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Abstract

It is argued that the fine-tuning due to the unnaturally large, generalized effective range in the 1S0 channel

of NN scattering must be incorporated in order for one to obtain satisfactory convergence for chiral effective

field theory. Without the proposition of perturbative one-pion exchange, an effective field theory with the

spin-0, isospin-1 dibaryon is developed to account for this fine-tuning, and is demonstrated up to O(Q1)

where the leading irreducible two-pion exchange arises. The approach shown in the paper results in rapid

convergence of the 1S0 partial-wave amplitude, though at the cost of an additional parameter at each order.
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I. INTRODUCTION

In the framework of chiral effective field theory (ChEFT), Weinberg’s original power counting

(WPC) [2–5] for nucleon-nucleon scattering requires that at leading order (LO) in the 1S0 channel

a constant contact interaction and one-pion exchange (OPE) be fully iterated. However, a large

discrepancy exists between the resulting EFT LO [4, 6, 7] and partial-wave analysis (PWA) by,

say, the Nijmegen group [8], suggesting rather slow convergence of ChEFT expansion. One pos-

sibility is that there may exist an unexpected infrared mass scale due to fine-tuning of quantum

chromodynamcis (QCD) such that momentum (or energy) dependence must be somehow incor-

porated into the LO short-range interaction, as opposed to WPC [1]. Reference [9] showed that

such an infrared mass scale can be manifested by the inverse generalized effective range in the

modified effective range expansion (ERE) for 1S0 (to be defined model-independently in the pa-

per), 2/r̃ ∼ 100 MeV, whereas its natural value would have been around the break-down scale

of ChEFT— Mhi ∼ mσ ≃ 600 MeV with mσ being the mass of the σ meson. This fine-tuning

requires resummation of kr̃/2 to all orders, where k is the magnitude of the center-of-mass (CM)

momentum.

The large value of the 1S0 scattering length, defined by the regular ERE near threshold, is

yet another, albeit much better-known, fine-tuning of QCD [10]. The two fine-tunings do not

seem to be correlated though, since r̃ has more to do with the energy/momentum dependence of

short-range forces while a is closely related to the constant part. Originally designed to deal with

fine-tuning of a, the machinery of Ref. [1], interestingly, facilitates resumming kr̃/2 to all orders:

Introduce an auxiliary field, called dibaryon field and denoted by φ, that has the same set of

quantum numbers as the 1S0 partial wave— baryon number 2, parity even, spin 0, and isospin 1—

and the s-channel exchange of φ will bring the desired energy dependence to the LO potential. It

is my goal to show in this paper how this machinery can be generalized to include systematically

higher-order corrections, in particular, those of irreducible two-pion exchanges (TPEs). This is

part of our efforts [11–13] to modify WPC and build a consistent and efficient power counting for

chiral nuclear forces.

This goes beyond those works that modify WPC in order to respect renormalization group

(RG) invariance [6, 13–16], in which fine-tuning of momentum-dependent 1S0 counterterms were

not particularly considered. However, the findings of Refs. [13–15] make the fine-tuning of r̃ appear

less surprising than it would for WPC: In the natural chiral system RG invariance would require

that the momentum dependence of 1S0 counterterms arise as O(Q/Mhi) correction to LO, as
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opposed to the underestimation of O(Q2/M2
hi) by WPC.

Another line of investigation on applying the dibaryon fields to chiral nuclear forces can be

found in Refs. [17, 18], in which the dibaryon fields are used for both 1S0 and 3S1 while only the

spin-0 dibaryon is employed in my approach. In addition, the central Yukawa part of OPE [see

Eq. (4)] is treated as perturbation in these works along the line of so-called KSW counting [19],

whereas OPE is considered nonperturbative in this work [see the discussion below Eq. (4).]

For the notation to be more compatible with the literature, I depart from the convention

adopted in our previous papers [12, 13] and denote the order of EFT amplitudes by their absolute

size rather than relative size compared to LO. Therefore, nonperturbative LO will be labeled

in the paper as O(Q−1), which is the scaling for any nonperturbative, nonrelativistic scattering

amplitudes, O(Q/Mhi) corrections to LO as O(Q0), and so on.

Note that the WPC LO of 1S0 has actually another issue, which is not directly related to the

aforementioned slow convergence: WPC fails to prescribe a quark-mass dependent counterterm at

LO which is, however, required by RG invariance [20, 21]. As a by-product of the technique dis-

cussed in this paper to tackle the slow convergence, the quark-mass issue will be solved altogether.

I review in Sec. II the theory without fine-tuning and introduce the unnaturally large, generalized

effective range. I then show in Sec. III how this fine-tuning can be incorporated by utilizing the

dibaryon field, and then demonstrate the corresponding power counting up to O(Q1) where the

leading TPE needs to be accounted for. Finally a summary is offered in Sec. IV.

II. ISSUES AT LEADING ORDER

To motivate the employment of the dibaryon field, I briefly review the original theory that does

not include it. Since most of points to be shown here were already made in the literature, the main

function of this section is to establish the notation.

