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We derive relations for baryon photo-decay amplitudes both for the Breit-Wigner and the pole
positions. With an updated SAID partial wave analysis, technically similar to the earliest Virginia
Tech analysis of photoproduction data, we compare photo-decay amplitudes at both resonance
positions for a few selected nucleon resonances. Comparisons are made and a qualitative similarity,
seen between the pole and Breit-Wigner values extracted by the Bonn-Gatchina group, is confirmed
in the present study.
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I. INTRODUCTION

Baryon resonance properties, evaluated at the pole po-
sition, are beginning to supersede and replace quanti-
ties which have generally been determined using Breit-
Wigner (BW) plus background parameterizations. This
is reflected in the most recent [1] Review of Particle Prop-
erties, with many pole values coming from the recent
Bonn-Gatchina multi-channel analyses [2]. While the
pole extraction is well-defined and less model-dependent
than the Breit-Wigner approach, the continuation of fit
amplitudes to the pole is itself a possible source of er-
ror. This has motivated numerous studies involving
speed plots, Laurent series representations, regulariza-
tion methods, and contour integration [3–8]. Here we
will compare Breit-Wigner and pole extractions, using an
early SAID fit form, with the focus on N* photo-decay
amplitudes.

As the amplitude itself becomes infinite at the pole, we
are interested in residues. We first clarify the connection
between multipole residues and the photo-decay ampli-
tudes. This can be related to a result published with the
first SAID photoproduction fits [9]. A comparison of re-
cent results and the first attempts tabulated in Ref. [9]
reveal some large discrepancies. We study and resolve
this problem below.

The photo-decay amplitudes determined via Breit-
Wigner and pole methods, as given by the Bonn-
Gatchina group [2], tend to be very similar in modulus.
We reproduce this trend within the original SAID pho-
toproduction model.

II. BREIT-WIGNER VERSUS POLE

QUANTITIES

The total cross section of pion photoproduction can be
written in terms of helicity multipoles by

σγ,π =
1

2
(σ1/2

γ,π + σ3/2
γ,π ) , (1)

σh
γ,π = 4π

q

k

∑

α(ℓ,J,I)

(2J + 1) |Ah
α|2 C2 , (2)

with q and k being the center-of-mass pion and photon
momenta. The factor C is

√

2/3 for isospin 3/2 and −
√
3

for isospin 1/2. The helicity multipoles are given in terms
of electric and magnetic multipoles
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2
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with J = ℓ+1/2 for ’+’ multipoles and J = (ℓ+1)− 1/2
for ’−’ multipoles, all having the same total spin J .
Comparing with the definition of the cross section from

a unitary amplitude [10]

σi,f =
4π

k2
2J + 1

(2s1 + 1)(2s2 + 1)
|Ti,f |2, (7)

where k is the c.m. momentum in the initial state and s1
and s2 are the spins of the two incoming particles, allows
us to compare the (γN) channel, in a consistent way, to
other inelastic channels.
For the polarized photoproduction cross section with

helicity h we have

σh
γ,π =

2π

k2
(2J + 1) |T h

γ,π|2, (8)
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leading to the relation between unitary and helicity am-
plitudes

T h
γ,π =

√

2kq Ah
α C . (9)

For a better understanding of the difference between
Breit-Wigner parameters and pole parameters, the uni-
tary amplitude can be written in terms of a propagator
and initial and final partial widths [10],

T h
γ,π(W ) =

(Γh/2)
1/2 (Γπ/2)

1/2

M −W − iΓ/2
. (10)

At the Breit-Wigner resonance position Wr = M the am-
plitude becomes purely imaginary and the BW resonance
amplitude is defined as

T̃ h
γ,π = Im T h

γ,π(Wr) (11)

=
Γ
1/2
h Γ

1/2
π

Γ
. (12)

At the pole position, Wp = M − iΓ/2, the amplitude
becomes infinite and the pole parameter is defined as the
complex residue

Rh
γ,π = Res T h

γ,π(Wp) (13)

=
Γ
1/2
h Γ

1/2
π

2
. (14)

Note that, traditionally, the residues of baryon reso-
nances have been defined with a relative minus sign com-
pared to the standard mathematical definition.
The complex residue can be factorized in

Rh
γ,π =

√

Res T h
γN(Wp) Res TπN(Wp) . (15)

For these residues we will use in the following the short
hand notation Resγ(h)N and ResπN .
At the BW position, the total photoproduction cross

section with helicity h is

σh
γ,π =

2π

k2
(2J + 1)

