficult to disentangle pairing and rotational
alignment contributions to the moments of inertia.
Fortunately, the pairing is very weak at high spin,
and, thus, can be neglected there [10, 47, 49]. As
a result, it becomes possible to benchmark the
performance of different CDFT parametrizations
with respect of the description of the moments of
inertia in unpaired regime.

So far such detailed benchmark calculations
across the nuclear chart are only available for the
NL1 parametrization. They include the investiga-
tions of the moments of inertia of superdeformed
bands in the A ∼ 60 [48] and 150 [10, 49] mass
regions and in 108Cd [50]. Moreover, the rotational
properties of smooth terminating bands in the
A ∼ 110 mass region [10], triaxial superdeformed
bands both at ultra-high spin in 158Er [29] and
at moderate/high spin in the A ∼ 170 mass
region [51] have been succesfully studied with this
parametrization. These detailed investigations
showed that the NL1 parametrization provides
very good description of rotational and deforma-
tion properties of studied nuclei which in many
cases is similar but frequently better than the one
obtained with newer parametrizations such as NL3
and NLSH (for later comparison see Refs. [47, 48]).
These results give us strong confidence that the
NL1 parametrization should perform reasonably
well also in actinides.
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Limited benchmark calculations in unpaired regime
are available also for the NL3* parametrization but
only for a few nuclei (58Cu, 143Eu, 109Sb and 74Kr
[45] and 158Er [29]) across nuclear chart. However,
these studies cover different types of bands such as
near-axial and triaxial superdeformed bands and
smoothly terminating bands.

• The accuracy of the description of pairing prop-

erties by the Brink-Booker part of finite range

Gogny D1S force. As discussed in the introduction,
our knowledge of pairing properties of the Brink-
Booker part of Gogny D1S force comes mostly
from the CRHB+LN calculations. One interest-
ing observation, born in the studies of few rota-
tional bands, is the need for an attenuation of this
pairing force in the nobelium region [1]. To valid-
itate this observation, the systematic calculations
of the moments of inertia and the ∆(3) indicators
in actinides have to be confronted with available
systematic studies in lighter nuclei employing the
same CDFT parametrization. Such studies of the
moments of inertia are available only for normal de-
formed proton-rich A ∼ 70 [14] and rare-earth [40]
nuclei and for superdeformed nuclei in the A ∼ 190
region [13]. The later two studies are performed
with the NL1 parametrization, while the former one
with NL3. However, it was verified that the results
for rotational structures in the A ∼ 70 mass region
with the same pairing are similar for the NL1 and
NL3 parametrizations.

Thus, two different parametrizations, namely, NL1,
fitted to the nuclei in the valley of beta-stability, and
NL3*, tailored towards the description of neutron-rich
nuclei, are used in the current study. This selection al-
lows to study the dependence of the results on the CDFT
parametrization. In addition, the use of two parametriza-
tions allows in many cases to circumvent the convergence
problems for specific blocked orbitals in odd-mass nu-
clei which can show up in one parametrization but will
not affect the solution in another parametrization (see
Sect. V for details). For example, the calculations for the
moments of inertia of the π5/2[523] and π3/2[521] rota-
tional bands in 214Am are possible only with the NL1
parametrization, while the ones for the ν9/2[734] bands
in 247Cm and 249Cf only with NL3* (see Figs. 16, 21 and
22 below). Other examples of complementarity of the
calculations with NL1 and NL3* can be found in Sect.
V.
It is clear that the NL3* parametrization is less tested

than the NL1 one in respect of the description of rotating
nuclei. However, it has been successfully applied to the
description of binding energies [45], ground state prop-
erties of deformed nuclei [60], single-particle spectra of
spherical odd-mass nuclei [25], fission barriers [37], giant
resonances [45], and breathing mode [61].
The NL1 and NL3* parametrizations are represen-

tatives of the meson-exchange models with non-linear

meson-nucleon couplings [52]. This type of model can
be supplemented, for example, by isoscalar-isovector cou-
pling as it is done in the FSUGold model [53]. There are
two other classes of covariant density functional models
such as density-dependent meson-exchange [54] (repre-
sented, for example, by the DD-ME2 [55] parametriza-
tion) and density-dependent point-coupling [56, 57] (rep-
resented, for example, by the DD-PC1 [58] and PC-
PK1 [59] parametrizations) models. However, these
parametrizations have not been benchmarked with re-
spect of the description of rotational structures in the
unpaired regime and nothing is known about their ac-
curacy of the description of one-quasiparticle deformed
states in odd-mass nuclei. Thus, they are not employed
in the current study.
Nuclear configurations of deformed odd nuclei (fur-

ther one-quasiparticle [1-qp] configurations) are labeled
by means of the asymptotic quantum number Ω[NnzΛ]
(Nilsson quantum number) of the dominant component
of the wave function of blocked single-particle orbital at
low rotational frequency.

III. PAIRING PROPERTIES

A. Formalism

The pair field ∆̂ in CRHB(+LN) theory is given by

∆̂ ≡ ∆ab =
1

2

∑

cd

V pp
abcdκcd (8)

where the indices a, b, . . . denote quantum numbers
which specify the single-particle states with the space
coordinates r, as well as the Dirac and isospin indices s
and τ . It contains the pairing tensor κ

κ = V ∗UT (9)

and the matrix elements V pp
abcd of the effective interaction

in the particle-particle (pp) channel, for which the Brink-
Booker part of phenomenological non-relativistic Gogny-
type finite range interaction

V pp(1, 2) = f
∑

i=1,2

e−[(r1−r2)/µi]
2

× (Wi +BiP
σ −HiP

τ −MiP
σP τ ) (10)

is used. The clear advantage of such a force is that it
provides an automatic cutoff of high-momentum com-
ponents. The motivation for such an approach to the
description of pairing is given in Ref. [13]. In Eq. (10),
µi, Wi, Bi, Hi and Mi (i = 1, 2) are the parameters
of the force and P σ and P τ are the exchange operators
for the spin and isospin variables, respectively. The D1S
parametrization of the Gogny force [62, 63] is used here.
Note that a scaling factor f is introduced in Eq. (10), the
role of which is discussed in Sect. III B.



6

55

60

65

70

75

80
experiment
CRHB+LN (NL1)
CRHB+LN (NL3*)

136 144 152 160

55

60

65

70

75

80

M
om

en
ts

  o
f 

 in
er

tia
  J

(1
) 
 [

M
eV

-1
]

144 152 160 144 152 160
Neutron number N 

144 152 160

U (Z=92)

Th (Z=90) Pu (Z=94)

Cm (Z=96)

Cf (Z=98)

Fm (Z=100)

No (Z=102)

Rf (Z=104)

FIG. 2. (Color online) Calculated and experimental moments of inertia at low spin. Experimental moments of inertia are
extracted from the energies of the 2+ states. Calculated values are obtained in the CRHB+LN calculations with fav specific
to a given parametrization at the rotational frequency corresponding to experimental energy of the 2+ → 0+ transition.
Experimental data are shown by filled black circles, while calculated values are given by red triangles (the NL1 parametrization)
and green squares (the NL3* parametrization). Theoretical results are shown at Ωx = 0.02 MeV in the cases when experimental
data are not available.

As a measure for the size of the pairing correlations in
Hartree-(Fock)-Bogoliubov calculations, we use the pair-
ing energy

Epairing = −
1

2
Tr(∆κ). (11)

B. The selection of the scaling factor f

In the CRHB+LN framework, the original strength
(scaling factor f = 1.0 in Eq. (10)) of the Brink-Booker
part of the Gogny D1S force provided a good descrip-
tion of the moments of inertia in the A ∼ 75 [14],
A ∼ 160 − 170 [40] and A ∼ 190 [13] mass regions.
However, as discussed in detail in Ref. [1] it produces
pairing correlations in the A ∼ 250 mass region that are
too strong in the CRHB+LN calculations, and, thus, it
has to be attenuated (f < 1.0) in order to reproduce the
observed moments of inertia. The cranked HFB calcula-
tions in the Gogny DFT also show the same problem (see
discussion in Sect. IIIA of Ref. [1]). The need for atten-
uation of the strength of the Brink-Booker part within
the framework of the CRHB+LN theory is not surprising
since its pairing properties were adjusted by fitting only
the odd-even mass differences of the Sn isotopes [62, 63]

which are far away from actinides. In addition, this fit
was done in the framework of the HFB theory completely
based on the Gogny force, while only the Brink-Booker
part of the Gogny force is used in the pairing channel of
the CRHB+LN theory.

In Ref. [1], the scaling factor f of the Brink-Booker
part of finite range Gogny D1S force (see Eq. (10)) has
been chosen to reproduce the experimental kinematic mo-
ment of inertia of the ground state rotational band in
254No at rotational frequency Ωx = 0.15 MeV. For ex-
ample, the value f = 0.893 has been obtained for the
CRHB+LN calculations with the NL1 parametrization
(see Table 1 in Ref. [1]). It provided good description of
the moments of inertia of rotational bands in 252,254No
[1], 250Fm [66], 253No [67], and 255Lr [68].