The leading Lagrangian terms concerning the 1S0 channel of NN scattering are [2, 19, 22]

LNN =
1

2
(∂µπ)

2 − 1

2
m2

ππ
2 +N †

(
i∂0 +

∇2

2mN

)
N − gA

2fπ
N †τaσi(∂iπa)N

− Ĉ0(N
TPaN)†NTPaN − Cqm

0 m2
π

(
1− π2/4f2π
1 + π2/4f2π

)
(NTPaN)†NTPaN

+
C2

8

[
(NTPaN)†NTPa(

←−∇ −−→∇)2N + h.c.
]
+ · · · ,

(1)

where mπ = 138 MeV, gA = 1.26, fπ = 92.4 MeV, mN = 939 MeV, and Pa is the spin-isospin
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projector for the 1S0 channel:

Pa =
1√
8
τ2τaσ2 . (2)

The quark-mass term proportional to Cqm
0 is written in the so-called stereographic coordinates

for π [23]. Not only does it bring m2
π dependence to the contact interactions but produces a

non-derivative ππNNNN vertex.

The leading 1S0 amplitude by WPC is resummation of OPE and a constant 1S0 counterterm

to all orders:

V (−1)(q) = VY(q) + C0 , (3)

with the Yukawa potential and C0 defined as

VY(q) ≡ −
4π

mN

απm
2
π

q2 +m2
π

, C0 ≡ Ĉ0 +
4παπ

mN
. (4)

Here ~q ≡ ~p ′ − ~p, with ~p ′ (~p ) being the outgoing (incoming) momentum in the CM frame, and

α−1
π ≡ 16πf2π/g

2
AmN ∼ 290MeV. If α−1

π is chosen to be an ultraviolet (UV) mass scale, the

resulting power counting is KSW. This is especially plausible if the degrees of freedom of the

delta-isobar are integrated out, and hence the delta-nucleon mass splitting ≃ 300 MeV becomes

the break-down scale. However, I choose to work in a more general scenario that keeps open the

possibility of incorporating the delta-isobar, that is, α−1
π is considered an infrared mass scale in

the paper: α−1
π ∼Mlo. In addition, this allows for exploring situations where m2

π becomes so large

that mπαπ ∼ 1.

The LO 1S0 amplitude can be written as [20]

T (−1)(~p ′, ~p ; k) = TY(~p
′, ~p ; k) +

χ(p′; k)χ(p; k)

1/C0 − Ik
, (5)

where TY is the fully nonperturbative iteration of VY and

χ(p; k) = 1 +

∫
d3l

(2π)3
TY(~l, ~p ; k)

E − l2

mN
+ iǫ

, (6)

Ik =

∫
d3l

(2π)3
χ(l; k)

E − l2

mN
+ iǫ

, (7)

with E = k2/mN being the CM energy. Shown diagrammatically in Fig. 1, the expansions of

χk ≡ χ(k; k) and Ik in powers of VY suggest that χk is finite while Ik has divergences ∝ mN

4π [β0Λ+

β1απm
2
π ln(Λ/µ)], where Λ is the UV momentum cutoff, µ is an infrared renormalization scale, and

β0,1 are numerical factors depending on the form of the regulator.
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FIG. 1: Diagrammatic representation of χ(p; k) and Ik. Here the solid (dashed) lines represent the nucleon

(pion) propagator, and the crossed circles represent no interactions.

The divergent m2
π dependence of Ik immediately calls WPC into question: Chiral-invariant

1/C0 cannot absorb such a chiral-symmetry breaking divergence [20, 21]. (This is not entirely an

academic issue that concerns only extrapolating lattice QCD results to the physical point of mπ.

As mentioned below Lagrangian (1), the m2
π divergence is related through chiral symmetry to one

of the non-derivative ππNNNN vertexes, which may have phenomenological impacts.) Besides

the obvious workaround that is KSW counting, it was proposed in Ref. [21] that promoting to

LO the operator proportional to d2m
2
π— replacing 1/C0 with 1/(C0 + d2m

2
π) in Eq. (5)— will be

able to renormalize the m2
π divergence of Ik. This is quite a striking statement because it is not

immediately clear how 1/(C0 + d2m
2
π), as a fractional function of m2

π, can absorb a divergence

proportional to m2
π. As we will see, the dibaryon field can resolve this issue in a more transparent

way by allowing its mass to be renormalized by iterations of VY.

Although important, the short-range structure related to quark masses does not change the

form of the 1S0 amplitude as a function of the CM momentum, and hence does not help resolve

the other issue at LO which is more phenomenologically urgent, namely, the slow convergence

of EFT expansion in comparison to PWA. Thus, for simplicity in the qualitative discussion of

the convergence issue, I allow C0 to have nontrivial m2
π dependence before we proceed to serious

calculations. With this caveat, one can use 1/C0 to cancel both divergences of Ik and writes on-shell

T (−1) as

T (−1) = TY +
χ2
k

1/CR
0 (µ)− IRk (µ)

, (8)

where IRk (µ) is the µ dependent, finite part of Ik [13]. After fitting to the PWA, one immediately

observes the slow convergence that is manifested by the rather large discrepancy between T (−1)

and the PWA at low energies (see, e.g., Fig. 2 of Ref. [13].) For instance, the LO EFT predicts

≃ 65 degrees for k ≃ mπ whereas the Nijmegen PWA gives ≃ 40 degrees.