Γh Γπ

Γ2
(16)

and the unpolarized cross section is

σγ,π =
π

k2
(2J + 1) (Γ1/2 + Γ3/2)

Γπ

Γ2
. (17)

With the relation [11, 12] between the e.m. width and
the photo-decay amplitudes A1/2, A3/2

Γγ(Mr) =
k2

π

2

2J + 1

mN

Mr
(|A1/2|2 + |A3/2|2) (18)

the total cross section takes the form

σγ,π(Mr) =
2mNΓπ,r

MrΓ2
r

(|A1/2|2 + |A3/2|2) , (19)

where Γr and Γπ,r are widths evaluated at the BW res-
onance energy Mr and mN is the nucleon mass.

Eq. (18) can be used as a definition for the photo-decay
amplitudes

Ah =

√

π(2J + 1)M

2k2mN
Γ
1/2
h (20)

and by comparison with Eqs. (9,12) we obtain the am-
plitudes at the Breit-Wigner position

ABW
h = C

√

qr
kr

π(2J + 1)MrΓ2
r

mNΓπ,r
Ãh

α . (21)

Similarly, a comparison with Eqs. (9,14,15) leads to the
amplitudes at the pole position

Apole
h = C

√

qp
kp

2π(2J + 1)Mp

mNResπN
ResAh

α , (22)

where the subscript p denotes quantities evaluated at the
pole position. The pole mass Mp is the real part of the
pole position Wp [13].
Finally, normalized residues, partial widths, and

branching ratios at the pole can also be determined in
accordance to the conventions of the PDG.
The normalized residues are the residues divided by

the half-width at the pole,

(NR)hγ,π =
Rh

γ,π

Γp/2
=

Γ
1/2
h Γ

1/2
π

Γp
, (23)

and obtain complex values, whereas the partial widths of
the πN and γN channels,

Γπ,p = 2|ResπN | , (24)

Γh,p = 2|Resγ(h)N | =
2 |Rh

γ,π|2
|ResπN | , (25)

and the branching ratios at the pole

BRpole(πN) =
Γπ,p

Γp
=

|ResπN |
Γp/2

, (26)

BRpole(γ
hN) =

Γh,p

Γp
=

|Rh
γ,π|2

|ResπN |Γp/2
(27)

acquire real and positive numerical values.

III. A SIMPLE MODEL TEST

In the first SAID analysis of pion photoproduction
data [9], multipoles were fitted using the form

Mℓ = (Born +B(W ))
(

1 + iT ℓ
πN

)

+ C(W )T ℓ
πN , (28)

based on a simple K-matrix approach [14]. This form had
the advantage that only the elastic πN T-matrix was re-
quired ( T ℓ

πN ), as connected to photoproduction via Wat-
son’s theorem below the ππN threshold, and continuing
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smoothly from this constraint as the πN partial waves
became inelastic. In the above, ℓ is the relative πN an-
gular momentum. Labels for isospin and total spin have
been suppressed. The phenomenological pieces, B(W )
and C(W ) were polynomials in energy with the required
threshold behavior, and were fitted for each partial wave.
In deriving Eq. (28), the inelasticity was assumed to

be dominated by a single channel. This simple approach
has now been improved [15]. However, given a known set
of elastic residues and pole positions for the underlying
πN reaction, the above form provides a simple test case
for extracting pole-related quantities in pion photopro-
duction, while giving a reasonable fit to data. This fit
has been reproduced for the present study.
The πN T-matrix terms in Eq. (28) contain informa-

tion regarding included resonances and opening thresh-
olds [16, 17]. As a result, the energy dependent pre-
factors are quite smoothly varying and can be represented
by low-order polynomials in energy. Here, and in Ref. [9],
the multipole residues were extracted from the known πN
pole positions and residues, and a straightforward eval-
uation of the energy-dependent pre-factors at the pole
position.
Beyond being just a toy model, the form in Eq. (28)

was fitted to data from the π+n threshold to a lab photon
energy of 2 GeV, sufficient to compare with the results of
Ref. [9] and other more recent determinations [2]. Results
for both Breit-Wigner plus background and pole deter-
minations are given in Table I. The form of background-
resonance separation is very similar to that used in the
MAID fits [18], and is detailed in Ref. [19]. Errors for the
Breit-Wigner fits were determined by fitting the multi-
poles from the form of Eq. (28), using a Breit-Wigner
resonance, over varying energy ranges. For the pole de-
terminations, the Born + B(W ) and C(W ) were repre-
sented by two polynomials, α(W ) and β(W ), of varying
orders, over a range of energies sufficient for extrapola-
tion to the pole. Stability of these results, and errors
from the πN elastic pole determinations, were combined
in a representative error.