However, considering more systematic character of the
current investigation the scaling factor f has been de-
fined by the fit to the moments of inertia extracted from
the Iπ = 2+ states of ground state rotational bands in
all even-even actinides for which such experimental data
were available by the end of June, 2012. If not explic-
itly specified the experimental data have been taken from
Refs. [69, 70]; the nuclei used in the fit are shown in Fig. 1.
The advantage of such approach, in which the scaling fac-
tor f is defined at very low frequency Ωx ∼ 0.02 MeV, as



7

0.2

0.24

0.28

0.32

0.36

exp. (direct)
NL1
NL3*
exp. (indirect)

136 144 152 160
0.2

0.24

0.28

0.32β 2- 
de

fo
rm

at
io

n

136 144 152 160 136 144 152 160
Neutron  number  N

136 144 152 160

Th (Z=90)

U (Z=92)

Pu (Z=94)

Cm (Z=96)

Cf (Z=98)

Fm (Z=100)

No (Z=102)

Rf (Z=104)

FIG. 3. (Color online) The calculated (lines) and experimental (circles) quadrupole deformation parameters β2. The experi-
mental values of β2 obtained in the direct measurements [64] are shown by solid circles, while those deduced from the 2+ → 0+

transition energies, with the prescription of Ref. [65], are given by open circles. The results of the calculations with the NL1
and NL3* parametrizations are shown by red dashed and green solid lines, respectively.

compared with the one used in Ref. [1] is twofold. First,
the definition of scaling factor f in Ref. [1] at Ωx = 0.15
MeV is affected by the accuracy of the description of the
alignments of specific single-particle orbitals (in partic-
ular, the ones emerging from proton i13/2 and neutron
j15/2 subshells). This factor affects the definition of f at
Ωx = 0.02 MeV to a much smaller extent. As a result, the
current calculations test predictive power of the model
with respect of rotational response in a more straight-
forward way. Second, such a definition of f allows to
verify whether the fit of pairing strength to the moments
of inertia leads to a consistent description of three-point
indicators ∆(3) (extracted from experimental odd-even
mass staggerings) which are defined at no rotation.
Fig. 1 shows individual scaling factors fi for the nu-

clei used in the fit; these factors exactly reproduce the
moments of inertia extracted from the 2+ states of the
ground state rotational bands. In addition, the average
scaling factor

fav =

K
∑

i=1

fi

K
, (12)

where K is the number of nuclei used in the fit, is shown
by dotted lines. The fav is equal to 0.9147 and 0.899 in
the NL1 and NL3* parametrizations, respectively. Simi-
lar to Ref. [1] these scaling factors only weakly depend on
the CDFT parametrization. For the NL1 parametriza-

tion, the obtained value of fav = 0.9147 is reasonably
close to f = 0.893 obtained for 254No in Ref. [1]. These
average scaling factors fav will be used in systematic cal-
culations of rotational bands in the actinides and super-
heavy elements.

C. Rotational and deformation properties at low

spin.

The kinematic moments of inertia at low spin obtained
with average scaling factors fav are shown in Fig. 2. One
can see that the moments of inertia are described with an
accuracy better than 10%. However, the use of average
scaling factors leaves some unresolved trends as a func-
tion of particle number in both parametrizations. Figs.
1 and 2 show that the pairing has to be slightly weaker
(stronger) in the nuclei with high Z and high N (low Z
and low N) relative to the calculations performed with
fav. Similar deviations from experiment exists at low
spin also in the CRHB+LN calculations in rare-earth re-
gion (see Fig. 1 in Ref. [40]).
Direct experimental information on the deformations

of nuclei from Coulomb excitation and lifetime measure-
ments is quite limited [64]. An alternative method is to
derive a quadrupole moment from the 2+ → 0+ transi-
tion energy by employing the relation given by Grodzins
[71] or by later refinements [65]. The prescription of Ref.
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[65] has an accuracy of about 10%. From the calculated
and experimental charge quadrupole moments Q, the de-
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formation parameters β2 are derived by the relation

Q =

√

16π

5

3

4π
ZR2

0β2, where R0 = 1.2A1/3. (13)

The simple linear expression is used to maintain con-



9

0

0.2

0.4

0.6

0.8

1

exper.
CRHB

144 148 152
0

0.2

0.4

0.6

0.8

N
eu

tr
on

  ∆
(3

)  [
M

eV
]

144 148 152
Neutron  number  N

144 148 152

Z=90 Z=92 Z=94

Z=96 Z=98 Z=100

NL3* parametrization

(a) (b) (c)

(d) (e) (f)

FIG. 7. (Color online) The same as Fig. 5 but for the
NL3* parametrization. Theoretical values have been obtained
within the CRHB framework.

0

0.2

0.4

0.6

0.8

1

1.2

92 96
0

0.2

0.4

0.6

0.8

1

1.2

Pr
ot

on
  ∆

(3
) [M

eV
]

92 96
Proton  number  Z

92 96 92 96

N=154N=152N=150

N=146

N=148

N=144
N=142N=140

(a) (b) (c) (d)

(e) (f) (g)
(h)

NL3* parametrization

FIG. 8. (Color online) The same as Fig. 6 but for the
NL3* parametrization. Theoretical values have been obtained
within the CRHB framework.

sistency with earlier papers [64]. It is sufficient for com-
parison between calculations and experiment because the
same relation is used. Including higher powers of β2, e. g.
as in Ref. [72], yields values of β2 that are ≈ 10% lower.

Experimental quadrupole deformations of the nuclei
under study are rather well reproduced in the CRHB+LN
calculations (Fig. 3). Thus, they do not represent a major
source of the deviations between theory and experiment
for kinematic moments of inertia. Considering typical
uncertainties of the extraction of quadrupole deformation
either in direct [64] or indirect [65] methods, it is difficult
to give a preference to either NL1 or NL3* parametriza-
tion based on this observable.

D. Three-point indicators ∆(3).

The strength of pairing correlations can also be ac-
cessed via the three-point indicator [73]

∆(3)
ν (N) =

πN

2
[B(N − 1) +B(N + 1)− 2B(N)] ,

(14)

which is frequently used to quantify the odd-even stag-
gering (OES) of binding energies. Here πN = (−1)N is
the number parity and B(N) is the (negative) binding
energy of a system with N particles. In Eq. (14), the
number of protons Z is fixed, and N denotes the number
of neutrons, i.e. this indicator gives the neutron OES.
The factor depending on the number parity πN is chosen
so that the OES centered on even and odd neutron num-
ber N will both be positive. An analogous proton OES
indicator ∆(3)(Z) is obtained by fixing the neutron num-
ber N and replacing N by Z in Eq. (14). The impact of
time-odd mean fields on this quantity has been discussed
in detail in Ref. [26].
In order to extract the ground state in odd-mass nu-

cleus, the binding energies are calculated for a number
of the 1-qp configurations based on the orbitals active
in the vicinity of the Fermi level and then the lowest in
energy state is assigned to the ground state. Such cal-
culations are very complicated and time-consuming. As
a result, they were done only in a few cases (see Refs.
[41] and references quoted therein) on the H(F)B level
of the DFT framework. To our knowledge, the detailed
analysis of the ∆(3) indicators has not been performed
so far in the RHB framework because of the complexity
of the definition of the ground states in odd-mass nuclei.
Thus, this manuscript represents a first attempt of the
systematic analysis of pairing correlations via fully self-
consistent calculations of the ∆(3) indicators in the RHB
framework.
The ∆(3) indicators are analysed in the CRHB and

CRHB+LN frameworks. There are several reasons for
a such comparative study. First, the HFB [RHB] calcu-
lations without approximate particle number projection
by means of the LN method are still used in the study
of rotational bands [74, 75], one-quasiparticle states [41],
fission barriers [33, 75] and fission half-lives [77] of ac-
tinides and superheavy nuclei in the methods which em-
ploy the Brink-Booker part of finite range Gogny force
in the pairing channel. Second, the calculations with the
LN method are more time-consuming and frequently less
numerically stable than the ones without it. As a con-
sequence, it is important to understand the similarities
and differences between the CRHB and CRHB+LN re-
sults related to pairing.
The CRHB calculations were performed with original

strength of the Brink-Booker part of the Gogny D1S
force (scaling factor f = 1.0) which according to Ref.
[1] provides good description of the moments of iner-
tia in 254No over experimentally measured spin range.
These calculations also reasonably well describe the mo-
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ments of inertia at low spin (Fig. 4). Systematic non-
relativistic investigations within cranked HFB approach
based on Gogny D1S force also give reasonable descrip-
tion of the moments of inertia in actinides [74–76]. For
example, the results obtained in Ref. [76] are close to the
CRHB(NL3*) ones. Considering the similarities of these
two approaches (CRHB and Gogny HFB) [40], this is not
surprising.

Figs. 5, 6, 7 and 8 show the ∆(3) indicators obtained
in the CRHB calculations using the results of the calcu-
lations of odd-mass nuclei of Ref. [41]. In average, they
are close to experimental data. For proton subsystem,

the rms deviations from experimental ∆
(3)
ν indicators are

0.22 and 0.15 MeV in the CRHB calculations with the
NL1 and NL3* parametrizations, respectively. For neu-
tron subsystem, these deviations are 0.10 and 0.125 MeV,
respectively. This compares favorably with global fits of
pairing to the ∆(3) indicators in the Skyrme DFT cal-
culations of Refs. [38, 39] in which an RMS accuracy of
about 0.25 MeV has been obtained for ∆(3).

The inclusion of the LN method into the calculations
leads to the decrease of the scaling factor by approxi-
mately 10% (to fav = 0.9147 and fav = 0.899 in the
NL1 and NL3* parametrizations, respectively [see Sect.
III B]). The experimental moments of inertia at low spin
are described rather well with these scaling factors, see
discussion in Sect. III C. Figs. 5 and 6 show the ∆(3)

indicators calculated in the CRHB+LN approach. How-
ever, the convergence problems in the calculations of one-
quasiparticle states in odd-mass nuclei, emerging from
the interaction of the blocked orbital with others, ap-
pear more frequently when approximate particle num-
ber projection by means of the Lipkin-Nogami method is
employed. This is most likely due to additional nonlin-
earities of the LN method. Note that such convergence
problems are typical for the methods employing iterative
diagonalization schemes for the solution of the mean field
equations and appear both in the CRHB and CRHB+LN
calculations. As a consequence, it was not possible to ob-
tain the ∆(3) indicators in the CRHB+LN calculations in
a significant number of the cases since no reliable defini-
tion of the ground state in some odd-mass nucleus is pos-
sible. This is despite the fact that the CRHB+LN calcu-
lations of low-energy spectra in odd-mass nuclei were re-
stricted to three lowest in energy one-quasiparticle config-
urations obtained in the CRHB calculations of Ref. [41].
Such a simplified procedure [as compared with the one
used in the CRHB calculations of Ref. [41]] can be used
since the quasiparticle spectra calculated within CRHB
(with original (f = 1.0) strength of the Brink-Booker
part of the Gogny D1S force)and CRHB+LN (with at-
tenuated strength of the Brink-Booker part) are very sim-
ilar; the difference in the energies of three lowest in energy
one-quasiparticle configurations is typically less than 100
keV and the configuration ordering is the same (see, for
example, Fig. 23 in Ref. [1]). However, the lack of conver-
gence in either of these three configurations disqualifies
odd-mass nucleus from consideration for the calculations

of the ∆(3) indicator.