However, the next-to-leading-order (NLO) EFT curve fits the PWA well, which means that

the NLO amplitude, T (0), is unexpectedly enhanced. Before any fine-tuning is considered, the
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RG-invariant chiral theory for 1S0 requires that (renormalized) contact coupling constants C0 and

C2 scale as follows [13–15, 19],

CR
0 ∼

4π

mN

1

Mlo
, CR

2 ∼
4π

mN

1

M2
loMhi

, (9)

and hence the O(Q/Mhi) correction to LO (5) is

T (0) =
CR
2

(CR
0 )

2

k2 χk
2

(
1/CR

0 − IRk
)2 . (10)

To see more easily how C0 and C2 are linked to the phase shifts, I recast T (−1) + T (0) in the form

of the modified ERE,

T (−1) + T (0) = TY −
4π

mN

χ2
k

− 1
ã(µ) +

r̃
2k

2 + 4π
mN

IRk (µ)

[
1 +O

(
k

Mhi

)]
, (11)

where

1

ã(µ)
=

4π

mN

1

CR
0

∼Mlo , (12)

r̃

2
= − 4π

mN

CR
2

(CR
0 )

2
∼ 1

Mhi
. (13)

Unlike ã(µ), which depends on the renormalization scale, r̃ is well defined and its value can be

extracted from the phase shifts [9]:

r̃

2
= 1.55 fm =

1

127MeV
. (14)

The fact that 2/r̃ ≪Mhi ≃ 600 MeV signals that the data do not faithfully support the proposed

scaling for r̃/2 in Eq. (13)— the only avenue through which Mhi could have suppressed T (0). To

accommodate the empirical fact r̃/2 ∼ 1/Mlo, we need to develop a new scheme in which the ratio

kr̃/2 are resummed to all orders so that r̃k2/2 appears in the new LO amplitude rather than as a

subleading correction.

The regular 1S0 scattering length, defined as the zero-energy value of the amplitude, is also

unnaturally large: a1S0
≃ −24fm, compared with its would-be natural value of O(1) fm. It is

tempting to consolidate the two fine-tunings and to argue that they come from the same source,

but ChEFT will not be able to do this because at k = 0 where a1S0
is defined, r̃k2/2 does not

contribute. In other words, as far as ChEFT is concerned, dialing r̃ does not seem to have any

effects on a1S0
.

Promoting nothing but C2 to LO seems an obvious way to achieve the resummation of r̃k/2.

This was indeed proposed in Refs. [20, 21, 24] and was numerically shown to work well for a range
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of cutoffs [21]. By arranging some sophisticated runnings for C0 and C2, Ref. [25] claimed that one

can obtain analytically a renormalized LO amplitude. But Ref. [26] argued that iterating both C0

and C2 with different regularization schemes will lead to different results and that with a cutoff

regulator the effective range allowed by the theory cannot be freely chosen— the so-called Wigner’s

bound [27, 28]. So it is still unclear whether one can promote C2 alone without sacrificing RG

invariance.

Besides the aforementioned technical difficulty in renormalization, it will be quite surprising

if fine-tuning of C2 can be isolated without contaminating operators with four or more deriva-

tives. This is because multiple insertions of lower-order counterterms will generally renormalize

higher-order ones through loops. Before fine-tuning being considered, C2n— the coefficient of the

1S0 four-nucleon operator with 2n derivatives— are loosely correlated by Mlo and Mhi, through

dimensionless coefficients, θ2n, that are undetermined but are of O(1) [13]:
C2n

2
(p2n + p′

2n
) =

4π

mN

θ2n

Mn+1
lo Mn

hi

(p2n + p′
2n
) . (15)

(Note that Ref. [14] proposed different scalings for C2n, hence a different type of correlation ensues.)

θ2 being tuned towards larger values while θ0 remaining fixed effectively lowersMhi, and such change

of Mhi will propagate to C2n with n > 2.

Now I recklessly assume that the above correlation is still pertinent even when C2n(n > 1) are

tuned to be so large that Mhi is to be replaced by Mlo in Eq. (15). It then becomes apparent that

all of C2n will be equally important. But an EFT with infinitely many unknown parameters at LO

is not meaningful, unless we impose a stronger correlation among θ2n such that C2n are determined

by a finite number of LO parameters. Consider the following correlation of C2n by two parameters

at LO, θ0/Mlo and θ2/Mlo,

C0 =
4π

mN

θ0
Mlo

, C2n =
4π

mN

(
θ0
Mlo

)n+1( θ2
Mlo

)n

. (16)

At tree level p′ = p = k ∼Mlo, the sum of all C2nk
2n is

∞∑

n=0

C2nk
2n =

4π

mN

1

Mlo/θ0 − θ2k2/Mlo

[
1 +O

(
k2

MhiMlo

)]
. (17)

The above summation resembles a tree-level s-channel exchange of φ in NN scattering:

σy2

E +∆
=

4π

mN

1

σ 4π
mN

(
∆
y2

+ k2

mNy2

) , (18)

with

4π∆

mNy2
∼Mlo ,

4π

m2
Ny

2
∼ 1

Mlo
. (19)
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Here σ = ±1, ∆ is the mass splitting between φ and two free nucleons, and y is the φNN coupling.

As first shown in Ref. [1] and to be reiterated in the next section, the s-channel φ exchange will

bring about the desired LO amplitude in the form of Eq. (11), which is the ultimate justification

for me to have chosen such a correlation as Eq. (16).

III. POWER COUNTING WITH THE 1S0 DIBARYON FIELD

The first few Lagrangian terms involving φ are [1, 29]

Lφ = σφ†
·

(
iD0 +

~D2

4mN
+∆

)
φ+ y

(
φ†aN

TPaN + h.c.
)

+ d2m
2
π

(
1− π2/4f2π
1 + π2/4f2π

)
φ†

· φ+ w2m
2
π

(
1− π2/4f2π
1 + π2/4f2π

)(
φ†aN

TPaN + h.c.
)

+ d4m
4
π

(
1− π2/4f2π
1 + π2/4f2π

)2

φ†
· φ+ · · · ,

(20)

where Dµ is the covariant derivative for an isovector field:

Dµφ ≡ ∂µφ−
(
1 +

π2

4f2π

)−1(
π

fπ
×
∂µπ

2fπ

)
× φ . (21)

Here I have normalized φ so that σ = ±1. Later we will see that fitting to the PWA results in

σ = −1. The d2 term are chiral-symmetry breaking and, as will be seen, it needs to be at LO

because of the fully iterated Yukawa potential. Terms that do not explicitly involve φ but will be

needed in the paper are already shown in Lagrangian (1).