IV. RESULTS AND CONCLUSIONS

From Table I, we see that the pole and Breit-Wigner
determinations, for the states considered in Ref. [9] plus a
nearby state, are quite similar in modulus. In the earlier
determination, however, the pole ’widths’, constructed
from squares of the helicity amplitudes were found to
be qualitatively similar for the ∆(1232) and N(1520),
but radically different for the N(1440) and N(1535) -
differing in the latter cases by factors of about 2 and 5
respectively. A possible cause of the discrepancy is seen
in the N(1440) and N(1535) pole positions and elastic
residues. From 1990 to present, the modulus of the elastic
residue has shifted from 108 to 38 MeV, for N(1440), and
from 54 to 16 MeV, for the N(1535). For these states,
the pole positions have also shifted significantly.

For the pole amplitudes extracted in Table I, results are
generally quite similar to those from the Bonn-Gatchina
group [2]. An exception is the N(1535), where the simple
model of Ref. [9] is known to differ significantly from a
more sophisticated approach [2, 15]. A substantial ben-
efit from the pole extraction is found for the nearby
N(1650). BW fits to the underlying πN amplitude
have produced unreliable width/elasticity values which,
in turn, have made BW fits to photoproduction multi-
poles difficult and similarly unreliable. None of these
issues affect the pole determination.

Prior to the recent work of the Bonn-Gatchina
group [2], significant differences were seen in comparing
photoproduction amplitudes, determined through BW
and pole determinations. These included the early fits
of Ref. [9] as well as determinations of the E2/M1 ra-
tio [20, 21] for the ∆(1232). In the latter case, stability
of this ratio at the pole was found to be better than as-
sociated BW fits. Here we have repeated the study of
Ref. [9], finding results in qualitative if not quantitative
agreement with those of Ref. [2]. Results are often quite
similar to BW determinations, apart from a phase. In
cases where these values differ, the pole determination is
more reliable.
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Breit-Wigner Values Pole Values

Resonance (Mass,Width) Γπ/2 A1/2 A3/2 (ReWp , −2Im Wp) Rπ A1/2 A3/2

∆(1232) 3/2+ (1233 , 119) 60 −141± 3 −258± 5 (1211 , 99) 52 [−47◦] −135± 5 [−17◦] −255± 5 [−5◦]

N(1440) 1/2+ (1485 , 284) 112 −60± 2 (1359 , 162) 38 [−98◦] −65± 5 [−37◦]

N(1520) 3/2− (1515 , 104) 33 −19± 2 +153± 3 (1515 , 113) 38 [−5◦] −22± 3 [−10◦] +156± 6 [+11◦]

N(1535) 1/2− (1547 , 188) 34 +92± 5 (1502 , 95) 16 [−16◦] +77± 5 [+5◦]

N(1650) 1/2− (1635 , 115) 58 +35± 5 (1648 , 80) 14 [−69◦] +36± 3 [−16◦]

TABLE I. Breit-Wigner and pole values for selected nucleon resonances. Masses, widths and residues are given in units of
MeV , the helicity 1/2 and 3/2 photo-decay amplitudes in units of 10−3

× (GeV )−1/2. Errors on the phases are generally 2− 5
degrees. For isospin 1/2 resonances the values of the proton target are given.

Appendix A: Examples

The following examples will illustrate the derivation of
the photo-decay amplitudes at the pole position.

1. ∆(1232) 3/2+

For the ∆(1232) resonance, we obtain a pole position
of Wp = (1.211− i0.099/2)GeV with an elastic residue of

ResπN = 52 e−i47◦MeV. For photoproduction, there are
two isospin 3/2 multipoles, for which we find the residues

Res M
3/2
1+ = 2.96 e−i30◦ mfmGeV , (A1)

Res E
3/2
1+ = −0.16 ei35

◦

mfmGeV . (A2)

With Eqs. (3,4) we obtain the residues of the helicity
multipoles

Res A1/2
1+ = −1

2
(ResM

3/2
1+ + 3ResE

3/2
1+ ) (A3)

= −1.40 e−i39◦ mfmGeV , (A4)