Because of these convergence problems and time-
consuming nature of the CRHB+LN calculations for
one-quasiparticle configurations, the systematic analy-
sis of the ∆(3) indicators shown in Figs. 5 and 6 has
been performed only for the NL1 parametrization. The
CRHB+LN calculations rather well describe these ob-
servables; the rms deviations from experiment are 0.11
and 0.084 MeV for proton and neutron subsystems, re-
spectively. For the same [as in CRHB+LN calculations]
set of nuclei, these deviations are 0.18 and 0.077 MeV
in the CRHB calculations. As a result, for neutron
subsystem the results of both calculations are similar,
while proton ∆(3) indicators are better described in the
CRHB+LN calculations. The fit of the strength of pair-
ing force to experimental moments of inertia (see Sect.
III C) and the fact that the LN method leads to a better
(in average) description of the ∆(3) indicators [38] may
be responsible for observed differences in the CRHB+LN
and CRHB results.

The comparison of calculated moments of inertia,
three-point indicators ∆(3) and individual scaling factors
fi allows to make a number of important conclusions.
First, there is a strong correlation between the defini-
tions of pairing strengths by means of the moments of
inertia and three-point indicators. For example, the cal-
culations for both of these physical observables show that
pairing has to be slightly stronger at low values of neu-
tron number N . The definitions of pairing strength via
these two observables are complimentary. This is because
(i) it is difficult to disentangle proton and neutron contri-
butions to pairing when considering the moments of in-
ertia and (ii) the ∆(3) indicators are affected by particle-
vibration coupling and depend on correct reproduction
of the ground states in odd-mass nuclei (see Sec. III E for
details).

Second, approximate particle number projection by
means of the LN method is important for a better de-
scription of particle number dependencies of the moments
of inertia. Although the average description of the mo-
ments of inertia in the CRHB calculations seen in Fig. 4
can be improved by an increase of the strength of pair-
ing by few %, this increase will not resolve wrong particle
number dependencies for calculated J (1) and will not lead
to the same level of accuracy of the description of J (1) as
seen in the CRHB+LN calculations (Fig. 2).

Third, obtained results clearly show that the strength
of pairing in the CRHB calculations has to be by 10-
15% larger than the one in the CRHB+LN calculations
in order to reproduce the experimental observables sen-
sitive to pairing with comparable level of accuracy. This
clarifies the problem with different pairing strengths em-
ployed previously in the CRHB and CRHB+LN ap-
proaches which was discussed in the introduction. Con-
sidering weak dependence of the results of the CDFT
parametrization, the results presented in the current
manuscript and the ones obtained in Refs. [14, 40] sug-
gest that the scaling factors f of the Brink-Booker part of
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the Gogny D1S force ∼ 0.9 and ∼ 1.0 (∼ 1.0 and ∼ 1.10)
have to be used in the actinides and rare-earth/lighter
nuclei in the CRHB+LN (CRHB) calculations, respec-
tively. Although this weak dependence on the CDFT
parametrization has been verified here only for the NL1
and NL3* parametrizations, we believe that it will hold
also for other modern CDFT parametrizations. The pair-
ing properties depend on single-particle level densities
which in turn are defined by the Lorentz effective mass
m ∗ (kF )/m of nucleons at the Fermi surface. However,
these effective masses are very similar for all successful
CDFT parametrizations [41, 44, 45, 53, 55, 58, 59].

E. The sources of the deviations between theory

and experiment for the ∆(3) indicators

The accuracy of the description of the ∆(3) indicators
depend on a number of factors some of which were in-
vestigated in Refs. [38, 39, 73]. Here, we will briefly
discuss two factors which have been ignored (and even
not mentioned) in the absolute majority of the studies
of pairing based on odd-even staggerings of binding en-
ergies. These are the correctness of the reproduction
of the ground states in odd-mass nuclei and the impact
of particle-vibration coupling (PVC). They clearly affect
the ∆(3) indicators and limit the accuracy with which
the experimental data can be described in model calcu-
lations.
The structure of the ground state in odd-mass nucleus

is not always correctly reproduced in model calculations
and this can have an impact on the calculated ∆(3) value.
Indeed, the calculations within the RHB theory with
the NL1 and NL3* parametrizations [41], the Hartree-
Fock+BCS approach with different parametrizations of
the Skyrme forces [78] as well as the FRDM model em-
ploying phenomenological folded-Yukawa potential [78]
show that only approximately 40% of the ground states
in odd-mass deformed nuclei are correctly reproduced.
However, different single-particle states have different

polarization effects for quadrupole and hexadecapole mo-
ments (this is clearly seen in the statistical analysis pre-
sented in Fig. 4 of Ref. [41]) and for time-odd mean fields
(see Table IV in Ref. [1]). These polarization effects will
impact the binding energies of odd-mass nuclei. If the
structure of calculated ground state differs from experi-
mental one, the difference in polarization effects of these
two states contributes into the discrepancy between cal-
culated and experimental ∆(3) values. This effect is ex-
pected to be minimal (maximal) when these two states
have similar (significantly different) deformation-driving
properties. The analysis of a number of the cases sug-
gests that wrong ground state in odd-mass nucleus can
sometimes modify the ∆(3) indicator by as much as 150
keV.
Additional binding due to time-odd mean fields in odd-

mass nuclei is rather small in actinides and shows weak
dependence on the blocked orbital (see Ref. [26] and Ta-

ble IV in Ref. [1]). Thus, even if the ground state in
odd-mass nucleus is wrong in model calculations, the dif-
ference in polarization effects due to time-odd mean fields
of the wrong and correct states will only marginally (by
less than 20-30 keV) affect the ∆(3) indicators.
It is well known from the studies of spherical odd-mass

nuclei that particle-vibration coupling affects the binding
energies (see Refs. [25, 79]). So far, no similar studies are
available in deformed nuclei in the PVC models based on
relativistic or non-relativistic DFT because of the com-
plexity of the problem. However, the calculations within
the quasiparticle-phononmodel based on phenomenologi-
cal Woods-Saxon potential indicate that the lowest states
of odd-mass actinides have mainly quasiparticle nature
[80, 81] and that the corrections to their energies due to
PVC are typically less than 150 keV [82]. These correc-
tions will definitely have impact on the ∆(3) indicators.
These two effects can be a source of deviations be-

tween theory and experiment seen in Figs. 5, 6, 7 and 8.
However, the fact that on average the moments of inertia
and the ∆(3) indicators are reasonably well described (es-
pecially, in the CRHB+LN calculations) with the same
strength of pairing suggests that apart from some combi-
nations of proton and neutron numbers these two effects
do not contribute significantly. Note that the moments of
inertia of even-even nuclei are significantly less affected
by these two effects. So, in some sense they are more
robust measure of pairing correlations.
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FIG. 9. (Color online) The experimental and calculated

kinematic moments of inertia J(1) of ground state rotational
bands in 242,244Pu and 248Cm as a function of rotational fre-
quency Ωx. The calculations are performed with the NL1
parametrization.

IV. ROTATIONAL PROPERTIES OF

EVEN-EVEN NUCLEI

Figs. 11 and 12 show the results of systematic calcula-
tions for the kinematic moments of inertia of the ground
state rotational bands in even-even actinides. Either
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FIG. 10. (Color online) The same as Fig. 9 but for the results
obtained with the NL3* parametrization.

sharp or more gradual increase of the kinematic moments
of inertia is observed at Ωx ≈ 0.2 − 0.30 MeV. Fig. 13
shows the proton and neutron contributions to the kine-
matic moments of inertia. These increases in J (1) are due
to the alignments of the neutron j15/2 and proton i13/2 or-
bitals which in many cases take place at similar rotational
frequencies (see Fig. 13). It is clear that the situation in
actinides is more complicated than in the rare-earth re-
gion in which the h11/2 protons align substantially later
than the i13/2 neutrons. This simultaneous alignment of
proton and neutron orbitals is also present in a number
of theoretical models discussed below.

One can see that the CRHB+LN calculations rather
well describe the experimental kinematic moments of in-
ertia and their evolution with rotational frequency. The
results obtained with the NL1 and NL3* parametriza-
tions are rather similar in the majority of the cases (com-
pare Figs. 12 and 11). Only in the 238,240Pu, 236,238U and
230,232Th nuclei, the CRHB+LN(NL1) calculations pre-
dict sharp upbending in J (1) at Ωx ∼ 0.2 MeV which
is not present in experimental data. The same problem
exists also in the CRHB+LN(NL3*) calculations, but in
addition to above mentioned set of nuclei an earlier align-
ment (as compared with experiment) is seen also in the
calculations for the 234U and 234Th nuclei. This indicates
that the calculated details of the band crossings depend
more on the CDFT parametrization than the kinematic
moments of inertia before band crossings.

A number of theoretical calculations based on crank-
ing model discussed below also do not reproduce the ro-
tational properties of these nuclei at the highest spins.
This suggests that some effect not included in the model
framework plays a role at the spins at which sharp band
crossing takes place in model calculations. As discussed
below, the stabilization of octupole deformation at high
spin is most likely candidate for this effect.