A. O(Q−1)

Following the argument that leads to Eqs. (17) and (18), I revise WPC so that the LO “short-

range” potential is represented by an s-channel exchange of φ:

V (−1) = Vφ(E) + VY , (22)

where

Vφ(E) ≡ σy2

E +∆+ d2m2
π

. (23)

Having both mass and kinetic terms of φ at LO means that Vφ(E) ∼ VY ∼ 4π
mN

m2
π

Mlo(m2
π+Q2) and

that renormalized ∆, d2, and y scale as follows:

∆R ∼ dR2m2
π ∼

M2
lo

mN
and (yR)2 ∼ 4π

mN

Mlo

mN
. (24)
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The new LO potential is computationally equivalent to an energy-dependent C0 in the dibaryon-

less theory. With such an observation, we can write the new LO 1S0 amplitude in an analogy to

Eq. (5):

T (−1) = TY +
χ2
k

σ∆+d2m2
π

y2
+ σ k2

y2mN

− Ik
. (25)

The necessity of having d2m
2
π at LO is now clear; its assignment is to subtract them2

π ln Λ divergence

of Ik. It is worth stressing that promoting d2m
2
π is independent of resumming the kinetic term

of φ, which will be shown below to be responsible for generating r̃ at LO. That is, even if we

decide to live with the slow convergence of perturbative r̃/2, the dibaryon still presents itself as a

viable option for absorbing the m2
π lnΛ divergence of Ik. d2m

2
π defying naive dimensional analysis

has another consequence besides affecting the quark-mass dependence of the 1S0 amplitude. As

indicated by Lagrangian (20), the promoted d2m
2
π gives rise to an unsuppressed, non-derivative

ππφφ coupling:

Lππφφ = −d2m2
π

π2

2f2π
φ†

· φ . (26)

Again, renormalization of other Lagrangian parameters is perhaps most elucidated in the form

of modified ERE:

T (−1) = TY −
4π

mN

χ2
k

− 1
ã
+ r̃

2k
2 + 4π

mN
IRk (µ)

, (27)

with the generalized scattering length and generalized effective range defined for Λ→∞ as

1

ã(µ)
≡ 4π

mN

{
σ∆R

(yR)2
+m2

π

σ dR2
(yR)2

}
∼Mlo , (28)

r̃

2
≡ − 4π

mN

σ

mNy2
∼ 1

Mlo
, (29)

where

σ
∆R

(yR)2
≡ σ∆

y2
− β0Λ , σ

dR2
(yR)2

≡ σd2
y2
− β1απ ln

(
Λ

µ

)
, and yR ≡ y . (30)

Thus, we arrive at the desired scalings for ã and r̃. For a finite value of Λ, r̃ has residual Λ

dependence that vanishes at the rate of 1/Λ. The details of the numerical calculations will be set

up later, but I would like to remark that for Λ = 800 MeV, r̃/2 is found to be 1/115 MeV, which

is consistent with its value stated in Ref. [9]. Equation (29) tells us that r̃/2 and σ must have

opposite signs; therefore, σ = −1.
The form of the LO 1S0 wave function in coordinate space will be needed for later use. Since they

are somewhat out of the main line of the physics, I relegate the technical details of its construction

to Appendix A.
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B. O(Q0)

The most general dibaryon Lagrangian is bound to have many redundant terms because there

will not be enough observables to pin them down, due to the fact that φ does not correspond to any

particle appearing in asymptotic states. I choose to minimize the number of φ-related operators

and to have four-nucleon contact operators be responsible for improving short-range interactions

at subleading orders. This choice means that after the φ exchange taking away the dominant part

of short-range interactions, C0 of the dibaryon Lagrangian represents higher-order effects:

C0 ∼
4π

mN

1

Mhi
. (31)

Note that I have slightly modified the scheme of Ref. [1] in which C0 was put on equal footing with

the φ exchange.

It is convenient to expand formally bare low-energy constants (LECs) to reflect the fact that

even though the number of physical inputs must stay the same, their RG running may change at

each order,

∆B = ∆(−1) +∆(0) +∆(1) + · · · , (32)

dB2 = d
(−1)
2 + d

(0)
2 + d

(1)
2 + · · · , (33)

yB = y(−1) + y(0) + y(1) + · · · , (34)

CB
0 = C

(0)
0 + C

(1)
0 + · · · , (35)

· · ·

where the expansions are in powers of 1/Mhi. For each parameter, the superscript of the leading

term in its expansion marks the order it starts to contribute. For instance, since C
(0)
0 is the first

term in Eq. (35), O(Q0) will be the order C0 occurs for the first time. However, in order to improve

the readability of the manuscript, I make a few exceptions and will drop the superscript (−1) for

the first term of ∆, d2, and y.