Res A3/2
1+ = −

√
3

2
(ResM

3/2
1+ − ResE

3/2
1+ ) (A5)

= −2.63 e−i27◦ mfmGeV . (A6)

In order to obtain the photo-decay amplitudes, these
residues must be multiplied by a complex factor depend-
ing on spin, isospin, kinematics at the pole and the elastic
πN residue,

Apole
h = N

Res Ah
1+

197mfmGeV
, (A7)

N = C

√

qp
kp

2π(2J + 1)Mp

mNResπN
(A8)

With the isospin factor C =
√

2/3, qp/kp = 0.88 e−i3◦,
J = 3/2, the pole mass Mp = 1.211GeV (real part of
the pole position), the nucleon mass mN , giving N =

19.2 ei22
◦

GeV−1/2 we obtain the photo-decay amplitudes
at the pole

Apole
1/2 = −0.136 e−i17◦ GeV−1/2 , (A9)

Apole
3/2 = −0.255 e−i5◦ GeV−1/2 . (A10)

The magnitudes are very close to the Breit-Wigner val-
ues, the phases are considerably smaller than the phases
of the residues themselves, because a large phase of the
elastic residue is already taken out.

2. N(1440) 1/2+

For the Roper resonance N(1440), we obtain a pole
position of Wp = (1.359− i0.162/2)GeV with an elastic

residue ofResπN = 38 e−i98◦ MeV. For photoproduction,
there is only one isospin 1/2 multipole, for which we find
the residue

Res M
1/2
1− = 0.35 e−i85◦ mfmGeV . (A11)

With Eq. (5) we obtain the residue of the helicity 1/2
multipole as

Res A1/2
1− = ResM

1/2
1− . (A12)

With the isospin factor C = −
√
3 and qp/kp = 0.95 e−i1◦,

J = 1/2, the pole mass Mp = 1.359GeV, giving N =

−37 ei48
◦

GeV−1/2 we obtain the photo-decay amplitude
at the pole

Apole
1/2 = −0.066 e−i37◦ GeV−1/2 , (A13)

again a value with a magnitude close to the BW value and
a much smaller phase compared to the multipole residue.

3. N(1520) 3/2−

For the D13 resonance N(1520), we obtain a pole po-
sition of Wp = (1.515 − i0.113/2)GeV with an elastic

residue of ResπN = 38 e−i5◦ MeV. For photoproduction,
there are two isospin 1/2 multipoles, for which we find
the residues

Res E
1/2
2− = 0.442 ei10.5

◦

mfmGeV , (A14)

Res M
1/2
2− = 0.196 ei4.5

◦

mfmGeV . (A15)
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With Eqs. (5,6) we obtain the residues of the helicity 1/2
and 3/2 multipoles as

Res A1/2
2− = −1

2
(ResE

1/2
2− − 3ResM

1/2
2− ) (A16)

= 0.078 e−i13◦ mfmGeV , (A17)

Res A3/2
2− = −

√
3

2
(ResE

1/2
2− +ResM

1/2
2− ) (A18)

= −0.55 ei9
◦

mfmGeV . (A19)

With the isospin factor C = −
√
3, qp/kp = 0.97 e−i0◦,

giving N = −56 ei2
◦

GeV−1/2 we obtain the photo-decay
amplitudes at the pole

Apole
1/2 = −0.022 e−i10◦ GeV−1/2 , (A20)

Apole
3/2 = +0.156 ei11

◦

GeV−1/2 , (A21)

also values with magnitudes very similar to the BW val-
ues.

4. N(1535) 1/2−

For the S11 resonance N(1535), we obtain a pole po-
sition of Wp = (1.502 − i0.095/2)GeV with an elastic

residue of ResπN = 16 e−i16◦ MeV. For photoproduc-
tion, there is only one isospin 1/2 multipoles, for which
we find the residue

Res E
1/2
0+ = 0.25 e−i3◦ mfmGeV , (A22)

With Eq. (3) we obtain the residue of the helicity 1/2
multipole as

Res A1/2
0+ = −ResE

1/2
0+ (A23)

With the isospin factor C = −
√
3, qp/kp = 0.97 e−i0◦,

giving N = −60 ei8
◦

GeV−1/2 we obtain the photo-decay
amplitude at the pole

Apole
1/2 = 0.077 ei5

◦

GeV−1/2 , (A24)

a value with a magnitude which differs about 20% from
the BW value.
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