So far, the observation of sharp upbending has been

reported in journal publication only in 242,244Pu2. Figs.
9 and 10 compare experimental data with model calcula-
tions. The backbending is complete in 244Pu and the
CRHB+LN(NL3*) calculations rather well describe it
(Fig.10b); the sharp alignment of the proton i13/2 orbitals
is a source of this backbending and the neutron j15/2
alignment proceeds gradually over extended frequency
range. On the contrary, sharp alignments of the pro-
ton and neutron pairs take place at the same frequency
in the CRHB+LN(NL1) calculations (Fig. 9b) and they
somewhat overestimate the kinematic moment of inertia
above the band crossing. The same situation with the
alignments of the proton i13/2 and neutron j15/2 pairs ex-
ists also in the CRHB+LN(NL1) and CRHB+LN(NL3*)
calculations for 242Pu. They accurately reproduce the
evolution of kinematic moments of inertia with frequency
and the frequency of the paired band crossing (Figs. 9a
and 10a). However, since upbending is not complete in
experiment it is impossible to judge whether the simul-
taneous sharp alignments of proton and neutron pairs
really take place in nature. Smooth upbending takes
place in 248Cm (Fig. 9c). The CRHB+LN(NL1) [Fig. 9c]
and CRHB+LN(NL3*) [Fig. 10c] calculations suggests
that this upbending is predominantly due to the proton
i13/2 alignment. However, the interaction between the g-
and S-bands in the band crossing region is too week in
the proton subsystem which leads to sharp upbending in
model calculations.
The calculated kinematic moments of inertia at the

frequencies below and above band crossing only weakly
depend on the CDFT parametrization (compare Figs. 11
and 12). On the contrary, the rate of the increase of
the kinematic moment of inertia in the band crossing re-
gion of respective subsystem (proton or neutron) depends
more sensitively on employed parametrization. Proton
and neutron contributions to the kinematic moments of
inertia obtained in the CRHB+LN(NL3*) calculations
are shown in Fig. 13. In the CRHB+LN(NL1) calcula-
tions, the alignments of the proton and neutron pairs are
similar to the ones of the CRHB+LN(NL3*) calculations
in the majority of the cases; this is a reason why no figure
similar to Fig. 13 is presented for the CRHB+LN(NL1)
results. The largest dependence on the parametrization
is seen in the calculated alignments of the neutron j15/2
pairs for which the increase of the neutron J (1) values in
the band crossing region is either sharper or more gradual
in the CRHB+LN(NL1) calculations as compared with
the CRHB+LN(NL3*) ones in 236,238Th, 238,240,242U,
236,240,242,244Pu, 240,244Cm, 246,254Cf, 248,256Fm, and
258No. On the contrary, such differences are seen in pro-
ton subsystem only in 240,244Cm, 246Cf, and 246,248Fm.
These differences between the CRHB+LN(NL3*) and

2 Similar sharp upbendings have also been observed in ground
state rotational bands of 246,250Cm and 250Cf [84]. Their prop-
erties are well described in the CRHB+LN calculations with the
NL1 and NL3* parametrizations.
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FIG. 11. (Color online) The experimental and calculated moments of inertia J(1) as a function of rotational frequency Ωx. The
calculations are performed with the NL3* parametrization of CDFT. Calculated results and experimental data are shown by
black lines and red small solid circles, respectively. Although some calculations suggest that 228Th is octupole soft (see Fig. 7
in Ref. [83]), its moment of inertia is rather well described in our calculations with no octupole deformation.

CRHB+LN(NL1) results are in part due to the differ-
ences in the single-particle structure obtained in the NL1
and NL3* parametrizations [41].

Rotational properties of actinides have been in
the focus of extensive studies within cranked shell

model (CSM) [7, 8, 85–87], rotating shell model [89],
and cranked Hartree-Fock-Bogolibov (CHFB) [6, 88]
approach based on the phenomenological potentials
(Woods-Saxon [6, 87] and Nilsson [7, 8, 86, 89]) or
quadrupole-quadrupole force Hamiltonian [85, 88]). Sim-



14

8012
0

16
0

10
6 

(S
g)

0.
2

0.
4

8012
0

16
0

10
4 

(R
f)

0.
2

0.
4

8012
0

16
0

10
2 

(N
o)

8012
0

16
0

10
0 

(F
m

)

8012
0

16
0

98
 (

C
f)

0.
2

0.
4

8012
0

16
0

Moments  of  inertia  J
(1)

  [MeV
-1

]
96

 (
C

m
)

0.
2

0.
4

8012
0

16
0

94
 (

Pu
)

0
0.

2
0.

4

8012
0

16
0

92
 (

U
 )

0.
2

0.
4

0
0.

2
0.

4

8012
0

16
0

90
 (

T
h)

0.
2

0.
4

C
R

H
B

+
L

N
 (

N
L

1)
ex

pe
ri

m
en

t

0.
2

0.
4

0.
2

0.
4

0.
2

0.
4

0.
2

0.
4

R
ot

at
io

na
l  

fr
eq

ue
nc

y 
Ω

X
 [

M
eV

]

13
8

14
0

14
2

14
4

14
6

14
8

15
0

15
2

15
4

15
6

15
8

16
0

Z

N

FIG. 12. (Color online) The same as Fig. 12 but for the calculations with the NL1 parametrization.

ilar to our calculations, the simultaneous or near-
simultaneous alignments of neutron j15/2 and proton
i13/2 orbitals define rotational and band crossing prop-
erties. However, these calculations suffer from a number
of simplifications such as fixed deformations [8, 86–89],

reduced or/and fixed pairing gaps [87, 89], the absence of
particle number projection [85, 87, 88], the restriction to
axial symmetry [6–8, 86] or extensive local fit of model
parameters to experimental data [8, 89]. The cranked
HFB calculations based on the Gogny D1S force [74, 75]
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FIG. 13. (Color online) Calculated proton and neutron contribution to kinematic moments of inertia J(1) as a function of
rotational frequency Ωx. The calculations are performed with the NL3* parametrization of CDFT.

have also been performed without particle number pro-
jection. Such simplifications are avoided in the current
CRHB+LN calculations.

Let illustrate a typical situation by an example of
extensive cranking calculations employing the universal
parametrization of the Woods-Saxon (WS) potential [87].

In these calculations, for each nucleus the deformation
was fixed at the value calculated for the ground state.
It was found that the pairing gaps equal to 80% of the
value defined from five-point odd-even mass difference
have to be used to better explain observed properties.
However, required quenching of pairing gap has not been
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explained. The alignments of neutron j15/2 and proton
i13/2 orbitals define rotational and band crossing proper-
ties. However, there is no consistent explanation for the
absence of experimental neutron j15/2 band crossings in
a number of nuclei. It was also concluded that based on
available data it is difficult to determine how accurately
the WS calculations predict the crossing frequencies and
interaction strengths.

While the CRHB+LN calculations well describe the
sharp i13/2 proton alignment observed in the rotational

sequences of the 242−244Pu nuclei (see Sec. VB for 243Pu
results), they fail to reproduce the absence of such align-
ments in 238,240Pu, 234,236,238U and 230,232,234Th (see
Figs. 12 and 11). Such problem exists in all cranking
calculations, see references in this section quoted above
for details. Although the cranking calculations may not
be completely adequate for the band-crossing region [90],
a reasonable description of band crossings in 242−244Pu
suggests that this is not main source of the deviations
between theory and experiment.

It is quite likely that this problem is related to the
stabilization of octupole deformation at high spin which
is not taken into account in model calculations. Sta-
ble octupole deformation has been shown to delay align-
ment processes [91] and this may explain the differ-
ences between theory and experiment. Indeed, the anal-
ysis of the spectra of the ground state positive parity
and lowest negative parity bands of 232Th, 238U and
240Pu indicates a second order phase transition from
reflection-symmetric to reflection-asymmetric shapes in
these bands (Ref. [92]). This phase transition takes place
at spins I ≈ 12−15~. This analysis is based on the math-
ematical techniques of supersymmetric quantummechan-
ics, two-center octupole wave functions ansatz, and the
Landau theory of phase transitions.

It was also suggested that strong octupole correla-
tions in rotational bands of some actinides may be inter-
preted as the rotation-induced condensation of octupole
phonons having their angular momentum aligned with
the rotational axis [93]. When the rotation of the con-
densate and the quadrupole shape of the nucleus synchro-
nize, the collective motion becomes the familiar rotation
of a static octupole shape. The experimental data on
238,240Pu [95] agrees with such an interpretation and the
experimental data in 238U shows the indications of this
process [94]. Indeed, at the highest spins the yrast and
the octupole bands in 238,240Pu appear to merge into a
single sequence of levels with alternating spin and par-
ity, and large intrinsic dipole moments were inferred from
the measured B(E1)/B(E2) ratios [95]. In addition, there
are indications of the formation of parity-doublets at high
spin in 239Pu [96]. All that suggests the stabilization of
octupole deformation at the highest spins in these nuclei.
Furthermore, the systematics of the lowered energies of
the 1− states and the lowered hindrance factors in α-
decay populating these 1− states suggest an increased
octupole correlations for Pu and U nuclei with 144 and
146 neutrons [97].

New experimental data on 230Th shows the signatures
of the stabilization of octupole deformation [98]. On the
other hand, the extension of ground state and especially
octupole vibrational rotational bands up to higher spin
is needed in order to see whether this is also a case in
234,236U and 232,234Th nuclei.
In the context of the study of rotational properties

of actinides, it is interesting to mention that the same
j15/2 neutron and i13/2 orbitals lie at the Fermi surface
in the superdeformed nuclei of the A ∼ 190 mass re-
gion. Remarkably, most superdeformed nuclei of this re-
gion exhibit a surprisingly smooth and gradual increase
of their moments of inertia with frequency emerging from
the alignment of these orbitals and this process is very
well described in the CRHB+LN(NL1) calculations [13].

V. ROTATIONAL PROPERTIES OF ODD-MASS

NUCLEI

N

Z

138 140 142 144 146 148 150 152 154 156 158 160

90(Th)

94(Pu)

92(U)

96(Cm)

98(Cf)

100(Fm)

102(No)

104(Rf)

106(Sg)

FIG. 14. (Color online) The chart of nuclei investigated in
the current work. Solid blue and red shaded circles indicate
studied odd-neutron and odd-proton nuclei, respectively. The
nucleus has Z+1 protons and N neutrons if its circle is located
between the (Z,N) and (Z+2, N) boxes. Alternatively, it has
Z protons and N + 1 neutrons if its circle is located between
the (Z,N) and (Z,N + 2) boxes.

Rotational properties of one-quasiparticle configura-
tions provide an important information on the impact
of odd particle/hole on alignment and pairing proper-
ties. They can also provide an additional constraint on
the structure of single-particle states which is especially
important for the light superheavy nuclei at the edge of
the region where spectroscopic studies are still feasible
(the nuclei with masses A ∼ 255 and proton number
Z ≥ 102). This is because alternative methods of con-
figuration assignment either provide the results with a
low level of confidence or are not possible [3]. Unfor-
tunately, our knowledge of the accuracy of the descrip-
tion of rotational properties of one-quasiparticle config-
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FIG. 15. (Color online) Proton and neutron single-particle energies in 244Cm as a function of quadrupole deformation β2

obtained in the calculations with the NL1 and NL3* parametrizations. Solid black and red dashed lines are used for positive
and negative parity states, respectively. The energy of the Fermi level is shown by blue dotted line. Deformed single-particle
orbitals of interest are labelled by the Nilsson quantum numbers Ω[NnzΛ].

urations in the DFT frameworks is extremely limited
since no systematic investigation of such properties has
been performed so far. Across the nuclear chart they
were studied only in 251Md [3], 241Am [3], 253No [67]
and 255Lr [68] within the CRHB+LN approach, in 253No
[20, 21, 67], 255No, 251Md, and 255Lr [21] as well as in su-
perdeformed rotational bands of 193Pb and 193Hg [100] in
the cranked HFB approach based on Skyrme forces. To
our knowledge, such studies have not been performed in
the cranked HFB approach based on the Gogny forces.
It is also surprising that no systematic investigation of
rotational structures in odd-mass actinides is available
in the MM approach; the occasional cranked shell model
calculations characterized by a number of parameters ad-
justed to experimental data should not be considered as
a replacement for fully fledged MM calculations.