NLO potential V (0) consists of only contact interactions and corrections to ∆, d2, and y:

V (0) = C
(0)
0 + 2

(
y(0) + w

(0)
2 m2

π

) Vφ
y
− σ

(
∆(0) + d

(0)
2 m2

π + d
(0)
4 m4

π

)(Vφ
y

)2

. (36)

Despite the energy dependence of Vφ, the technique shown in Appendix B of Ref. [13] is still

useful for evaluating insertions of V (0). One can find a single insertion of V (0) to give rise to the
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generalized shape parameter, in addition to m4
π and m2

π corrections to 1/ã and r̃/2, respectively:

T (0) =
4π

mN

[
−( 1

ã
)(0) +

(
r̃
2

)(0)
k2 + ṽ2 k

4

]
χ2
k

(
− 1

ã
+ r̃

2k
2 − 4π

mN
IRk

)2 , (37)

where

(
1

ã

)(0)

= −m4
π

4π

mN

σ

y2

(
σ
C

(0)
0 d22
y2

+ 2
w

(0)
2 d2
y
− d(0)4

)
, (38)

(
r̃

2

)(0)

= m2
π

4π

mN

2σ

y3

(
C

(0)
0 d2
mNy

+ w
(0)
2

)
, (39)

ṽ2 =
mN

4π
C

(0)
0

r̃2

4
. (40)

Here I have chosen ∆(0), d
(0)
2 , and y(0) to be such that the chiral invariant parts of 1/ã and r̃/2

and m2
π part of 1/ã remain their LO values:

−σ∆
y2

(
σ
C

(0)
0 ∆

y2
+ 2

y(0)

y
− ∆(0)

∆

)
= 0 , (41)

−m2
π

σ∆

y2

[
2σ
C

(0)
0 d2
y2

+ 2

(
w

(0)
2

y
+
y(0)

y

d2
∆

)
− d

(0)
2

∆

]
= 0 , (42)

2
σk2

mNy2

(
σ
C

(0)
0 ∆

y2
+
y(0)

y

)
= 0 . (43)

T (−1) + T (0) can be rewritten in the form of modified ERE:

T (−1) + T (0) = TY −
4π

mN

χ2
k

− 1
ã
+ r̃

2k
2 + ṽ2k4 +

4π
mN

IRk
+O

(
Q

Mhi
T (−1)

)
. (44)

Power counting (31) is then equivalent to estimating ṽ2 as

ṽ2 ∼
1

Mhi

r̃2

4
∼ 1

M2
loMhi

, (45)

which is compatible with the value extracted in Ref. [9],

ṽ2 =
r̃2/4

550MeV
, with

r̃

2
=

1

127MeV
, (46)

and the value by this work for Λ = 800 MeV,

ṽ2 =
r̃2/4

693MeV
, with

r̃

2
=

1

115MeV
. (47)
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C. O(Q1)

1. Residual counterterms

It is, if only academically, interesting to ask how counterterms will scale if TPEs and higher-order

multiple-pion exchanges are completely turned off while the strength of OPE remains unchanged,

which can be achieved by taking 1/f2π → 0 but keeping mN/f
2
π fixed. Higher-order counterterms

in this scenario, referred to as “residual counterterms” in Ref. [13], will be responsible for all the

subleading corrections, and the modified ERE is expected to be valid to all orders and to acquire

k2n terms beyond ṽ2k
4,

TY −
4π

mN

χ2
k

− 1
ã
+ r̃

2k
2 +

∑
n=2

ṽnk2n + 4π
mN

IRk
. (48)

I wish to find out how ṽn (for n > 3) will scale in such a hypothetical scenario.

Next-to-next-to-leading-order (NNLO) amplitude T (1) includes two insertions of C0, which can

be compared with a single insertion of C2(p
2 + p′2)/2:

T
(1)

2V (0)+C
(1)
2

=
4π

mN

χ2
k(

− 1
ã
+ r̃

2k
2 + 4π

mN
IRk

)2

(
ṽ3k

6 − ṽ2k
4

− 1
ã
+ r̃

2k
2 + 4π

mN
IRk

+ · · ·
)
, (49)

with

ṽ3 ≡
ṽ22
r̃/2

+
mN

4π
C

(1)
2

r̃2

4
, (50)

and · · · referring to m2
π corrections to 1/ã, r̃/2, and ṽ2, which are not pertinent to the present

discussion. C
(1)
2 is not running with Λ, but it is nonetheless renormalized by a term quadratic

in C
(0)
0 [C

(0)
0 is related to ṽ2 through Eq. (40).] With fine-tuning having been accounted for by

the resummation at LO, it is reasonable to expect naturalness to retain its power in counting.

Therefore, the two terms contributing to ṽ3 must have similar sizes, resulting in

ṽ3 ∼
1

M3
loM

2
hi

and C2 ∼
4π

mN

1

MloM
2
hi

. (51)

More generally, one can show that ṽn+1 will have contributions, among others, from n insertions

of C0 and one insertion of C2n−2(p
2n + p′2n)/2:

ṽn+1 =
ṽn2
r̃/2

+
mN

4π
C2n−2

r̃2

4
+ · · · , (52)

which leads to

ṽn+1 ∼
1

Mn+1
lo Mn

hi

, C2n−2 ∼
4π

mN

1

Mn−1
lo Mn

hi

. (53)
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2. Two-pion exchange

Let us turn to the leading TPE, V2π. Throughout our efforts [11–13] to modify WPC, we have

taken the position that the standard chiral counting does not need to change for pion-exchange

diagrams [2], which essentially describe long-range physics through non-analytic functions of mo-

menta. This means that since V2π is suppressed by O[Q2/(4πfπ)
2] relative to OPE, the single

insertion of V2π into the nonperturbative LO amplitude is also suppressed by O[Q2/(4πfπ)
2].1