In order to fill this gap in our knowledge, a system-
atic investigation of rotational properties of odd-mass
actinides is performed in this manuscript. Even with
present computational facilities, it is still non-trivial
problem because of three reasons discussed below.

First, a proper description of odd nuclei implies the
loss of time-reversal symmetry of the mean field, which
is broken both by the unpaired nucleon [26] and by the ro-
tation [28]. As a consequence, time-odd mean fields and
nucleonic currents, which cause the nuclear magnetism

[42] have to be taken into account.

Second, the effects of blocking due to odd particle have
to be included in a fully self-consistent way. This is done
in the CRHB+LN code according to Refs. [101–103]. The
blocked orbital can be specified by different fingerprints
such as
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FIG. 16. (Color online) Calculated and experimental kinematic moments of inertia J(1) of the indicated one-quasiproton
configurations in the 241Am nucleus and ground state rotational band in reference even-even 240Pu nucleus. Experimental data
are shown in the middle panel, while the results of the CRHB+LN calculations with the NL1 and NL3* parametrizations in the
left and right panels, respectively. The same symbols/lines are used for the same theoretical and experimental configurations.
The symbols are used only for the configurations in odd-mass nucleus; the ground state rotational band in reference even-even
nucleus is shown by solid black line. The label with the following structure “Odd nucleus = reference even+even nucleus +
proton(π)/neutron(ν)” is used in order to indicate the reference even-even nucleus and the type of the particle (proton or
neutron) active in odd-mass nucleus. The experimental data are from Refs. [95, 99].

• dominant main oscillator quantum number N of
the wave function,

• the dominant Ω quantum number (Ω is the projec-
tion of the angular momentum on the symmetry
axis) of the wave function,

• the particle or hole nature of the blocked orbital,

• the position of the state within specific par-
ity/signature/dominant N/dominant Ω block,

or their combination. For a given configuration, possible
combinations of the blocked orbital fingerprints were de-
fined from the analysis of calculated quasiparticle spectra
in neighboring even-even nuclei and the occupation prob-
abilities of the single-particle orbitals of interest in these
nuclei.
Third, variational solutions with blocked orbital(s) are

numerically less stable than the ones for the ground state
bands in even-even nuclei. This is because at each iter-
ation of the variational procedure blocked orbital has to
be properly identified. This identification is complicated
by the fact that Ω is not conserved quantum number in
the CRHB+LN code. As a consequence, closely lying or-
bitals within a given parity/signature block can interact
and exchange a character. The convergence problems,
emerging from the interaction of the blocked orbital with
others, appear quite frequently. The interaction strength
of these orbitals is one ingredient affecting the conver-
gence. Another is the relative energies of interacting or-
bitals. Different CDFT parametrizations are character-
ized by different single-particle specta [1] (see also Nilsson

diagrams presented in Fig. 15). As a result, the conver-
gence problems for specific blocked solution can show up
in one parametrization but will not affect the solution
in another parametrization. The structure of wave func-
tion of blocked orbital and the energy of this orbital with
respect of other orbitals change as a function of rota-
tional frequency. While converging in some frequency
range the solution for a given blocked orbital may face
the convergence problems outside this range. The con-
vergence also depends on the initial conditions; for some
configurations the solution at given frequency converges
if we start from self-consistent solution of the neighboring
frequency point but does not converge if we start from
the fields generated by the Woods-Saxon potential and
diagonal ∆-matrix. This feature has been used in the
calculations. The employed combination of blocked or-
bital fingerprints also affects the numerical convergence;
the solution can converge for one combination but face
the convergence problems for another one. Thus, for a
number of configurations several combinations of blocked
orbital fingerprints have been used.

The results of systematic calculations are presented in
Figs. 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, and 27. All odd-
mass nuclei with long rotational sequences are considered
in this investigation; the only exception is the 255Lr nu-
cleus since the configuration assignment for observed ro-
tational structure is still under debate [68]. These nuclei
are shown by circles in Fig. 14. Other odd-mass nuclei,
the rotational sequences of which contain only few low-
spin states, are ignored in this investigation since we are
interested in the evolution of rotational properties with
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spin.

Fig. 15 shows the Nilsson diagrams obtained for 244Cm
in the calculations with the NL1 and NL3* parametriza-
tions. This nucleus is located in the center of the region
of odd-mass nuclei under study (Fig. 14). The single-
particle orbitals which can be observed in odd-mass nu-
clei of the region under study are labelled by the Nils-
son labels. Moreover, long rotational sequences built
on some of these orbitals have been experimentally ob-
served (see discussion in Secs. VA and VB). Although
the general structure of the Nilsson diagrams is the same
in the NL1 and NL3* parametrizations, the relative en-
ergies of different single-particle orbitals and their en-
ergies with respect of the Fermi level at the deforma-
tion β2 ∼ 0.3 typical for nuclei under study (see Fig. 3)
depend strongly on parametrization. For example, the
π3/2[521] and π7/2[633] orbitals are nearly degenerate
in the NL3* parametrization (Fig. 15d). However, they
are separated by 0.5 MeV gap in the NL1 parametrization
(Fig. 15c). Such differences in the energies of deformed
states can be traced back to the differences in the single-
particle energies at spherical shape [1].
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FIG. 17. (Color online) Calculated proton and neutron pair-
ing energies in ground state rotational band of 240Pu and
one-quasiparticle rotational bands of 241Am. Thick and thin
lines are used for the (r = −i) and (r = +i) branches of one-
quasiparticle configurations, respectively. Note that neutron
pairing almost does not depend on the signature of blocked
proton orbital. As a result, only the (r = −i) branches are
shown in panel (a).

We compare experimental and calculated kinematic
moments of inertia J (1) of one-quasiparticle configura-
tions in odd-mass nuclei and ground state rotational band
in reference even-even mass nucleus. Figure 16 is an ex-
ample of such a comparison and the figures for other
nuclei follow its pattern. Two parametrizations, namely,
NL1 and NL3*, are used in the calculations in order to see

how the results depend on the parametrization. We drop
the panel with specific parametrization when it was not
possible to obtain the converged solution for it. The cal-
culations were attempted for all experimentally observed
configurations of odd-mass nuclei indicated in Fig. 14;
the absence of calculated curve for specific configuration
indicates that no convergence has been obtained for it.

A. Odd-proton nuclei

Long rotational bands based on different single-particle
orbitals have been observed in odd-proton 241Am,
235,237Np and 251Md nuclei. We discuss them below sep-
arately, nucleus by nucleus.
The 241Am nucleus. The rotational bands based

on the Nilsson orbitals π5/2[642] (from the i13/2 spher-
ical subshell), π5/2[523] (from the h9/2 subshell) and
π3/2[521] (from the f7/2 subshell) have been observed in
this nucleus. As can be seen in Fig. 16b, at low frequen-
cies they have distinctly different kinematic moments of
inertia J (1). Theoretical calculations (Fig. 16a,c) de-
scribe well the absolute values of the kinematic mo-
ments of inertia of different configurations and their evo-
lution with rotational frequency. In particular, the split-
ting of two signatures of the π5/2[642] configuration is
well described in the model calculations. The results
of the CRHB+LN(NL1) and CRHB+LN(NL3*) calcu-
lations for this configuration are similar.
On the contrary, the π5/2[523] and π3/2[521] bands

show (with exception of very low frequencies in the
case of the π3/2[521] band) no signature splitting. The
CRHB+LN(NL1) calculations for the two signatures of
the π5/2[523] configuration show explicitly this feature.
Unfortunately, it was not possible to get a convergence
in the case of the π3/2[521](r = +i) configuration. How-
ever, the analysis of the quasiparticle routhian diagram
confirms that the π3/2[521](r = ±i) configurations have
to be degenerate in energy up to rotational frequency
Ωx ∼ 0.16 MeV in agreement with experimental observa-
tions. At higher frequencies, small signature separation
is expected in the calculations.
In addition to the above mentioned features, the rel-

ative properties of different bands both with respect of
each other and with respect to ground state band in ref-
erence nucleus 240Pu are well described in the model cal-
culations. The increase of the kinematic moment of in-
ertia in the bands of 241Am as compared with the one of
ground state band in 240Pu is caused by the blocking ef-
fect which results in a decreased proton pairing (see Fig.
17).
The 237Np nucleus. Similar to 241Am, the π5/2[642]

and π5/2[523] rotational bands have been observed in
this nucleus. Unfortunately, it was possible to obtain
a convergent solution only for the π5/2[523](r = −i)
configuration (Fig. 18). This configuration rather well
describes both its experimental counterpart and relative
properties of the π5/2[523](r = −i) band in 237Np and
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FIG. 18. (Color online) The same as Fig. 16 but for 237Np. The experimental data are from Ref. [99].
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FIG. 19. (Color online) The same as Fig. 16 but for 251Md. Experimental data are taken from Refs. [66, 104].

ground state band in 236U. The CRHB+LN(NL1) and
CRHB+LN(NL3*) results are very similar for this con-
figuration. In the quasiparticle routhian diagram, the
π5/2[523](r = ±i) orbitals are degenerate in energy up
to rotational frequency Ωx ∼ 0.15 MeV with small signa-
ture separation developing at higher frequencies. These
features agree with experimental observations.

The 251Md nucleus. The π1/2[521](r = −i) con-
figuration has been assigned to single decoupled band
observed recently in the odd-proton nucleus 251Md [104].
In the CRHB+LN(NL1) calculations, this configuration
accurately describes both its experimental counterpart
and the relative properties of the π1/2[521](r = −i)
band in 251Md and ground state band in 250Fm (Fig.
19a,b). On the contrary, it somewhat underestimates
experimental J (1) values and the difference between the
J (1) values of the π1/2[521](r = −i) band in 251Md
and the ground state band in 250Fm (Fig. 19b,c) in the

CRHB+LN(NL3*) calculations.