But one still needs to to determine what counterterms are required to renormalize the UV part

of the single insertion of V2π. They are called “distorted-wave counterterms” in Ref. [13] because a

single insertion of V2π is equivalent to the matrix element of V2π between the LO wave functions—

the distorted wave for the LO potential [13, 16]—

〈ψk|V2π|ψk〉 = 4π

∫

∼Λ−1

dr r2ψ2
k(r) Ṽ

(0)
2π (r) . (54)

Near the origin, ψk(r) can be expanded in powers of (kr)2 [see Eq. (A13)] and V2π ∝ 1/r5; therefore,

one can find the superficial divergence of 〈ψk|V2π|ψk〉 to be

4π

∫

∼Λ−1

dr r2ψ2
k(r) Ṽ

(0)
2π (r)

∝
(

χk

V −1
φ − Ik

)2 (
ρ0Λ

4 + ρ1r̃k
2Λ3 + ρ2r̃

2k4Λ2 + ρ3r̃
2k6 ln Λ

)
+ F.T. ,

(55)

where “F.T.” refers to finite terms and ρn have at most logarithmic dependence on Λ.

To identify the needed counterterms, we first notice that C2(p
2 + p′2)/2 produces k6χ2

k/(V
−1
φ −

Ik)
2, as suggested by Eqs. (49) and (50). Furthermore, one can show that other divergences with

lower powers of k2 than k6 can be subtracted by corrections to ∆, y, and C0. With every piece

put together, V (1) has the form:

V (1) = V2π +
C

(0)
2

2
(p2 + p′

2
) + λ0 + λ1Vφ(E) + λ2V

2
φ (E) + λ3V

3
φ (E) . (56)

It would be an unnecessary bore to write down the expressions of λi in terms of ∆(1), y(1), etc.,

because in practice all we need to know is that λi are independent of energy or momenta. I have

also stopped pursuing the complete understanding of m2
π dependence, which will be dealt with in

a future publication.

1 However, I would like to remind the reader that a different point of view towards numerical factors of π in chiral
counting can be found in Ref. [30].
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It simplifies tremendously the work of establishing power counting that V2π does not demand

for renormalization purpose more counterterms than the residual counting (53) provides. I ex-

trapolate this observation to any irreducible multiple pion exchanges and conclude that all of 1S0

counterterms are prescribed by power counting (53).

D. Results

Although the formal expressions shown in previous subsections reveal the renormalization and

the analytic structure of the amplitude at each order, a complete analytical calculation is still

unlikely, for quantities like χ(p; k) and Ik cannot be computed analytically. Below I will elaborate

the setup of numerical calculations for the 1S0 phase shifts and discuss the results.

The potentials are regularized with a separable momentum-space regulator:

VΛ(~p
′, ~p;E) = exp

(
−p

′4 + p4

Λ4

)
V (~p ′, ~p;E) . (57)

While the LO amplitude is generated nonperturbatively by solving the Lippmann-Schwinger equa-

tion for the LO potential (36),

T (−1) = V (−1) + V (−1)GT (−1) , (58)

where G is the Schrödinger propagator, the subleading corrections are calculated through pertur-

bative insertions of V (0) (36) and V (1) (56),

T (0) =
(
1 + T (−1)G

)
V (0)

(
GT (−1) + 1

)
, (59)

T (1) =
(
1 + T (−1)G

) [
V (1) + V (0)

(
G+GT (−1)G

)
V (0)

] (
GT (−1) + 1

)
, (60)

in which I will adopt from Ref. [4] the delta-less version for V2π.

Figure 2 shows the EFT results for 1S0 phase shifts up to and including O(Q1). In panel (a),

the LO is obtained by fitting to the PWA points at Tlab = 5 and 15 MeV. At O(Q0) and O(Q1), 25

and 50 MeV are added, respectively. The bands are generated by Λ = 0.6 − 2 GeV. Above Λ = 2

GeV, the cutoff variation is smaller than one tenth degree at, e.g., Tlab = 130 MeV. Compared with

the dibaryon-less theory [13, 16], the new formulation fits much better to the PWA and converges

rapidly, at the cost of one more short-range parameter at each order. The breakdown of convergence

around Tlab ≃ 200 MeV is not surprising, for the delta-isobar is not explicitly considered.

The small correction provided by the leading TPE reassures its perturbative nature. This is in

contrast to the WPC-based study of Ref. [31], which suggested that in order to have perturbative
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FIG. 2: (Color online) 1S0 phase shifts as a function of laboratory energy. The black dots are from the

Nijmegen PWA [8]. In panel (a), the light blue, green, and dark orange bands are O(Q−1), O(Q0), and

O(Q1) calculated with Λ = 0.6 − 2 GeV. In panel (b), O(Q0) (green dot-dashed line) and O(Q1) (dark

orange solid line) are plotted with Λ = 1 GeV.

multiple-pion exchanges the cutoff needs to be soft, and the speculation of Ref. [32] that the

delta-isobar may be the source for the slow convergence.

To get an idea of how much the fit can be further improved, I fit to PWA points at higher

energies, and the results are shown in panel (b) of Fig. 2. There the fitted PWA points are at

Tlab = 50 MeV for O(Q0) and Tlab = 150 MeV for O(Q1), while the inputs for LO did not change

from panel (a). Since the cutoff dependence is no longer a concern, only Λ = 1 GeV is used for

O(Q0) and O(Q1).

IV. SUMMARY

I have considered the EFT expansion for 1S0 of NN scattering in which the generalized effective

range r̃/2 is counted as an infrared length scale due to fine-tuning of the underlying theory. The

new expansion was made possible by an auxiliary, dibaryon field φ that has the same quantum

numbers as the 1S0 partial wave [20]. At LO, the fine-tuning in question is incorporated by iterating

the s-channel exchange of φ to all orders. The price to pay for the nonperturbative treatment of

r̃/2 is an additional short-range parameter at each order, compared with the power counting for

perturbative r̃/2 [13, 15].

I chose to minimize the number of φ-dependent operators and to use four-nucleon counterterms

to account for subleading short-range forces. If irreducible multiple-pion exchanges were hypothet-

ically turned off, power counting of the so-called residual counterterms could be considered. C2n
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would appear in the O(Qn+1/Mn+1
hi ) corrections to LO and would scale as

C2n ∼
4π

mN

1

Mn
loM

n+1
hi

. (61)

This counting was actually found to provide enough counterterms to absorb the divergences of

TPEs, when they are turned back on and are inserted to the LO amplitude. Therefore, the

above power counting is the final answer we were looking for. The numerical results showed much

improved convergence of the EFT 1S0 phase shifts.

Besides resumming r̃/2, the dibaryon field provides a transparent mechanism to deal with quark-

mass dependent contact operators that concern the 1S0 channel. At LO the dibaryon field absorbs

the logarithmic m2
π divergence by allowing its mass to be renormalized. Through chiral symmetry,

this immediately calls for renormalization-driven promotion of the quark-mass dependent, non-

derivative ππφφ coupling [see Eq. (26).] I also showed the m2
π dependence of the 1S0 operators up

to O(Q0). A more complete study on the quark-mass dependence of low-energy 1S0 scattering is

reserved for a future publication.
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Appendix A: LO wave function

I follow the technique developed in Ref. [20] to obtain the short-distance behavior of the LO 1S0

wave function. In the limit Λ → ∞, the LO potential has the following formal coordinate-space

form:

Ṽ (0)(~r ) = Vφ(E)δ(3)(~r ) + ṼY(r) , (A1)
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where ṼY(~r ) is the Fourier transform of the Yukawa potential and Vφ is defined in Eq. (36). The

in-state, S-wave wave function formally satisfies

[
− 1

mN

(
d2

dr2
+

2

r

d

dr

)
+ ṼY − E

]
ψk(r) = −Vφ(E)ψk(0)δ

(3)(~r ) , (A2)

and can be written as a linear combination of the regular and irregular solutions to the Schrödinger

equation for ṼY,

ψk(r) = a(k)Jk(r) + b(k)Hk(r) , (A3)

where Jk(r) and Hk(r) are normalized so that they satisfy

[
− 1

mN

(
d2

dr2
+

2

r

d

dr

)
+ ṼY − E

]
Jk(r) = 0 , (A4)

[
− 1

mN

(
d2

dr2
+

2

r

d

dr

)
+ ṼY − E

]
Hk(r) = δ(3)(~r ) , (A5)

While Jk(r) → j0(kr) for r → 0, where j0(x) is the zeroth spherical Bessel function, Hk has the

following form for r → 0:

Hk(r) =
mN

4π

[
1

r
B(kr, κπr)− 2κπA(kr, κπr) ln (µr)

]
, (A6)

where κπ = m2
παπ and A(x, y) and B(x, y) are dimensionless functions that are analytic at x, y = 0.

Using the above expression one can obtain the expansion of Hk(r) in powers of (kr)2 and/or (κπr)
2

near the origin.

For any cutoff regulator, the delta potential gets smeared away from the origin, up to a dis-

tance characterized by R ≡ Λ−1. Solution (A3) in fact governs the “outside region”, r & R.
Reference [20] showed that the singularity of Hk(R) for R → 0 can be related to the diver-

gences of Ik. To see this, notice that Eqs. (A4) and (A5) indicate that certain linear combination

of Hk(r) and Jk(r) makes up the S-wave interacting Green function for the Yukawa potential:

GY (r;E) ≡ 〈r, Y 0
0 (θ, φ)| (E −H0 − VY + iǫ)−1 |~x = 0〉 with H0 being the free two-nucleon Hamil-

tonian and Y 0
0 (θ, φ) the S-wave spherical harmonic. The divergences of GY (0;E) is completely

described by Hk(R→ 0) and does not depend on the Jk part, since Jk(r) behaves well near r = 0.

On the other hand, Ik is precisely GY (0;E), most easily seen from its diagrammatic representation

in Fig. 1. Now we can identify the divergences of Ik, −β0Λ − β1κπ ln(Λ/µ), with Hk(R → 0).