The results of the CRHB+LN(NL1) calculations for
this configuration obtained using an average scaling fac-
tor fav = 0.9147 defined in the current manuscript (open
red circles) are compared with the ones (dashed green
line) obtained employing scaling factor f = 0.893 of Ref.
[1] in Fig. 19a. One can see that the results of the calcu-
lations are very sensitive to actual value of f ; the mod-
ification of scaling factor by 2% leads to visible changes
in the calculated J (1) values but do not change much the
slope of calculated J (1) curve.

Note that the CRHB+LN(NL1) calculations of Ref.
[3] for 251Md have been performed with f = 0.893.
These calculations showed that the π7/2[633], π3/2[521],
π9/2[624] and π9/2[505] configurations cannot be theo-
retical counterparts of observed decoupled band because
they lead either to signature degenerate bands or to the
bands with small signature splitting. As a consequence,
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FIG. 20. (Color online) The same as Fig. 16 but for 235Np. Experimental data are taken from Ref. [105]. See text for details.
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FIG. 21. (Color online) The same as Fig. 16 but for 247Cm.
Experimental data are taken from Ref. [87].

both signatures are expected to be observed in experi-
ment.

The 235Np nucleus. Two rotational sequences, pre-
sumably the two signatures of the ground state band,
have been observed in Ref. [105]. The authors of this
reference proposed the π5/2[624] configuration for this
band. Fig. 20b shows the kinematic moments of inertia
of these two sequences by solid and open red circles under
spin/parity assignments of Ref. [105]; these curves are la-
beled as ’Alt. 1’. The origin of the disturbances visible at
low frequency in the J (1) values of the r = −i sequence
is not clear. However, these two sequences are signature
degenerate above Ωx ≥ 0.1 MeV. This is in clear con-
trast with the behavior of the π5/2[624] bands in 237Np
(Fig. 18b) and 241Am (Fig. 16b), the two signatures of
which show substantial signature splitting. The signature
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FIG. 22. (Color online) The same as Fig. 16 but for 249Cf.
Experimental data are taken from Ref. [87].

splitting is usually a robust fingerprint of the configura-
tion. In addition, the removal of two neutrons from 237Np
should not change the signature splitting in the proton
π5/2[642] band since this process will not change the de-
formation substantially. Because of these two reasons,
we believe that the π5/2[642] configuration assignment
is not well justified.

The π5/2[523] configuration has also been mentioned
as a possible (but less likely) candidate for observed band
in Ref. [105]. The π5/2[523] band is signature degener-
ate in 241Am (Fig. 16b), but it develops small signature
splitting at high spin in 237Np (Fig. 18b). From our point
of view, the π5/2[523] configuration assignment for ob-
served band in 235Np is more likely than the assignment
of the π5/2[642] configuration because of the reasons dis-
cussed below. However, such reassignment would require
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FIG. 23. (Color online) The same as Fig. 16 but for 253No. Experimental data are taken from Refs. [65, 67].

the modification of the level scheme in 235Np which is
not prohibited since there is neither firm evidence for
the lowest member of each rotational sequence nor firm
parity assignment [105]. Thus, we suggest the following
modifications. The (78) keV transition linking the 9/2+

and 5/2+ states in the sequence labeled as 1 in Fig. 5 of
Ref. [105] as well as the 5/2+ state have to be dropped
from the level scheme and the spins of observed states
have to be lowered by 1~ (so the sequence 1 runs from
Iπ = 7/2− up to Iπ = 51/2−). The spins of the states
in sequence 2 have also to be lowered by 1~, so this se-
quence runs from Iπ = 5/2− up to Iπ = 49/2−. With
these modifications this band looks very similar to the
π5/2[523] band in 237Np shown in Fig. 1 of Ref. [99].
The kinematic moments of inertia of observed se-

quences under these spin/parity changes are shown by
open and closed green squares in Fig. 20b; these curves
are labeled as ’Alt.2’. One can see that this alternative
is rather well described by the π5/2[523](r = −i) config-
uration both in terms of absolute J (1) values and their
evolution with spins (Fig. 20). In addition, the relative
properties of the bands in 235Np and 234U are rather well
reproduced in model calculations. Unfortunately, it was
not possible to obtain opposite signature configuration in
model calculations. However, the analysis of the routhian
diagrams in 235Np and the results of the calculations for
the π5/2[523](r = ±i) configurations in 241Am (Fig. 16)
suggest that the latter configurations should either be
signature degenerate of have small signature splitting in
235Np.

B. Odd-neutron nuclei

Long rotational bands based on different single-
particle orbitals have been observed in odd-neutron 237U,
239,243Pu, 247,249Cm, 249Cf and 253No nuclei. Consider-
ing that the experimental systematics for odd-neutron

systems is larger than for odd-proton ones, the discus-
sion of former systems is performed here on the ’band by
band’ basis.
The ν9/2[734] rotational band. This band has been

observed in 247Cm, 249Cf and 253No. Figs. 21, 22 and
23 show the comparison between theory and experiment
for it. In all three nuclei, the signature degeneracy of
observed band is well reproduced.
In 247Cm, the CRHB+LN(NL3*) calculations accu-

rately reproduce the relative properties of the ν9/2[734]
band and the reference band in 246Cm. The absolute
J (1) values of experimental band are well described up
to Ωx ∼ 0.15 MeV (Fig. 21). However, the calculations
underestimate the increase of J (1) seen at higher frequen-
cies. This is due to the fact that the increase of J (1) with
rotational frequency is underestimated in the reference
246Cm ground state band. The CRHB+LN(NL3*) cal-
culations accurately reproduce the absolute J (1) values
of the ν9/2[734] band in 249Cf and their evolution with
frequency as well as its relative properties (at low fre-
quency) with respect of the reference band in 248Cf (Fig.
22).
The CRHB+LN(NL1) calculations reproduce very well

the ν9/2[734] band in 253No and its relative proper-
ties with respect of the ground state band in 252No
(Fig. 23a,b). Similar accuracy of the reproduction
of the ν9/2[734] band in 253No is achieved in the
CRHB+LN(NL3*) calculations at Ωx ≥ 0.12 MeV (Fig.
23b,c). However, at lower frequencies these calculations
do not reproduce the increase of the J (1) moments with
decreasing Ωx.
The ν1/2[631] rotational band. This band has been

observed in 237U and 239Pu (Figs. 24 and 25). There is
large separation between the J (1) values corresponding
to the (r = ±i) branches of the ν1/2[631] band at low
frequency which gradually decreases and finally vanishes
at high frequency. This feature and the fact that the
(r = −i) branch has lower values of J (1) at low frequency
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FIG. 24. (Color online) The same as Fig. 16 but for 237U.
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are rather well reproduced in model calculations. In ex-
periment, the J (1) values in odd-mass nucleus are higher
than the ones in reference band of even-even nucleus.
However, this difference is underestimated in model cal-
culations (see Figs. 24 and 25).

The ν7/2[743] rotational band. This band has been
observed in 237U (Fig. 24). It is signature degenerate
at low rotational frequencies. A small separation be-
tween the J (1) values of the (r = ±i) branches is seen at
medium and high frequencies; at these frequencies, the
(r = +i) branch has larger J (1) values. These features
are well reproduced in the model calculations with both
CDFT parametrizations. The model calculations also re-
produce the absolute J (1) values and their evolution with
frequency as well as their relative properties with respect
of reference band in 236U. However, the increase of J (1)

in the band crossing region is sharp in model calcula-
tions but more gradual in experiment. This is similar to

the situation seen in the reference 236U nucleus. As dis-
cussed in Sec. IV, this discrepancy between theory and
experiment in 236U may be due to the stabilization of oc-
tupole deformation at high spin which leads to the delay
of the alignment of the proton πi13/2 and neutron νj15/2
orbitals. If that is a case in nature, similar situation can
be expected also in 237U.

The ν5/2[622] rotational band. This band has been
observed in 237U (Fig. 24). It is signature degenerate and
this feature is reproduced in the CRHB+LN(NL1) calcu-
lations. Only the r = +i branch of this band has been ob-
tained in the CRHB+LN(NL3*) calculations. However,
the π5/2[523](r = ±i) orbitals are signature degenerate
in the frequency range of interest in the quasiparticle
routhian diagram obtained with the NL3* parametriza-
tion. The absolute values of J (1) and their evolution with
frequency are reproduced in model calculations. The
NL1 parametrization somewhat better reproduces the
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properties of this band with respect of reference band
in 236U than the NL3* parametrization which underesti-
mates the increase of the J (1) values due to blocking of
the ν5/2[622](r = ±i) orbitals.

The ν7/2[624] rotational band. This band has been
observed in 243Pu (Fig. 27) and it is the only odd-mass
nucleus band in the whole actinide region in which sharp
upbend is observed. The model calculations extremely
well reproduce the properties of this band including the
absolute J (1) values and their evolution with rotational
frequency, signature degeneracy of the (r = ±i) branches,
the relative properties of this band and the reference
band in 242Pu and the properties in the band crossing
region. In experiment, the band crossing in the ν7/2[624]
band takes place earlier (by 0.01 MeV) than the one in
the ground state rotational band of the reference 242Pu
nucleus (Fig. 27b). However, in the CRHB+LN(NL1)
calculations both crossings take place at the same fre-
quency (Fig. 27a).

The ν1/2[620] rotational band. This band has been
observed in 249Cm (Fig. 26). It was possible to obtain
only the (r = +i) branch of the ν1/2[620] configuration
and only in the CRHB+LN(NL3*) calculations. The
slope of experimental J (1) curve as a function of fre-
quency is reasonably well reproduced before the band
crossing. However, the relative properties of this band
and the ground state band in the reference 248Cm nu-
cleus are not completely reproduced. Dependent of fre-
quency the J (1) values of the former band are somewhat
larger (or similar) than that (to that) of the later band
in experiment. However, opposite situation is seen in
the calculations. The band crossing region is reproduced
in general in the calculations. However, in experiment
the band approaches the band crossing point in a more
gradual way than in the calculations.
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FIG. 26. (Color online) The same as Fig. 16 but for 249Cm.
Experimental data are taken from Ref. [87].
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C. Rotational properties as a tool of configuration

assignment

On-going experimental investigations of odd-mass light
superheavy nuclei at the edge of the region where spec-
troscopic studies are still feasible (the nuclei with masses
A ∼ 255 and proton number Z ≥ 102) [3] require reliable
theoretical tools for the assignment of one-quasiparticle
configurations. This is due to inherent restrictions of the
studies at the limits of experimental capabilities. Ro-
tational properties have been occasionally used for that
purpose. However, only with the completion of this sys-
tematic study of odd-mass nuclei it becomes possible to
reliably estimate theoretical errors of the description of
rotational properties of such nuclei and the robustness of
configuration assignment based on such properties.
Indeed, rotational properties of one-quasiparticle con-

figurations give an important information on their under-
lying structure, thus providing an extra tool for a config-
uration assignment. The rotational properties reflected
through the following fingerprints

• the presence or absence of signature splitting,

• the relative properties of different configurations
with respect of each other and/or with respect to
the ground state band in reference even-even nu-
cleus,

• the absolute values of the kinematic moments of in-
ertia (especially at low rotational frequencies) and
their evolution with rotational frequency

provide useful tools for quasiparticle configuration assign-
ments. Our systematic investigation shows that with few
exceptions these features of rotational bands are well de-
scribed in model calculations. The presence or absence
of signature separation and its magnitude is the most
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reliable fingerprint which is reproduced in model cal-
culations with good accuracy. The moments of inertia
and their evolution with frequency are generally well de-
scribed in model calculations. As a consequence, the rel-
ative properties of different configurations with respect
of each other and/or with respect to the ground state
band in reference even-even nucleus provide a reasonably
reliable fingerprint of configuration. This fingerprint is
especially useful at low frequencies where the largest dif-
ference between the configurations is observed. Only in
the case of the ν1/2[631] and ν1/2[620] configurations,
the calculations fail to describe their relative properties
with respect of reference band in even-even nucleus.
However, it is necessary to recognize that the config-

uration assignment based on rotational properties has
to be complemented by other independent methods and
has to rely on sufficient experimental data. This is be-
cause such method of configuration assignment not al-
ways leads to a unique candidate configuration due to
theoretical inaccuracies in the description of the moments
of inertia. The interpretation of the rotational band in
253No is quite illustrative in this respect. Initially, it
was interpreted as based on the ν7/2[624] configuration
[106]. However, improved experiments allowed to iden-
tify the M1 transitions between opposite signatures of the
observed band [67] which led to the ν9/2[734] configura-
tion assignment. The kinematic moments of inertia of the
observed band under two configuration assignments are
described within a typical theoretical uncertainty and, as
a result, the configuration assignment based only on ro-
tational properties cannot be fully reliable. The branch-
ing ratios of observed M1 and E2 transitions have to be
used in order to distinguish different configuration as-
signments [67].

VI. ROTATIONAL AND DEFORMATION

PROPERTIES OF FISSION ISOMERS

The investigation of fission isomers provides a valuable
information on rotational and pairing properties in the
superdeformed (SD) minimum of actinides. The latter is
important for an understanding of fission barriers which
sensitively depend on pairing properties (see Ref. [33]
and references quoted therein). Although some attempts
were made in 70ies to extract the information on pair-
ing properties at fission saddles [109], they did not lead
to reliable estimates. Thus, fission isomers provide only
available tool to estimate the evolution of pairing with
deformation in actinides. Such an estimate is available
only through the study of rotational properties of 236,238U
and 240Pu nuclei; these are only nuclei for which SD rota-
tional bands were experimentally measured3. Although
fission isomers in actinides have been observed more than

3 The information on pairing cannot be extracted from odd-even
mass staggerings in the SD minimum, since the inaccuracies of
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matic (J(1)) and dynamic (J(2)) moments of inertia of SD
rotational bands in 236,238U and 240Pu. The notation of the
lines and symbols is given in the figure.

50 years ago their rotational and single-particle proper-
ties are significantly less known experimentally than in
other regions of superdeformation. For example, no re-
liable experimental data on single-particle states in odd-
mass actinides exist.
The experimental and calculated kinematic and dy-

namic moments of inertia of the SD rotational bands in
236,238U and 240Pu are shown in Fig. 28. The calculated
kinematic and dynamic moments of inertia increase with
increasing rotational frequency Ωx (Fig. 1). In addition,
the difference between these moments grows with the in-
crease of Ωx since J (2) raises faster than J (1). In the cal-
culations, these features are predominantly due to grad-
ual alignment of the N = 8 neutrons and N = 7 protons
and a smooth decrease of pairing correlations with in-
creasing Ωx. They are similar to the ones observed in
the A ∼ 190 region of superdeformation, see Ref. [13]
and references quoted therein.
The experimental data in 240Pu shows such features

for J (1) and J (2). However, the highest J (2) point devi-
ates from this trend most likely due to the fact that the
energy of the 10+ → 8+ transition has been measured
with lower accuracy than that of other transitions within
the SD band [69]. On the other hand, such features are
not seen in 236U. This is again can be related to insuffi-
cient accuracy of the measurements of the γ−transitions
energies in the SD band of 236U; these energies in the
SD bands of 236U and 240Pu are measured with typical
accuracy of 1.0 keV and 0.1 keV, respectively [69].
The experimental kinematic moments of inertia are

best described by the NL3* parametrization; the devi-
ation from experiment does not exceed 3.4% (Fig. 28).
Note that similar to low spin results in the ND minimum

the measuruments of excitation energies of fission isomers in odd-
mass nuclei are at least 200 keV but can reach 400 keV [110].
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TABLE I. Experimental and theoretical charge quadrupole moments Q of SD fission isomers. The results of the CRHB+LN
calculations with the NL1 and NL3* parametrizations are presented. Experimental data for the U and Pu isotopes are taken
from Ref. [107], while the one for 242Am from Ref. [108].

236U 238U 236Pu 239Pu 240Pu 242Am
Qexp (eb) 32± 5 29± 3 37± 10 36± 4 35.5 ± 1.0st ± 1.2mod

QNL1 (eb) 35.8 37.3 36.1 38.2
QNL3∗ (eb) 33.9 33.7 34.8 34.9

(see Sect. III B), the minor variations in the experimen-
tal J (1) values with particle number are not reproduced.
The fact that the moments of inertia of rotational struc-
tures in two different minima (ND and SD) are accurately
described with the same pairing strength strongly sug-
gests that the evolution of pairing correlations with de-
formation is properly described in the CRHB+LN(NL3*)
framework by the Brink-Booker part of the Gogny D1S
force. This is important for the investigation of fission
barriers, the properties of which sensitively depend on
employed pairing interaction [33].
However, this is not always the case since the

CRHB+LN(NL1) calculations substantially overestimate
the experimental moments of inertia in the SD mini-
mum [for example, by 11.3% in 240Pu] (Fig. 28) while
they reproduce the low-spin moments of inertia in the
ND minimum with the same level of accuracy as the
CRHB+LN(NL3*) calculations (see Fig. 2). It turns out
that reasonable description of the moments of inertia at
SD can be achieved in the CRHB+LN(NL1) calculations
only if the original strength of the Brink-Booker part of
the Gogny D1S force (scaling factor f = 1.0) is used in
the calculations (see Fig. 1 in Ref. [111]). This clearly
indicates that even the pairing force carefully fitted to
experimental data at normal deformation does not guar-
antee accurate description of pairing at SD (and as a
consequence also at fission saddle). The origin of such
behavior is not completely clear but the difference be-
tween the CRHB+LN(NL3*) and CRHB+LN(NL1*) re-
sults for J (1) at SD may also partially originate from the
differences in the single-particle structures at superde-
formation obtained with the NL3* and NL1 parametriza-
tions (Fig. 29). While the large N = 142 SD shell gap ex-
ists in both parametrizations, somewhat smaller Z = 96
SD shell gap is seen only in the NL3* parametrization
(Fig. 29). In addition, the ordering of the single-particle
levels is different in these two parametrizations.
Table II shows that for a specific parametrization the

calculated pairing energies in the ND and SD minima are
comparable in a given subsystem (proton or neutron).
They are typically within 0.5 MeV. The only exception
is the proton subsystem for which the pairing energies in
the SD minimum are larger than those in the ND one by
1.4 MeV. Note that the pairing is stronger in the NL1
parametrization. In part, this is a consequence of the
fact that average scaling factor fav is larger for the NL1
parametrization (see Sec. III B).

The calculated charge quadrupole momentsQ are com-
pared with available experimental data in Table I. One
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the dominant principal quantum number.

TABLE II. Averaged pairing energies E
ν/π
pairing [in MeV] (Eq.

(11) in the normal- (ND) and superdeformed (SD) minima
for the NL3* and NL1 parametrizations. These quantities
are averaged over 236,238U and 240Pu nuclei; the individual
pairing energies in each of these nuclei do not deviate from
averaged ones by more than 0.5 MeV.

Parametrization Neutron Proton
ND SD ND SD

NL3* 4.99 5.51 6.56 6.90
NL1 6.26 6.52 6.97 8.35

should note that the small error bars on the experimental
values of Q given for 238U and 240Am nuclei should be
treated with caution since even modern experiments do
not provide an accuracy of the absolute Q values better
than 15%, see discussion in Ref. [13]. In addition, when
comparing the calculations with experiment one should
take into account that (i) the Qexp values have been ob-
tained with different experimental techniques [107], (ii)
it is reasonable to expect that an addition of one neutron
to 239Pu will not change considerably the Q value, and,
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FIG. 30. (Color online) Charge quadrupole momentsQ (panel

(a)) and kinematic moments of inertia J(1) (panel (b)) of the
yrast SD bands as a function of neutron number N . The
results are obtained in the CRHB+LN(NL3*) calculations at
Ωx = 0.01 MeV.

thus, Qexp(239Pu) could be used for comparison with the
calculated Q(240Pu).
With these considerations in mind, it is clear that the

CRHB+LN(NL3*) results come reasonably close to ex-
periment. The CRHB+LN(NL1) results are also not far
away from experimental data but they substantially over-
estimate experimental Q value in 238U. The Q values ob-
tained in the CRHB+LN(NL1) calculations are always
higher than the ones for CRHB+LN(NL3*), which also
may be a reason why the CRHB+LN(NL1) calculations
systematically overestimate kinematic moments of iner-
tia at SD.
The systematic analysis of low-spin properties of the

yrast SD bands presented in Fig. 30 is performed with the
NL3* parametrization since it describes better available
experimental data on deformation and rotational prop-
erties of fission isomers. The Q values generally increase
with increasing proton number. For a given isotope chain
they stay nearly constant in the N = 142 − 150 range.
There is a gradual increase of Q at N > 150 in the Cm,
Cf and Fm isotopes. In the Th, U and Pu isotopes, the Q

values drop by 5-7 eb on going from N = 142 to N = 140
(Fig. 30a). This change in equilibrium deformation of
second minimum as a function of neutron number is
clearly visible in the deformation energy curves obtained
in the RMF+BCS calculations with monopole pairing
and the NL3* parametrization (Fig. 7 in Ref. [37]). It
is caused by the changes in the underlying shell struc-
ture; this is supported by the fact that the RMF+BCS
calculations of Ref. [37] with monopole pairing and the
current CRHB+LN(NL3*) calculations with the Brink-
Booker part of the Gogny D1S force in the pairing chan-
nel bring similar values for equilibrium deformation in
second minimum despite different treatment of pairing.
The evolution of the kinematic moments of inertia J (1)

of the yrast SD bands at low spin as a function of proton
and neutron numbers closely resembles the one of charge
quadrupole moments Q (Fig. 30). This is mostly due to
the fact that the values of kinematic moments of inertia
of the SD bands in the limit of no pairing are typically
close to the rigid-body values [28], and, thus, are strongly
defined by the deformation properties. The pairing low-
ers the calculated kinematic moments of inertia but does
not remove this connection.