This means that following subtractions in Eqs. (28) and (29), one can also use V −1
φ to subtract the

singularity of Hk(R → 0):

V −1
φ +Hk(0) =

mN

4π

(
−1

ã
+
r̃

2
k2
)
. (A7)
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Substituting Eq. (A3) in Eq. (A2) and applying Eqs. (A4) and (A5) on the left-hand side of

Eq. (A2), we find

b = −Vφ(E)ψk(0) = b
[a
b
+Hk(0)

]
. (A8)

On the other hand, ψk(0) is generally related to the LO off-shell T-matrix by

ψk(0) = 1 +

∫
d3l

(2π)3
T (−1)(~l,~k; k)

E − l2

mN
+ iǫ

. (A9)

Using Eq. (5), with C0 being replaced with Vφ(E), in the above equation, one finds

ψk(0) =
χkV

−1
φ

V −1
φ − Ik

=
4π

mN

χkV
−1
φ

− 1
ã
+ r̃

2k
2 − 4π

mN
IRk

. (A10)

Using the above expression and Eq. (A7) in Eq. (A8) gives

b = − χk

V −1
φ − Ik

, (A11)

a

b
= −

[
V −1
φ +Hk(0)

]
= −mN

4π

(
−1

ã
+
r̃

2
k2
)
. (A12)

It is worth noting the difference between this LO wave function and that of the dibaryon-less

theory: While b stays the same, a/b now has k2 dependence, in contrast to being a constant in the

dibaryon-less theory [1, 13], a consequence stemming from the fact that the LO contact interaction

now provides two inputs for the outside wave function.

We can now put these back into Eq. (A3) to have a more clear expression of the short-distance

behavior of ψk(r):

ψk(r) = −
χk

V −1
φ − Ik

mN

4π

{
1

r
A(kr, κπr)−

[
2κπ ln(µr)−

1

ã
+
r̃

2
k2
]
B(kr, κπr)

}
. (A13)

This expression is in principle accurate only for R ≪ r ≪ k−1, and the specification of the

regularization scheme is expected to change the details of the wave function near r ∼ R. But

this does not invalidate the qualitative statement I made in Eq. (55) regarding the divergences of

〈ψk|V2π|ψk〉.

[1] D. B. Kaplan, Nucl. Phys. B 494, 471 (1997).

[2] S. Weinberg, Phys. Lett. B 251, 288 (1990); Nucl. Phys. B 363, 3 (1991).

[3] C. Ordonez, L. Ray, and U. van Kolck, Phys. Rev. Lett. 72, 1982 (1994); Phys. Rev. C 53, 2086 (1996).

18



[4] E. Epelbaum, W. Gloeckle, and U. -G. Meissner, Nucl. Phys. A 637, 107 (1998); Nucl. Phys. A 671,

295 (2000).

[5] D. R. Entem and R. Machleidt, Phys. Lett. B 524, 93 (2002); Phys. Rev. C 66, 014002 (2002).

[6] A. Nogga, R. G. E. Timmermans, and U. van Kolck, Phys. Rev. C 72, 054006 (2005).

[7] C. J. Yang, C. Elster, and D. R. Phillips, Phys. Rev. C 77, 014002 (2008); Phys. Rev. C 80, 044002

(2009).

[8] V. G. J. Stoks, R. A. M. Klomp, M. C. M. Rentmeester, and J. J. de Swart, Phys. Rev. C 48, 792

(1993) (http://nn-online.org).

[9] J. V. Steele and R. J. Furnstahl, Nucl. Phys. A 645, 439 (1999).

[10] S. R. Beane, P. F. Bedaque, K. Orginos, and M. J. Savage, Phys. Rev. Lett. 97, 012001 (2006).

[11] Bingwei Long and U. van Kolck, Annals Phys. 323, 1304 (2008).

[12] Bingwei Long and C. J. Yang, Phys. Rev. C 84, 057001 (2011); Phys. Rev. C 85, 034002 (2012).

[13] Bingwei Long and C. J. Yang, Phys. Rev. C 86, 024001 (2012).

[14] T. Barford and M. C. Birse, Phys. Rev. C 67, 064006 (2003).

[15] M. C. Birse, Phys. Rev. C 74, 014003 (2006).

[16] M. Pavon Valderrama, Phys. Rev. C 83, 024003 (2011).

[17] J. Soto and J. Tarrus, Phys. Rev. C 78, 024003 (2008); Phys. Rev. C 81, 014005 (2010); Phys. Rev. C

85, 044001 (2012).

[18] S. -I. Ando and C. H. Hyun, Phys. Rev. C 86, 024002 (2012).

[19] D. B. Kaplan, M. J. Savage, and M. B. Wise, Phys. Lett. B 424, 390 (1998); Nucl. Phys. B 534, 329

(1998).

[20] D. B. Kaplan, M. J. Savage, and M. B. Wise, Nucl. Phys. B 478, 629 (1996).

[21] S. R. Beane, P. F. Bedaque, M. J. Savage, and U. van Kolck, Nucl. Phys. A 700, 377 (2002).

[22] S. Fleming, T. Mehen, and I. W. Stewart, Nucl. Phys. A 677, 313 (2000).

[23] S. Weinberg, Phys. Rev. 166, 1568 (1968).

[24] D. B. Kaplan and J. V. Steele, Phys. Rev. C 60, 064002 (1999).

[25] J. Gegelia and G. Japaridze, Phys. Lett. B 517, 476 (2001).

[26] D. R. Phillips, S. R. Beane, and T. D. Cohen, Annals Phys. 263, 255 (1998).

[27] E. P. Wigner, Phys. Rev. 98, 145 (1955).

[28] D. R. Phillips and T. D. Cohen, Phys. Lett. B 390, 7 (1997).

[29] P. F. Bedaque and H. W. Griesshammer, Nucl. Phys. A 671, 357 (2000).

[30] V. Baru, E. Epelbaum, C. Hanhart, M. Hoferichter, A. E. Kudryavtsev, and D. R. Phillips, Eur. Phys.

J. A 48, 69 (2012).

[31] D. Shukla, D. R. Phillips, and E. Mortenson, J. Phys. G 35, 115009 (2008).

[32] M. C. Birse, Eur. Phys. J. A 46, 231 (2010).

19