VII. DEFORMATION AND ROTATIONAL OF

SUPERHEAVY NUCLEI

Fig. 31 shows the calculated quadrupole deformations
β2 and kinematic moments of inertia J (1) of even-even
superheavy nuclei with Z = 102, 104, 106, 108 and 110
as a function of neutron number N . The nuclear re-
gion selected roughly corresponds to the one where super-
heavy nuclei either have already been measured or may
be experimentally studied (including rotational proper-
ties) within the next one or two decades. We do not
extend our studies to higher Z values since in these nu-
clei the potential energy surfaces in the normal deformed
minimum become very soft (see Refs. [52, 112]) so that a
description on the mean-field level may not be adequate
and the methods beyond mean field [113, 114] may be
required.
The CRHB+LN calculations of Fig. 31 are performed

with the NL3* parametrization. However, earlier inves-
tigations of the Fm (Z = 100) isotope and N = 152
isotone chains in Ref. [1] show that the general trends of
the evolution of the J (1) and β2 quantities as a function of
neutron and proton numbers only weakly depend on the
CDFT parametrization (see Figs. 13 and 14 in Ref. [1]).
Fig. 31 shows that calculated quadrupole deformation
β2 stays more or less constant for the neutron numbers
N ≤ 162. However, at higher N it decreases gradually
with increasing neutron number. The evolution of cal-
culated kinematic moments of inertia correlates strongly
with the one for the quadrupole deformations. Indeed,
with the exception of the lightest Z = 102 nuclei, the
J (1) values decrease very slowly with increasing neutron
number, but above N = 162 the rate of the decrease of
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J (1) becomes substantially larger.
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FIG. 31. (Color online) Kinematic moments of inertia (panel
(a)) of ground state bands of superheavy nuclei calculated at
Ωx = 0.02 MeV and their quadrupole deformations β2 (panel
(b)) as a function of neutron number N .

VIII. CONCLUSIONS

The cranked relativistic Hartree-Bogoliubov theory
has been applied for a study of actinides and light super-
heavy nuclei. The systematic investigation of rotational
properties of even-even and odd-mass nuclei at normal
deformation has been performed for the first time in the
density functional theory framework. In addition, the
pairing properties have been systematically studied via
the ∆(3) indicators for the first time in the CDFT the-
ory. The main results can be summarized as follows:

• In order to reproduce the moments of inertia in ac-
tinides and light superheavy nuclei, the strength of
the Brink-Booker part of the Gogny D1S force in
the particle-particle channel of the CRHB+LN the-
ory has to be attenuated by ≈ 10%. With this at-
tenuation, the moments of inertia below band cross-
ings and the ∆(3) indicators are well reproduced.

In contrast, the moments of inertia of lighter nu-
clei with A ≤ 200 are well described with the origi-
nal strength of the Brink-Booker part of the Gogny
D1S force in the CRHB+LN calculations.

• The strengths of pairing defined by means of the
moments of inertia and three-point ∆(3) indicators
strongly correlate. This is known result in non-
selfconsistent models based on phenomenological
Woods-Saxon or Nilsson potentials. However, this
is non-trivial result in the DFT framework since
time-odd mean fields (absent in phenomenological
potentials) strongly affect the moments of inertia
[28] and have an impact on three-point ∆(3) indi-
cators [26].

• The definitions of pairing strength via these two ob-
servables are complimentary. This is because (i) it
is difficult to disentangle proton and neutron con-
tributions to pairing when considering the moments
of inertia and (ii) the ∆(3) indicators are affected
by particle-vibration coupling and depend on cor-
rect reproduction of the ground states in odd-mass
nuclei (see Sec. III E for details).

• The calculations with approximate particle number
projection by means of the Lipkin-Nogami method
provide a better description of the absolute val-
ues and particle number dependencies of the mo-
ments of inertia as compared with the calculations
which do not include it. Similar improvement is
observed for the ∆(3) indicators. However, more
systematic calculations of the ∆(3) indicators in the
CRHB+LN and CRHB frameworks are needed to
make this observation conclusive.

• Sharp upbendings observed in a number of rota-
tional bands of the A ≥ 242 nuclei are well de-
scribed in the model calculations. The calculations
also predict similar upbendings in lighter nuclei but
they have not been seen in experiment. The anal-
ysis suggests that the stabilization of octupole de-
formation at high spin, not included in the present
CRHB+LN calculations, can be responsible for this
discrepancy between theory and experiment.

• The proper description of the evolution of pairing
with deformation implies an accurate reproduction
of the moments of inertia of rotational structures
in normal- and superdeformed minima with the
same strength of pairing. This condition is sat-
isfied only in the CRHB+LN(NL3*) calculations.
On the contrary, the strength of pairing in the SD
minimum has to be increased by almost 10% as
compared with the ND minimum in order to repro-
duce the moments of inertia of the SD bands in the
CRHB+LN(NL1) calculations. This clearly indi-
cates that even the pairing force carefully fitted to
experimental data at normal deformation does not
always guarantee accurate description of pairing at
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SD (and, as a consequence, also at fission saddle).
The origin of such behavior is not completely clear
but partially maybe related to the dependence of
the shell structure at SD on the parametrization.

• It is well known fact that the present generation of
the density functional theories do not provide the
same accuracy of the description of the energies
of the single-particle states as the models based
on the phenomenological Woods-Saxon or Nils-
son potentials (see Ref. [41] and references quoted
therein). Despite that many aspects of the single-
particle motion such as deformation polarization
effects due to particle(s)/hole(s) and the impact
of the particle(s)/hole(s) on angular momentum
alignments/moments of inertia are well described
in the DFT models in the regime of no or weak pair-
ing [47, 115]. The current systematic study of ro-
tational bands in odd-mass nuclei confirms for the
first time this observation also for pairing regime.
This is because with few exceptions the impact of

particle on the rotational properties of the bands in
odd-mass nuclei is well described in model calcula-
tions. As a consequence, the absolute and relative
properties of different configurations/bands in odd-
mass nucleus with respect of each other and/or with
respect to the ground state band in reference even-
even nucleus provide a reasonably reliable finger-
print of underlying one-quasiparticle configuration
of rotational band in odd-mass nucleus.
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F. G. Kondev, I. Wiedenhöver, I. Ahmad, J. Caggiano,
P. Chowdhury, J. A. Cizewski, D. Cline, M. Devlin, N.
Fotiades, J. P. Greene, G. Hackman, A. Heinz, T. L.
Khoo, T. Lauritsen, C. J. Lister, A. O. Macchiavelli, E.
H. Seabury, D. Seweryniak, A. Sonzogni, and C. Y. Wu,
Phys. Rev. C 70, 024310 (2004).

[100] J. Terasaki, H. Flocard, P.-H. Heenen, P. Bonche, Phys.
Rev. C 55, 1231 (1997).

[101] P. Ring, R. Beck, and H. J. Mang, Z. Phys. 231, 10
(1970).

[102] J. L. Egido, H. J. Mang, and P. Ring, Nucl. Phys.A334,
(1980).

[103] P. Ring and P. Schuck, The Nuclear Many-body Prob-

lem, Springer-Verlag, Heidelberg, 1980.
[104] A. Chatillon, Ch. Theisen, E. Bouchez, P. A. Butler, E.

Clément, O. Dorvaux, S. Eeckhaudt, B. J. P. Gall, A.
Görgen, T. Grahn, P. T. Greenlees, R.-D. Herzberg, F.
Heßberger, A. Hürstel, G. D. Jones, P. Jones, R. Julin,
S. Juutinen, H. Kettunen, F. Khalfallah, W. Korten,
Y. Le Coz,M. Leino, A.-P. Leppänen, P. Nieminen, J.
Pakarinen, J. Perkowski, P. Rahkila, M. Rousseau, C.
Scholey, J. Uusitalo, J. N. Wilson, P. Bonche, and P.-H.
Heenen, Phys. Rev. Lett. 98, 132503 (2007).

[105] A. M. Hurst, C. Y. Wu, M. A. Stoyer, D. Cline, A.
B. Hayes, S. Zhu, M. P. Carpenter, K. Abu Saleem, I.
Ahmad, J. A. Becker, C. J. Chiara, J. P. Greene, R. V.
F. Janssens, T. L. Khoo, F. G. Kondev, T. Lauritsen,
C. J. Lister, G. Mukherjee, S. V. Rigby, D. Seweryniak,
and I. Stefanescu, Phys. Rev. C 81, 014312 (2010).

[106] P. Reiter, T. L. Khoo, I. Ahmad, A. V. Afanasjev, A.
Heinz, T. Lauritsen, C. J. Lister, D. Seweryniak, P.



32

Bhattacharyya, P. A. Butler, M. P. Carpenter, A. J.
Chewter, J. A. Cizewski, C. N. Davids, J. P. Greene,
P. T. Greenlees, K. Helariutta, R.-D. Herzberg, R. V.
F. Janssens, G. D. Jones, R. Julin, H. Kankaanpää, H.
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